Research article

The polycyclic codes over the finite field $ \mathbb{F}_q $

  • Received: 30 August 2024 Revised: 04 October 2024 Accepted: 14 October 2024 Published: 21 October 2024
  • MSC : 94B15, 94B05

  • This article extended the properties of the idempotent generator of cyclic codes to polycyclic codes over the finite field $ \mathbb{F}_q $. In addition, the check matrix of polycyclic codes was provided over $ \mathbb{F}_q $. Specifically, it has been proven that the constacyclic code is an $ {{{\rm{MDS}}}} $ code over $ \mathbb{F}_q $ if and only if its annihilator dual code is also an $ {{{\rm{MDS}}}} $ code. Finally, we have provided some examples of good codes.

    Citation: Wei Qi. The polycyclic codes over the finite field $ \mathbb{F}_q $[J]. AIMS Mathematics, 2024, 9(11): 29707-29717. doi: 10.3934/math.20241439

    Related Papers:

  • This article extended the properties of the idempotent generator of cyclic codes to polycyclic codes over the finite field $ \mathbb{F}_q $. In addition, the check matrix of polycyclic codes was provided over $ \mathbb{F}_q $. Specifically, it has been proven that the constacyclic code is an $ {{{\rm{MDS}}}} $ code over $ \mathbb{F}_q $ if and only if its annihilator dual code is also an $ {{{\rm{MDS}}}} $ code. Finally, we have provided some examples of good codes.



    加载中


    [1] A. Alahmadi, A. Dougherty, A. Leroy, P. SolÉ, On the duality and the direction of polycyclic codes, Adv. Math. Commun., 12 (2016), 723–739.
    [2] D. Boucher, F. Ulmer, Coding with skew polynomial rings, J. Symb. Comput., 44 (2009), 1644–1656. https://doi.org/10.1016/j.jsc.2007.11.008 doi: 10.1016/j.jsc.2007.11.008
    [3] K. Q. Feng, Algebraic theory of error-correcting codes, Beijing: Tsinghua University Press, 2005.
    [4] E. M. Gabidulin, Rank $q$-cyclic and pseudo-$q$-cyclic codes, IEEE Int. Sym. Inform. Theory (ISIT2009), 2009, 2799–2802. https://doi.org/10.1109/ISIT.2009.5205787 doi: 10.1109/ISIT.2009.5205787
    [5] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes. Available form: http://www.codetables.de.
    [6] W. C. Huffman, V. Pless, Fundamentals of error-correcting codes, New York: Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511807077
    [7] S. Li, M. Xiong, G. Ge, Pseudo-cyclic codes and the construction of quantum MDS Codes, IEEE T. Inform. Theory, 62 (2016), 1703–1710. https://doi.org/10.1109/TIT.2016.2535180 doi: 10.1109/TIT.2016.2535180
    [8] S. R. L. Permouth, B. R. P. Avila, S. Szabo, Dual generalizations of the concept of cyclicity of codes, Adv. Math. Commun., 3 (2009) 227–234. https://doi.org/10.3934/amc.2009.3.227 doi: 10.3934/amc.2009.3.227
    [9] S. R. L. Permouth, H. Özadam, F. Özbudak, S. Szabo, Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes, Finite Fields Th. Appl., 19 (2013), 16–38. https://doi.org/10.1016/j.ffa.2012.10.002 doi: 10.1016/j.ffa.2012.10.002
    [10] T. Maruta, Optimal pseudo-cyclic codes and caps in $PG(3, q)$, Geometriae Dedicata, 54 (1995), 263–266. https://doi.org/10.1007/BF01265342 doi: 10.1007/BF01265342
    [11] E. M. Moro, A. Fotue, T. Blackford, On polycyclic codes over a finite chain ring, Adv. Math. Commun., 14 (2020), 445–466. https://doi.org/10.3934/amc.2020028 doi: 10.3934/amc.2020028
    [12] J. P. Pedersen, C. Dahl, Classification of pseudo-cyclic ${{\rm{MDS}}}$ codes, IEEE T. Inform. Theory, 37 (1991), 365–370. https://doi.org/10.1109/18.75254 doi: 10.1109/18.75254
    [13] W. W. Peterson, E. J. Weldon, Error correcting codes, Cambridge: MIT Press, 1972.
    [14] W. Qi, On the polycyclic codes over $\mathbb{F}_q+u\mathbb{F}_q$, Adv. Math. Commun., 18 (2024), 661–673. https://doi.org/10.3934/amc.2022015 doi: 10.3934/amc.2022015
    [15] M. J. Shi, X. X. Li, Z. Sepasdar, P. Solé, Polycyclic codes as invariant subspaces, Finite Fields Th. App., 68 (2020), 101760. https://doi.org/10.1016/j.ffa.2020.101760 doi: 10.1016/j.ffa.2020.101760
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(265) PDF downloads(82) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog