This article extended the properties of the idempotent generator of cyclic codes to polycyclic codes over the finite field $ \mathbb{F}_q $. In addition, the check matrix of polycyclic codes was provided over $ \mathbb{F}_q $. Specifically, it has been proven that the constacyclic code is an $ {{{\rm{MDS}}}} $ code over $ \mathbb{F}_q $ if and only if its annihilator dual code is also an $ {{{\rm{MDS}}}} $ code. Finally, we have provided some examples of good codes.
Citation: Wei Qi. The polycyclic codes over the finite field $ \mathbb{F}_q $[J]. AIMS Mathematics, 2024, 9(11): 29707-29717. doi: 10.3934/math.20241439
This article extended the properties of the idempotent generator of cyclic codes to polycyclic codes over the finite field $ \mathbb{F}_q $. In addition, the check matrix of polycyclic codes was provided over $ \mathbb{F}_q $. Specifically, it has been proven that the constacyclic code is an $ {{{\rm{MDS}}}} $ code over $ \mathbb{F}_q $ if and only if its annihilator dual code is also an $ {{{\rm{MDS}}}} $ code. Finally, we have provided some examples of good codes.
[1] | A. Alahmadi, A. Dougherty, A. Leroy, P. SolÉ, On the duality and the direction of polycyclic codes, Adv. Math. Commun., 12 (2016), 723–739. |
[2] | D. Boucher, F. Ulmer, Coding with skew polynomial rings, J. Symb. Comput., 44 (2009), 1644–1656. https://doi.org/10.1016/j.jsc.2007.11.008 doi: 10.1016/j.jsc.2007.11.008 |
[3] | K. Q. Feng, Algebraic theory of error-correcting codes, Beijing: Tsinghua University Press, 2005. |
[4] | E. M. Gabidulin, Rank $q$-cyclic and pseudo-$q$-cyclic codes, IEEE Int. Sym. Inform. Theory (ISIT2009), 2009, 2799–2802. https://doi.org/10.1109/ISIT.2009.5205787 doi: 10.1109/ISIT.2009.5205787 |
[5] | M. Grassl, Bounds on the minimum distance of linear codes and quantum codes. Available form: http://www.codetables.de. |
[6] | W. C. Huffman, V. Pless, Fundamentals of error-correcting codes, New York: Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511807077 |
[7] | S. Li, M. Xiong, G. Ge, Pseudo-cyclic codes and the construction of quantum MDS Codes, IEEE T. Inform. Theory, 62 (2016), 1703–1710. https://doi.org/10.1109/TIT.2016.2535180 doi: 10.1109/TIT.2016.2535180 |
[8] | S. R. L. Permouth, B. R. P. Avila, S. Szabo, Dual generalizations of the concept of cyclicity of codes, Adv. Math. Commun., 3 (2009) 227–234. https://doi.org/10.3934/amc.2009.3.227 doi: 10.3934/amc.2009.3.227 |
[9] | S. R. L. Permouth, H. Özadam, F. Özbudak, S. Szabo, Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes, Finite Fields Th. Appl., 19 (2013), 16–38. https://doi.org/10.1016/j.ffa.2012.10.002 doi: 10.1016/j.ffa.2012.10.002 |
[10] | T. Maruta, Optimal pseudo-cyclic codes and caps in $PG(3, q)$, Geometriae Dedicata, 54 (1995), 263–266. https://doi.org/10.1007/BF01265342 doi: 10.1007/BF01265342 |
[11] | E. M. Moro, A. Fotue, T. Blackford, On polycyclic codes over a finite chain ring, Adv. Math. Commun., 14 (2020), 445–466. https://doi.org/10.3934/amc.2020028 doi: 10.3934/amc.2020028 |
[12] | J. P. Pedersen, C. Dahl, Classification of pseudo-cyclic ${{\rm{MDS}}}$ codes, IEEE T. Inform. Theory, 37 (1991), 365–370. https://doi.org/10.1109/18.75254 doi: 10.1109/18.75254 |
[13] | W. W. Peterson, E. J. Weldon, Error correcting codes, Cambridge: MIT Press, 1972. |
[14] | W. Qi, On the polycyclic codes over $\mathbb{F}_q+u\mathbb{F}_q$, Adv. Math. Commun., 18 (2024), 661–673. https://doi.org/10.3934/amc.2022015 doi: 10.3934/amc.2022015 |
[15] | M. J. Shi, X. X. Li, Z. Sepasdar, P. Solé, Polycyclic codes as invariant subspaces, Finite Fields Th. App., 68 (2020), 101760. https://doi.org/10.1016/j.ffa.2020.101760 doi: 10.1016/j.ffa.2020.101760 |