This paper intends to demonstrate the boundedness of the fractional bilinear Hardy operator and its adjoint on the $ \lambda $-central Morrey space with variable exponents. Analogous outcomes for their commutators are derived when the symbol functions are elements of the $ \lambda $-central bounded mean oscillation ($ \lambda $-central BMO) space.
Citation: Muhammad Asim, Ghada AlNemer. Results for fractional bilinear Hardy operators in central varying exponent Morrey space[J]. AIMS Mathematics, 2024, 9(11): 29689-29706. doi: 10.3934/math.20241438
This paper intends to demonstrate the boundedness of the fractional bilinear Hardy operator and its adjoint on the $ \lambda $-central Morrey space with variable exponents. Analogous outcomes for their commutators are derived when the symbol functions are elements of the $ \lambda $-central bounded mean oscillation ($ \lambda $-central BMO) space.
[1] |
G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965
![]() |
[2] |
W. G. Faris, Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J., 43 (1976), 365–373. https://doi.org/10.1215/S0012-7094-76-04332-5 doi: 10.1215/S0012-7094-76-04332-5
![]() |
[3] |
M. Chris, L. Grafakos, Best constant for two nonconvolution inequalities, Math. Z., 123 (1995), 1687–1693. https://doi.org/10.1090/S0002-9939-1995-1239796-6 doi: 10.1090/S0002-9939-1995-1239796-6
![]() |
[4] | Z. W. Fu, L. Grafakos, S. Z. Lu, F. Y. Zhao, Sharp bounds for $m$-linear Hardy and Hilbert operators, Houston J. Math., 1 (2012), 225–244. |
[5] |
L. E. Persson, S. G. Samko, A note on the best constants in some hardy inequalities, J. Math. Inequal., 9 (2015), 437–447. https://doi.org/10.7153/jmi-09-37 doi: 10.7153/jmi-09-37
![]() |
[6] |
F. Y. Zhao, Z. W. Fu, S. Z. Lu, Endpoint estimates for $n$-dimensional Hardy operators and their commutators, Sci. China Math., 55 (2012), 1977–1990. https://doi.org/10.1007/s11425-012-4465-0 doi: 10.1007/s11425-012-4465-0
![]() |
[7] |
G. Gao, X. Hu, C. Zhong, Sharp weak estimates for Hardy-type operators, Ann. Funct. Anal., 7 (2016), 421–433. https://doi.org/10.1215/20088752-3605447 doi: 10.1215/20088752-3605447
![]() |
[8] |
Z. W. Fu, Z. G. Liu, S. Z. Lu, H. Wong, Characterization for commutators of $n$-dimensional fractional Hardy operators, Sci. China Ser. A., 10 (2007), 1418–1426. https://doi.org/10.1007/s11425-007-0094-4 doi: 10.1007/s11425-007-0094-4
![]() |
[9] |
F. Y. Zhao, S. Z. Lu, The best bound for $n$-dimensional fractional Hardy operator, Math. Inequal. Appl., 18 (2015), 233–240. https://doi.org/10.7153/mia-18-17 doi: 10.7153/mia-18-17
![]() |
[10] |
S. R. Wang, J. S. Xu, Commutators of the bilinear Hardy operator on Herz space type spaces with varaible exponent, J. Funct. Space., 2019 (2019). https://doi.org/10.1155/2019/7607893 doi: 10.1155/2019/7607893
![]() |
[11] |
M. Asim, I. Ayoob, A. Hussain, N. Mlaiki, Weighted estimates for fractional bilinear Hardy operators on variable exponent Morrey-Herz space, J. Inequal. Appl., 2024 (2024). https://doi.org/10.1186/s13660-024-03092-7 doi: 10.1186/s13660-024-03092-7
![]() |
[12] | G. H. Hardy, J. E. Littlewood, G. PÓlya, Inequalities, 2 Eds., Cambridge: Univ. Press, London. 1952. |
[13] | D. E. Edmunds, W. D. Evans, Hardy operators, function spaces and embedding, Berlin: Springer Verlag, 2004. |
[14] |
Z. W. Fu, Q. Y. Wu, S. Z. Lu, Sharp estimates of $p$-adic Hardy and Hardy-Littlewood-Pólya Operators, Acta Math. Sin., 29 (2013), 137–150. https://doi.org/10.1007/s10114-012-0695-x doi: 10.1007/s10114-012-0695-x
![]() |
[15] |
G. Gao, F. Y. Zhao, Sharp weak bounds for Hausdorff operators, Anal. Math., 41 (2015), 163–173. https://doi.org/10.1007/s10476-015-0204-4 doi: 10.1007/s10476-015-0204-4
![]() |
[16] |
S. Z. Lu, D. C. Yang, F. Y. Zhao, Sharp bounds for Hardy type operators on higher dimensional product spaces, J. Inequal. Appl., 148 (2013). https://doi.org/10.1186/1029-242X-2013-148 doi: 10.1186/1029-242X-2013-148
![]() |
[17] |
T. L. Yee, K. P. Ho, Hardy's inequalities and integral operators on Herz-Morrey spaces, Open Math., 18 (2020), 106–121. https://doi.org/10.1515/math-2020-0008 doi: 10.1515/math-2020-0008
![]() |
[18] |
A. Hussain, M. Asim, Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces, J. Funt. Space., 2021. https://doi.org/10.1155/2021/9705250 doi: 10.1155/2021/9705250
![]() |
[19] | M. Asim, F. G$\ddot{u}$rb$\ddot{u}$z, Some variable exponent boundedness and commutators estimates for fractional rough Hardy operators on central Morrey space, Commun. Fac. Sci. Univ., 73 (2024), 1–18. |
[20] |
M. Asim, A. Hussain, Weighted variable Morrey-Herz estimates for fractional Hardy operators, J. Inequal. Appl., 2022 (2022). https://doi.org/10.1186/s13660-021-02739-z doi: 10.1186/s13660-021-02739-z
![]() |
[21] |
W. Orlicz, Uber konjugierete exponentenfolgen, Stud. Math., 3 (1931), 200–212. https://doi.org/10.4064/sm-3-1-200-211 doi: 10.4064/sm-3-1-200-211
![]() |
[22] |
O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czech. Math. J., 41 (1991), 592–618. https://doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
![]() |
[23] | D. Cruz-Uribe, A. Fiorenza, J. M. Martell, C. Pérez, The boundedness of classical operators on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. Math., 31 (2006), 239–264. |
[24] | D. Cruz-Uribe, D. V. Fiorenza, Variable Lebesgue spaces: Foundations and harmonic analysis, Heidelberg: Springer, 2013. https://doi.org/10.1007/978-3-0348-0548-3 |
[25] |
Y. Chen, S. Levine, M, Rao, Variable exponent, linear growth functionals in image restoration, Appl. Math., 6 (2006), 1383–1406. https://doi.org/10.1137/050624522 doi: 10.1137/050624522
![]() |
[26] | M. Ruzicka, Electrorheological fluids, modeling and mathematical theory, Lectures Notes in Math., Berlin: Springer, 2000. https://doi.org/10.1007/BFb0104030 |
[27] |
P. Harjulehto, P. Hasto, U. V. Le, M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal., 72 (2010), 4551–4574. https://doi.org/10.1016/j.na.2010.02.033 doi: 10.1016/j.na.2010.02.033
![]() |
[28] |
A. Hussain, M. Asim, F. Jarad, Variable $\lambda$-central Morrey space estimates for the fractional Hardy operators and commutators, J. Math., 2022. https://doi.org/10.1155/2022/5855068 doi: 10.1155/2022/5855068
![]() |
[29] |
Z. Y. Si, $\lambda$-Central BMO estimates for multilinear commutators of fractional integrals, Acta Math. Sin., 26 (2010), 2093–2108. https://doi.org/10.1007/s10114-010-9363-1 doi: 10.1007/s10114-010-9363-1
![]() |
[30] |
Z. Fu, S. Lu, H. Wang, L. Wang, Singular integral operators with rough kernels on central Morrey spaces with variable exponent, Ann. Acad. Sci. Fenn.-M., 44 (2019), 505–522. https://doi.org/10.5186/aasfm.2019.4431 doi: 10.5186/aasfm.2019.4431
![]() |
[31] |
H. Wang, J. Xu, Multilinear fractional integral operators on central Morrey spaces with variable exponent, J. Inequal. Appl., 2019 (2019). https://doi.org/10.1186/s13660-019-2264-7 doi: 10.1186/s13660-019-2264-7
![]() |
[32] |
H. Wang, J. Xu, J. Tan, Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents, Front. Math. China, 15 (2022), 1011–1034. https://doi.org/10.1007/s11464-020-0864-7 doi: 10.1007/s11464-020-0864-7
![]() |
[33] |
D. Cruz-Uribe, L. Diening, P. Hästö, The maximal operator on weighted variable Lebesgue spaces, Fract. Calc. Appl. Anal., 14 (2011), 361–374. https://doi.org/10.2478/s13540-011-0023-7 doi: 10.2478/s13540-011-0023-7
![]() |
[34] |
C. Capone, D. Cruz-Uribe, SFO, A. Fiorenza, The fractional maximal operator and fractional integrals on variable $L^p$ spaces, Rev. Mat. Iberoam., 23 (2007), 743–770. https://doi.org/10.4171/rmi/511 doi: 10.4171/rmi/511
![]() |
[35] | L. Diening, L. Harjulehto, P. Hästö, P. Ružicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Heidelberg: Springer, 2011. |
[36] |
B. H. Dong, J. S. Xu, Herz-Morrey type Besov and Triebel-Lizorkin spaces with variable exponents, Banach J. Math. Anal., 9 (2015), 75–101. https://doi.org/10.15352/bjma/09-1-7 doi: 10.15352/bjma/09-1-7
![]() |
[37] | D. Cru-Uribe, A. Fiorenza, C. Neugebauer, The maximal function on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223–238. |
[38] | L. Grafakos, Modern Fourier analysis, Berlin, Germany: Springer, 2 Eds., 2008. |
[39] |
Z. Fu, S. Lu, H. Wang, L. Wang, Singular integral operators with rough kernal on central Morrey spaces with variable exponent, Ann. Acad. Sci. Fenn. Math., 44 (2019), 505–522. https://doi.org/10.5186/aasfm.2019.4431 doi: 10.5186/aasfm.2019.4431
![]() |
[40] |
O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czech. Math. J., 41 (1991), 592–618. https://doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
![]() |
[41] |
M. Izuki, Fractional integrals on Herz Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343–355. https://doi.org/10.32917/hmj/1291818849 doi: 10.32917/hmj/1291818849
![]() |
[42] |
C. Capone, D. C. Uribe, A. Fiorenza, The fractional maximal operator and fractional integrals on variable $L^{p}(\mathbb{R})$ spaces, Rev. Mat. Iberoam., 23 (2007), 743–770. https://doi.org/10.4171/rmi/511 doi: 10.4171/rmi/511
![]() |
[43] |
J. L. Wu, Boundedness of some sublinear operators on Herz Morrey spaces with variable exponent, Georgian Math. J., 21 (2014), 101–111. https://doi.org/10.1515/gmj-2014-0004 doi: 10.1515/gmj-2014-0004
![]() |