
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(11): 29707–29717.
DOI: 10.3934/math.20241439
Received: 30 August 2024
Revised: 04 October 2024
Accepted: 14 October 2024
Published: 21 October 2024

Research article

The polycyclic codes over the finite field Fq

Wei Qi*

School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong 255049,
China

* Correspondence: Email: qwrghj@126.com.

Abstract: This article extended the properties of the idempotent generator of cyclic codes to
polycyclic codes over the finite field Fq. In addition, the check matrix of polycyclic codes was provided
over Fq. Specifically, it has been proven that the constacyclic code is an MDS code over Fq if and only
if its annihilator dual code is also an MDS code. Finally, we have provided some examples of good
codes.

Keywords: polycyclic codes; idempotent generator; check matrix; MDS codes
Mathematics Subject Classification: 94B15, 94B05

1. Introduction

In 1972, Peterson first introduced the concept of pseudocyclic codes over fields through the
quotient ring angle of polynomial rings in [13, p.241]. The important engineering application value of
pseudocyclic codes is elaborated, and it is pointed out that pseudocyclic codes can be used to correct
any sudden errors in information transmission. Compared with cyclic codes and constacyclic codes,
the algebraic structure of pseudocyclic codes is more complex. So in the following period, there was
relatively little research on pseudocyclic codes (see [4,7,10,12]). Until 2009, López-Permouth et al. [8]
redefined pseudocyclic codes from the perspective of linear algebra and called them polycyclic codes,
and discussed the basic properties of polycyclic codes and sequential codes over Fq. It was proved
that the Euclidean dual codes of polycyclic codes are sequential codes. In 2011, López-Permouth et
al. [9] discussed the structure and generating sets of polycyclic codes on the Galois ring GR(pa,m).
The Hamming distance of the cyclic code with a length of ps over GR(p2,m) was calculated in detail.
However, one of the main reasons why polycyclic codes have not been as widely studied as cyclic
codes is that the Euclidean dual codes of polycyclic codes are no longer polycyclic codes. In 2016, to
solve this issue, Alahmadi et al. [1] studied the algebraic properties of polycyclic codes over fields,
introduced the annihilator product and annihilator dual codes, gave the MacWilliams identities of
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polycyclic codes and their annihilator dual codes, and finally obtained the equivalent characterization
of constacyclic codes. In 2020, Shi et al. [15] studied polycyclic codes over finite fields through
the perspective of invariant subspace theory in linear algebra, and gave the bounds of the minimum
distance of these polycyclic codes. Subsequently, scholars shifted the research scope of polycyclic
codes from finite fields to finite rings. In 2020, Martinez-Moro et al. [11] studied the properties of
free polycyclic codes on finite chain rings, and gave the basic properties of Euclidean dual codes and
annihilator dual codes of polycyclic codes. It is shown that the dual annihilator code of polycyclic
codes over finite chain rings is still a polycyclic code. In 2024, the author [14] gave the concepts
of annihilator self-orthogonal code, annihilator self-dual code, and annihilator LCD code by using the
annihilator product over finite rings, and studied their discrimination conditions and counting problems
over the ring Fq + uFq, using their generator polynomials and check polynomials over Fq.

So far, there is relatively little research on polycyclic codes over finite rings. This article conducts
research on polycyclic codes over the finite field Fq. This lays the foundation for future research on
polycyclic codes over finite rings. The main research content of this article is as follows. This article
will extend the properties of the idempotent generator of cyclic codes to polycyclic codes over the
finite field Fq. In addition, the check matrix of polycyclic codes is provided over Fq. Specifically, it has
been proven that the constacyclic code is an MDS code over Fq if and only if its annihilator dual code
is also an MDS code. Finally, we provide some examples of good codes.

2. Idempotent generator of polycyclic codes over Fq

In 2009, López-Permouth [8] proposed the concept of polycyclic codes and sequential codes over
the finite field Fq.

Definition 2.1. [8] Let C be a linear code of length n over Fq, if there exists a = (a0, a1, ..., an−1) ∈ Fn
q,

where a0 , 0, such that for every c = (c0, c1, ..., cn−1) ∈ C,
(1) (0, c0, c1, ..., cn−2) + cn−1(a0, a1, ..., an−1) ∈ C. Then C is said to be an a-polycyclic code over Fq;
(2) (c1, c2, ..., cn−1, c0a0 + c1a1 + ... + cn−1an−1) ∈ C. Then C is said to be an a-sequential code over

Fq.

Some properties of the idempotent generator of cyclic codes over Fq are provided in [6, Section 4.3].
In 2020, Shi et al. [15] extended the idempotent generator from cyclic codes to polycyclic codes, and
studied the idempotent matrix of polycyclic codes over finite fields and its basic properties. As an
application, the lower bounds of the minimum distance of some polycyclic codes are given. This
section assumes xn − a(x) ∈ Fq[x] in Fq which is not a double root in the algebraic closure of Fq. This
section mainly discusses some properties of the idempotent generator of polycyclic codes over Fq.

Definition 2.2. Let C be an a-polycyclic code over Fq, e(x) ∈ C. If e2(x) = e(x), then e(x) is an
idempotent of C. Further, if C = 〈e(x)〉, then e(x) is called the idempotent generator of C.

The existence of the idempotent generator of cyclic codes over fields in [6, Theorem 4.3.2], and
the existence of the idempotent generative matrix of polycyclic codes over fields was studied in [15,
Theorem 3.1 (6)]. Next, we study the unique existence of the idempotent generator of a-polycyclic
codes over fields.
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Theorem 2.3. Let C be a polycyclic code of length n over Fq, if there are no double roots in xn−a(x) ∈
Fq[x]. Then

(1) There exists a unique idempotent element e(x) ∈ C, such that C = 〈e(x)〉;
(2) If e(x) is a non-zero idempotent element of C, then C = 〈e(x)〉 if and only if e(x) is the unity of

C.

Proof. First, we construct idempotent elements of C. Let g(x) be the generator polynomial of a-
polycyclic code C, and then g(x)|(xn − a(x)). Let h(x) = (xn − a(x))/g(x). Since xn − a(x) has no double
roots, gcd(g(x), h(x)) = 1. So there exist s(x), t(x) ∈ Fq[x], such that s(x)g(x) + t(x)h(x) = 1. Set
e(x) = s(x)g(x), and we have

e2(x) = s(x)g(x)s(x)g(x) = s(x)g(x)(1 − t(x)h(x))
≡ s(x)g(x)mod (xn − a(x)).

Hence, e2(x) = e(x).
The necessity of proving (2). Let c(x) ∈ C. As C = 〈e(x)〉, there exists m(x) ∈ Fq[x] such that

c(x) = e(x)m(x). From the fact that e(x) is a non-zero idempotent element in C, we have

c(x)e(x) = e2(x)m(x) = e(x)m(x) = c(x).

e(x) is the unity of C.
The sufficiency of proving (2). Let e(x) be the unity of C, and then e(x) ∈ C. In light of [14,

Proposition 1], the a-polycyclic code C over Fq is the ideal of the quotient rings of Fq[x]/〈xn − a(x)〉.
It implies that 〈e(x)〉 ⊆ C.

On the other hand, if for any c(x) ∈ C, c(x) = e(x)c(x) ∈ 〈e(x)〉 is known from the fact that e(x) is
the unity of C. Therefore, C ⊆ 〈e(x)〉. So C = 〈e(x)〉.

Next, we use the equivalent characterization of the idempotent generator in (2) to continue to
prove (1): The existence and uniqueness of the idempotent generator.

Assuming any c(x) ∈ C, there exists f (x) ∈ Fq[x] such that c(x) = g(x) f (x), and therefore,

c(x)e(x) = g(x) f (x)s(x)g(x) = g(x) f (x)(1 − t(x)h(x))
≡ g(x) f (x) ≡ c(x)mod (xn − a(x)).

Thus, e(x) is the unity of C. From (2), we have C = 〈e(x)〉.
Uniqueness. Set e1(x), e2(x) are idempotent generators of C, and e1(x), e2(x) are the unities of C.

Therefore
e1(x) = e1(x)e2(x) = e2(x).

�

It can be seen from the above that polycyclic codes can be generated not only by generator
polynomials, but also by idempotent generators. Therefore, we will build a relationship between
idempotent generators and generator polynomials.

Theorem 2.4. Let C be an a-polycyclic code of length n over Fq, g(x) be the generator polynomial of
C, and e(x) be the idempotent generator of C. Then gcd(e(x), xn − a(x)) = g(x).
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Proof. Let g(x) be the generator polynomial of the a-polycyclic code C over Fq, and then g(x)|(xn −

a(x)). Let h(x) = (xn − a(x))/g(x). Since xn − a(x) has no double roots, gcd(g(x), h(x)) = 1. Thus,
there exist s(x), t(x) ∈ Fq[x], such that s(x)g(x) + t(x)h(x) = 1. According to Theorem 2.3, we obtain
e(x) = s(x)g(x). Therefore

gcd(e(x), xn − a(x)) = gcd(s(x)g(x), g(x)h(x))
= g(x)gcd(s(x), h(x))
= g(x).

�

Proposition 1. Let C be an a-polycyclic code of length n and dimension k over Fq, and let e(x) be the
idempotent generator of C. Then {e(x), xe(x), .., xk−1e(x)} is a basis of C.

Proof. Let b0e(x) + b1xe(x) + ...bk−1xk−1e(x) = 0, where bi ∈ Fq (0 6 i 6 k − 1). Then

b(x)e(x) = 0,

where b(x) = b0 + b1x + ...bk−1xk−1, deg(b(x)) 6 k − 1. Let g(x) be the generator polynomial of the
a-polycyclic code C. Then

g(x)b(x)e(x) = 0.

According to the idempotent generator e(x) of C and Theorem 2.3, we know that e(x) is the unity of C.
So g(x)b(x) = 0 because

deg(g(x)) = n − k, deg(b(x)) 6 k − 1.

So we can obtain deg(g(x)b(x)) 6 n − 1. Therefore, b(x) = 0. Thus bi = 0 (0 6 i 6 k − 1). Note that
the dimension of C is k, and therefore, {e(x), xe(x), .., xk−1e(x)} is a basis of C. �

If C1 and C2 are a-polycyclic codes of length n over Fq, then C1 +C2 = {c1 +c2|c1 ∈ C1, c2 ∈ C2}, and
C1 ∩ C2 are still a-polycyclic codes of length n over Fq. Next, we discuss their generator polynomials
and idempotent generators.

Theorem 2.5. Let C1 and C2 be a-polycyclic codes of length n over Fq, g1(x) and g2(x) are, respectively,
generator polynomials of C1 and C2, and e1(x) and e2(x) are, respectively, idempotent generators of
C1 and C2. Then

(1) The generator polynomial of C1 ∩ C2 is lcm(g1(x), g2(x)), and the idempotent generator is
e1(x)e2(x);

(2) The generator polynomial of C1 +C2 is gcd(g1(x), g2(x)), and the idempotent generator is e1(x)+

e2(x) − e1(x)e2(x).

Proof. (1) Let g(x) = lcm(g1(x), g2(x)), and the following proves that C1 ∩C2 = 〈g(x)〉.
Obviously, g1(x)|g(x), g2(x)|g(x). Thus, there exist b1(x), b2(x) ∈ Fq[x], such that g(x) = g1(x)b1(x),

g(x) = g2(x)b2(x). So
g(x) ∈ 〈g1(x)〉, g(x) ∈ 〈g2(x)〉.

Since C1 = 〈g1(x)〉 and C2 = 〈g2(x)〉 are a-polycyclic codes over Fq, thus

〈g(x)〉 ⊆ 〈g1(x)〉, 〈g(x)〉 ⊆ 〈g2(x)〉,
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and therefore, 〈g(x)〉 ⊆ C1 ∩C2.

For any c(x) ∈ C1 ∩ C2, then c(x) ∈ C1 = 〈g1(x)〉, c(x) ∈ C2 = 〈g2(x)〉. Therefore, there exist
b1(x), b2(x) ∈ Fq[x], such that c(x) = g1(x)b1(x), c(x) = g2(x)b2(x). So c(x) is a common multiple of
g1(x) and g2(x). Also, we have obtained that g(x) = lcm(g1(x), g2(x)),

g(x)|c(x).

So there exists f (x) ∈ Fq[x], such that c(x) = g(x) f (x). Therefore, c(x) ∈ 〈g(x)〉. We have C1 ∩ C2 ⊆

〈g(x)〉. Hence C1 ∩C2 = 〈g(x)〉.
Set any c(x) ∈ C1 ∩ C2, and then c(x) ∈ C1, c(x) ∈ C2. Since e1(x) and e2(x) are, respectively,

idempotent generators of C1 and C2,

c(x)e1(x)e2(x) = c(x)e2(x) = c(x).

This implies e1(x)e2(x) is the unity of C1 ∩ C2. So by Theorem 2.3, e1(x)e2(x) is the idempotent
generator of C1 ∩C2.

(2) Let g(x) = gcd(g1(x), g2(x)). Let us prove that C1 + C2 = 〈g(x)〉.
Obviously g(x)|g1(x), g(x)|g2(x). So

〈g1(x)〉 ⊆ 〈g(x)〉, 〈g2(x)〉 ⊆ 〈g(x)〉.

This implies C1 + C2 ⊆ 〈g(x)〉.
Since g(x) = gcd(g1(x), g2(x)) can be obtained, there exist b1(x), b2(x) ∈ Fq[x], such that g(x) =

b1(x)g1(x) + b2(x)g2(x). We get g(x) ∈ 〈g1(x)〉 + 〈g2(x)〉. Note that C1 + C2 is an a-polycyclic code of
length n over Fq. Thus 〈g(x)〉 ⊆ C1 + C2. Therefore, C1 + C2 = 〈g(x)〉.

Set for any c(x) ∈ C1 + C2, c(x) = c1(x) + c2(x), where c1(x) ∈ C1, c2(x) ∈ C2. Since e1(x) and e2(x)
are, respectively, idempotent generators of C1 and C2, and Theorem 2.3 implies that e1(x) and e2(x)
are, respectively, the unities of C1 and C2, we observe that

c(x)(e1(x) + e2(x) − e1(x)e2(x)) = (c1(x) + c2(x))(e1(x) + e2(x) − e1(x)e2(x))
= c1(x)e1(x) + c1(x)e2(x) − c1(x)e1(x)e2(x)

+ c2(x)e1(x) + c2(x)e2(x) − c2(x)e1(x)e2(x)
= c1(x) + c2(x) = c(x).

It follows that e1(x) + e2(x)− e1(x)e2(x) is the unity of C1 + C2, and is also the idempotent generator of
C1 + C2. �

Proposition 2. Let C1 and C2 be a-polycyclic codes over Fq, and g1(x) and g2(x) are generator
polynomials of C1 and C2, respectively. Then C1 ⊆ C2 if and only if g2(x)|g1(x).

Proof. Necessity. Set C1 ⊆ C2, namely, 〈g1(x)〉 ⊆ 〈g2(x)〉. Then g1(x) ∈ 〈g1(x)〉 ⊆ 〈g2(x)〉, so there
exists f (x) ∈ Fq[x], such that g1(x) = g2(x) f (x), implying g2|g1.

Sufficiency. Set g2|g1, so there exists f (x) ∈ Fq[x], such that g1(x) = g2(x) f (x). It shows g1(x) ∈
〈g2(x)〉. As 〈g2(x)〉 is an ideal of Rn, thus 〈g1(x)〉 ⊆ 〈g2(x)〉, then C1 ⊆ C2. �
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3. MDS codes and the check matrix of polycyclic codes over Fq

In 2009, López-Permouth [8] discussed the basic properties of polycyclic codes and sequential
codes over Fq. In reference [8, Theorem 3.2], it was found that the Euclidean dual codes of polycyclic
codes are sequential codes over Fq.

Proposition 3. [8] Let C be an a-polycyclic code over Fq. Then C⊥ is an a-sequential code over Fq.

From this, it can be concluded that the Euclidean dual codes of polycyclic codes are not necessarily
polycyclic codes. Therefore, Alahmadi defined the inner products of annihilator and annihilator dual
codes in [1]. This section continues on this basis, studying annihilator dual codes of the a-polycyclic
code over Fq. Let ρ(x) ∈ Fq[x], and denote by {ρ(x)}a = {r(x)|ρ(x) ≡ r(x)mod(xn − a(x)), deg(r(x)) 6
n − 1}.

Definition 3.1. [1] Let α, β ∈ Fn
q, and let C be an a-polycyclic code of length n over Fq.

(1) The annihilator product of α(x) and β(x) is defined to be

〈α, β〉a = ({α(x)β(x)}a)(0).

(2) The annihilator dual code C◦ of an a-polycyclic code C is defined to be

C◦ = {β ∈ Fn
q|〈α, β〉a = 0,∀α ∈ C}.

By [14, Lemma 2.4], the following conclusion holds.

Lemma 3.2. [14] Let C be an a-polycyclic code over Fq. Then C◦ = 〈h(x)〉, where h(x) is the check
polynomial of C.

Definition 3.3. [3] Let C be a code with parameter [n, k, d] over Fq. If n = k + d − 1 is satisfied, then
C is called a maximum distance separable code, also known as an MDS code.

As is well-known, MDS codes are good codes. This has prompted many scholars to study them.
It is well-known that a linear code C is an MDS code if and only if C⊥ is an MDS code (see [3,
Theorem 2.3.1]). Naturally, let us consider whether we can get the annihilator dual code C◦ of C and
still maintain the property of MDS when the a-polycyclic code C is MDS.

The following Theorem 3.7 indicates that for a = (λ, 0, ..., 0)-polycyclic codes, where λ ∈ F∗q, the
annihilator dual codes C◦ of λ-constacyclic codes over Fq also maintain the MDS property. It is easy
to obtain another type of good code from one type of good code, which is of great significance in
theoretical research and practical applications.

Lemma 3.4. [3] Let C be an a-polycyclic code of length n and dimension k over Fq, Gk×n and H(n−k)×n

are the generator matrix and check matrix of code C, respectively. Then, the following statements are
equivalent:

(1) C is an MDS code;
(2) Any k column of the generator matrix of C is Fq-linearly independent;
(3) Any n − k column of the check matrix of H(n−k)×n is Fq-linearly independent;
(4) C⊥ is an MDS code.
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The following two lemmas give the generator matrix of a-polycyclic codes and the check matrix of
λ-constacyclic codes, respectively.

Lemma 3.5. [8] Let C be an a-polycyclic code of length n and dimension k over Fq. C = 〈g(x)〉,
where g(x) = g0 + g1x + · · · + gn−kxn−k, gn−k , 0. Then the generator matrix of C is

G =


g0 g1 · · · gn−k

g0 g1 · · · gn−k
. . .

. . .
. . .

. . .

g0 g1 · · · gn−k


k×n

.

Lemma 3.6. [2] Let θ be an automorphism over Fq. Let C be a θ-λ-constacyclic code of length n and
dimension k over Fq, n|Ord(θ), λ ∈ F∗q, θ(λ) = λ, C = 〈g(x)〉, the first coefficient of g(x) is 1, and g(x)
is the right factor of xn − λ. Set h(x) = xn−λ

g(x) , h(x) = h0 + h1x + ... + hkxk, and hk = 1. Then the check
matrix of C is

H
′

=


hk θ(hk−1) · · · θk(h0)

hk θ2(hk−1) · · · θk+1(h0)
. . .

. . .
. . .

. . .

hk θn−k(hk−1) · · · θn−1(h0)


(n−k)×n

.

Specifically, when θ = 1, then C is a λ-constacyclic code of length n and dimension k over Fq, and
the check matrix of C is

H =


hk hk−1 · · · h0

hk hk−1 · · · h0
. . .

. . .
. . .

. . .

hk hk−1 · · · h0


(n−k)×n

. (3.1)

From this, we can obtain the following theorem.

Theorem 3.7. Let C be a λ-constacyclic code over Fq. Then C is an MDS code if and only if C◦ is an
MDS code.

Proof. Let C be a λ-constacyclic code of length n with dimension k over Fq, and then by Lemma 3.6,
the check matrix H(n−k)×n is (3.1). Obviously C is a linear code over Fq, by Lemma 3.4: C is an MDS
code if and only if any n − k column of the check matrix H(n−k)×n of C is Fq-linearly independent. By
Lemma 3.2: C◦ = 〈h(x)〉, where h(x) = h0 + h1x + · · · + hkxk, and lemma 3.5 knows that the generator
matrix of C◦ is

G◦ =


h0 h1 ... hk

h0 h1 ... hk
. . .

. . .
. . .

. . .

h0 h1 ... hk


(n−k)×n

. (3.2)

Compare (3.1) with (3.2), and it is easy to see λ1Hi1 + · · · + λn−kHin−k = 0 if and only if λ1G◦n−i1+1 +

· · · + λn−kG◦n−in−k+1 = 0, where each λ j ∈ Fq, and H j and G◦j are the j-th column vector of H and G◦,
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respectively. So any n− k column of the check matrix (3.1) of C is Fq-linearly independent, if and only
if any n−k column of the generator matrix (3.2) of C◦ is Fq-linearly independent. Again by Lemma 3.4:
Any n − k column of the generator matrix (3.2) of C◦ is Fq-linearly independent if and only if C◦ is an
MDS code. Then, C is an MDS code if and only if C◦ is an MDS code.

�

In reference [8], the generator matrix of a-polycyclic codes of length n with demension k is given.
But the check matrix is not given. The following Theorem 3.8 gives the check matrix of a-polycyclic
codes.

Theorem 3.8. Let C be an a-polycyclic code of length n with dimension k over Fq, deg(a(x)) 6 n−k−1,
C = 〈g(x)〉, and g(x) and h(x) are the generator polynomial and check polynomial of C, respectively,
where g(x) = g0 + g1x + · · ·+ gn−kxn−k(gn−k = 1, g0 , 0), and h(x) = h0 + h1x + · · ·+ hkxk(hk = 1, h0 , 0).
Then the check matrix H = (hi, j)(n−k)×n of C satisfies

hi, j =


0, 1 6 j < i;
hk+i− j, i 6 j 6 i + k;∑k

s=2k+i− j+1 an+k+i− j−shs, i + k < j 6 n.

That is to say, the form of the check matrix H is as follows:

H =



hk hk−1 ... h0 hn−k−1,n hn−k−2,n · · · h2,n h1,n

hk hk−1 · · · h0 hn−k−1,n hn−k−2,n · · · h2,n
. . .

. . .
...

. . .
. . .

. . .
. . .

. . . hn−k−2,n
. . .

. . .
. . .

. . . hn−k−1,n

hk hk−1 · · · · · · h0


(n−k)×n

, (3.3)

where hi, j =
∑k

s=2k+i− j+1 an+k+i− j−shs, i + k < j 6 n.

Proof. Due to deg(a(x)) 6 n− k − 1, we set a(x) = an−k−1xn−k−1 + an−k−2xn−k−2 + · · ·+ a1x + a0. For any
c(x) ∈ C = 〈g(x)〉, there exists s(x) ∈ Fq[x], such that c(x) = s(x)g(x). Since h(x) = h0 + h1x + · · · +

hkxk(hk = 1, h0 , 0), we can obtain

c(x)h(x) = s(x)g(x)h(x) = s(x)(xn − a(x)) = 0mod(xn − a(x)).

Let c(x) = c0 + c1x + · · · + cn−1xn−1, and then

0 = c(x)h(x)
= (c0 + c1x + · · · + cn−1xn−1)(h0 + h1x + · · · + hkxk)
= t0 + t1x + · · · + tn−1xn−1mod(xn − a(x)),

where t0, t1, ..., tn−1 are as follows:
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t0 : c0h0 + cn−1h1 + cn−2h2 + · · · + cn−k+2hk−2 + cn−k+1hk−1 + cn−khk = 0,
t1 : c1h0 + c0h1 + cn−1h2 + · · · + cn−k+3hk−2 + cn−k+2hk−1 + cn−k+1hk = 0,
...

tk−3 : ck−3h0 + ck−4h1 + ck−5h2 + · · · + cn−1hk−2 + cn−2hk−1 + cn−3hk = 0,
tk−2 : ck−2h0 + ck−3h1 + ck−4h2 + · · · + c0hk−2 + cn−1hk−1 + cn−2hk = 0,
tk−1 : ck−1h0 + ck−2h1 + ck−3h2 + · · · + c1hk−2 + c0hk−1 + cn−1hk = 0,

tk : ckh0 + ck−1h1 + ck−2h2 + · · · + c2hk−2 + c1hk−1 + c0hk = 0,
tk+1 : ck+1h0 + ckh1 + ck−1h2 + · · · + c3hk−2 + c2hk−1 + c1hk = 0,

...

tn−1 : cn−1h0 + cn−2h1 + ck−3h2 + · · · + cn−k+1hk−2 + cn−khk−1 + cn−k−1hk = 0.

From this, it can be seen that the number of corresponding terms in tk, tk+1, ..., tn does not exceed n
times, and the number of corresponding terms in t0, t1, ..., tk−1 exceeds n times.

For items in tk−1, where the number of times the corresponding item exceeds n is cn−1hk, and due to
Rn =

Fq[x]
xn−a(x) and a(x) = an−k−1xn−k−1 + an−k−2xn−k−2 + · · · + a1x + a0, therefore

cn−1xn−1hkxk = cn−1hkxnxk−1

= cn−1hka(x)xk−1

= cn−1hk(an−k−1xn−k−1 + an−k−2xn−k−2 + · · · + a1x + a0)xk−1

= cn−1hkan−k−1xn−2 + cn−1hkan−k−2xn−3 + · · · + cn−1hka1xk + cn−1hka0xk−1.

It can be seen that after calculation, the term cn−1hkan−k−1xn−2 obtained from cn−1xn−1hkxk should
correspond to tn−2, the obtained term cn−1hkan−k−2xn−3 should correspond to tn−3,..., and the obtained
term cn−1hka1xk should correspond to tk.

Next, calculate the corresponding terms in tk−2 that exceed n times: cn−1hk−1 and cn−2hk.

cn−1xn−1hk−1xk−1 = cn−1hk−1xnxk−2

= cn−1hk−1a(x)xk−2

= cn−1hk−1(an−k−1xn−k−1 + an−k−2xn−k−2 + · · · + a1x + a0)xk−2

= cn−1hk−1an−k−1xn−3 + cn−1hk−1an−k−2xn−4 + · · · + cn−1hk−1a1xk−1 + cn−1hk−1a0xk−2.

It can be seen that after calculation, the term cn−1hk−1an−k−1xn−3 obtained from cn−1xn−1hk−1xk−1 should
correspond to tn−3, the obtained term cn−1hk−1an−k−2xn−4 should correspond to tn−4,..., and the obtained
term cn−1hka2xk should correspond to tk. Similarly, cn−2xn−2hkxk can be calculated.

Calculate the corresponding terms in tk−3 that exceed n times: cn−1hk−2, cn−2hk−1 and cn−3hk. By
following this method of calculation, we can obtain

AIMS Mathematics Volume 9, Issue 11, 29707–29717.



29716



hk hk−1 ... h0 hn−k−1,n hn−k−2,n · · · h2,n h1,n

hk hk−1 · · · h0 hn−k−1,n hn−k−2,n · · · h2,n
. . .

. . .
...

. . .
. . .

. . .
. . .

. . . hn−k−2,n
. . .

. . .
. . .

. . . hn−k−1,n

hk hk−1 · · · h0




c0

c1
...

cn−1

 = 0.

Therefore, we obtain the check matrix of code C in (3.3), where hi, j =
∑k

s=2k+i− j+1 an+k+i− j−shs, i + k <
j 6 n. �

4. Examples

In this section, some examples of polycyclic codes over F2 are given to illustrate the main results
obtained in this paper.

Example 4.1. Let F2 be a finite field with 2 elements. Consider a-polycyclic codes of length n = 12
over F2, where a = (1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0). Note that xn−a(x) = x12 + x8 + x2 +1. The irreducible
decomposition of xn − a(x) on F2 is as follows:

x7 + x6 + x5 + x4 + x2 + 1 = (x + 1)2(x2 + x + 1)2(x3 + x + 1)2.

For convenience, write g1 = x + 1, g2 = x2 + x + 1, and g3 = x3 + x + 1. So there are a total of 27 a-
polycyclic codes with a length of 12 over F2. Then the parameters of codes C1 = 〈g1g2g3〉, C2 = 〈g1g2

3〉,
C3 = 〈g1g2

2g3〉, and C4 = 〈g1g2g2
3〉 are, respectively, [12, 6, 4], [12, 5, 4], [12, 4, 6], and [12, 3, 6]. They

are all optimal codes (see reference [5]).

Example 4.2. Calculated through Magma software, the following Table 1 provides all generator
polynomials g(x) of (1, 1, 0, 0, 0)-polycyclic codes of length 5 over F2.

Table 1. Polycyclic codes of length 5.
Codes Parameters g(x) C◦

C1 [5, 0, 0] 0 C4

C2 [5, 3, 2] x2 + x + 1 C3

C3 [5, 2, 3] x3 + x2 + 1 C2

C4 [5, 5, 1] 1 C1

It is clear that C3 is an MDS code, reaching the Griesmer boundary.

5. Conclusions

In this article, we extend the properties of the idempotent generator of cyclic codes to polycyclic
codes over the finite field Fq. The check matrix of polycyclic codes is provided over Fq. Specifically,
it has been proven that the constacyclic code is an MDS code over Fq if and only if its annihilator dual
code is also an MDS code. Finally, some examples of good codes are provided.
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15. M. J. Shi, X. X. Li, Z. Sepasdar, P. Solé, Polycyclic codes as invariant subspaces, Finite Fields Th.

App., 68 (2020), 101760. https://doi.org/10.1016/j.ffa.2020.101760

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 11, 29707–29717.

https://dx.doi.org/https://doi.org/10.1016/j.jsc.2007.11.008
https://dx.doi.org/https://doi.org/10.1109/ISIT.2009.5205787
http://www.codetables.de
https://dx.doi.org/https://doi.org/10.1017/CBO9780511807077
https://dx.doi.org/https://doi.org/10.1109/TIT.2016.2535180
https://dx.doi.org/https://doi.org/10.3934/amc.2009.3.227
https://dx.doi.org/https://doi.org/10.1016/j.ffa.2012.10.002
https://dx.doi.org/https://doi.org/10.1007/BF01265342
https://dx.doi.org/https://doi.org/10.3934/amc.2020028
https://dx.doi.org/https://doi.org/10.1109/18.75254
https://dx.doi.org/https://doi.org/10.3934/amc.2022015
https://dx.doi.org/https://doi.org/10.1016/j.ffa.2020.101760
https://creativecommons.org/licenses/by/4.0

	Introduction
	Idempotent generator of polycyclic codes over Fq
	MDS codes and the check matrix of polycyclic codes over Fq
	Examples
	Conclusions

