The consensus tracking problem of leader-follower multi-agent systems (MASs) with singular structures on jointly connected topology is studied in this paper. To achieve the objective of consensus tracking, a distributed adaptive control protocol is formulated to adjust the coupling weights among the agents using the adaptive rate, where the adaptive protocol can be implemented by each agent in a fully distributed manner without using any global information. A fuzzy logic system method is used to deal with the nonlinear terms in response to the limitations of nonlinear system analysis. The consensus tracking problem is transformed into an error system stability analysis, and two sufficient conditions are provided to guarantee the control objective based on Lyapunov stability theory and singular system theory. Finally, the effectiveness of this method is verified through a simulation example.
Citation: Jiawen Li, Yi Zhang, Heung-wing Joseph Lee, Yingying Wang. Fuzzy tracking control of singular multi-agent systems under switching topology[J]. AIMS Mathematics, 2024, 9(11): 29718-29735. doi: 10.3934/math.20241440
The consensus tracking problem of leader-follower multi-agent systems (MASs) with singular structures on jointly connected topology is studied in this paper. To achieve the objective of consensus tracking, a distributed adaptive control protocol is formulated to adjust the coupling weights among the agents using the adaptive rate, where the adaptive protocol can be implemented by each agent in a fully distributed manner without using any global information. A fuzzy logic system method is used to deal with the nonlinear terms in response to the limitations of nonlinear system analysis. The consensus tracking problem is transformed into an error system stability analysis, and two sufficient conditions are provided to guarantee the control objective based on Lyapunov stability theory and singular system theory. Finally, the effectiveness of this method is verified through a simulation example.
[1] | J. Sun, J. Zhang, L. Liu, Q. Shan, J. X. Zhang, Event-triggered consensus control of linear multi-agent systems under intermittent communication, J. Franklin Inst., 361 (2024), 106650. https://doi.org/10.1016/j.jfranklin.2024.106650 doi: 10.1016/j.jfranklin.2024.106650 |
[2] | A. Amirkhani, A. H. Barshooi, Consensus in multi-agent systems: a review, Artif. Intell. Rev., 55 (2022), 3897–3935. https://doi.org/10.1007/s10462-021-10097-x doi: 10.1007/s10462-021-10097-x |
[3] | J. Sun, J. Zhang, L. Liu, Y. Wu, Q. Shan, Output consensus control of multi-agent systems with switching networks and incomplete leader measurement, IEEE Trans. Autom. Sci. Eng., 21 (2024), 6643–6652. https://doi.org/10.1109/TASE.2023.3328897 doi: 10.1109/TASE.2023.3328897 |
[4] | S. Liang, F. Wang, Z. Liu, Z. Chen, Necessary and sufficient conditions for leader–follower consensus of discrete-time multiagent systems with smart leader, IEEE Trans. Syst. Man Cybern.: Syst., 52 (2022), 2779–2788. https://doi.org/10.1109/TSMC.2021.3055578 doi: 10.1109/TSMC.2021.3055578 |
[5] | A. Jadbabaie, J. Lin, A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Autom. Control, 48 (2003), 988–1001. https://doi.org/10.1109/TAC.2003.812781 doi: 10.1109/TAC.2003.812781 |
[6] | R. Olfati-Saber, R. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control, 49 (2004), 1520–1533. https://doi.org/10.1109/TAC.2004.834113 doi: 10.1109/TAC.2004.834113 |
[7] | W. Ren, R. W. Beard, Consensus seeking in multi-agent systems under dynamically changing interaction topologies, IEEE Trans. Autom. Control, 50 (2005), 655–661. https://doi.org/10.1109/TAC.2005.846556 doi: 10.1109/TAC.2005.846556 |
[8] | W. Ni, D. Z. Cheng, Leader-following consensus of multi-agent systems under fixed and switching topologies, Syst. Control Lett., 59 (2010), 209–217. https://doi.org/10.1016/j.sysconle.2010.01.006 doi: 10.1016/j.sysconle.2010.01.006 |
[9] | J. H. Qin, C. B. Yu, H. J. Gao, Coordination for linear multiagent systems with dynamic interaction topology in the leader-following framework, IEEE Trans. Ind. Electron., 61 (2014), 2412–2422. https://doi.org/10.1109/TIE.2013.2273480 doi: 10.1109/TIE.2013.2273480 |
[10] | D. Yang, Q. Zhang, B. Yao, Singular system, Beijing: Science Press, 2004. |
[11] | Y. Mu, H. Zhang, Y. Zhou, L. Yang, A new method of fault estimation observer design for T-S fuzzy singular systems with disturbances using dissipativity theory, IEEE Trans. Circ. Syst. II Express Briefs, 69 (2022), 5059–5063. https://doi.org/10.1109/TCSII.2022.3202980 doi: 10.1109/TCSII.2022.3202980 |
[12] | E. Jafari, T. Binazadeh, Robust output regulation in discrete-time singular systems with actuator saturation and uncertainties, IEEE Trans. Circ. Syst. II Express Briefs, 67 (2020), 340–344. https://doi.org/10.1109/TCSII.2019.2908500 doi: 10.1109/TCSII.2019.2908500 |
[13] | J. Li, Y. Zhang, Z. Jin, Distributed cooperative control of singular multi agent systems based on fuzzy logic approach, Int. J. Fuzzy Syst., 19 (2023), 9709–9729. https://doi.org/10.1007/s40815-023-01607-w doi: 10.1007/s40815-023-01607-w |
[14] | Y. Mu, H. Zhang, Y. Yan, Z. Wu, A design framework of nonlinear $H_\infty$ PD observer for one-sided Lipschitz singular systems with disturbances, IEEE Trans. Circ. Syst. II Express Briefs, 69 (2022), 3304–3308. https://doi.org/10.1109/TCSII.2022.3166677 doi: 10.1109/TCSII.2022.3166677 |
[15] | A. Ailon, Disturbance decoupling with stability and impulse-free response in singular systems, Syst. Control Let., 19 (1992), 401–411. https://doi.org/10.1016/0167-6911(92)90090-F doi: 10.1016/0167-6911(92)90090-F |
[16] | X. R. Yang, G. P. Liu, Necessary and sufficient consensus conditions of descriptor multi-agent systems, IEEE Trans. Circ. Syst. I: Regular Papers, 59 (2012), 2669–2677. https://doi.org/10.1109/TCSI.2012.2190663 doi: 10.1109/TCSI.2012.2190663 |
[17] | J. Ren, Q. Song, Y. B. Gao, M. Zhao, G. P. Lu, Leader-following consensus of nonlinear singular multi-agent systems under signed digraph, Int. J. Syst. Sci., 52 (2021), 277–290. https://doi.org/10.1080/00207721.2020.1825873 doi: 10.1080/00207721.2020.1825873 |
[18] | T. Y. Liu, A. D. Sheng, C. Q. Ma, G. Q. Qi, Y. Y. Li, Consensus tracking for singular multi-agent systems with Lipschitz nonlinear dynamics and external disturbances, Int. J. Robust Nonlin., 32 (2022), 4899–4922. https://doi.org/10.1002/rnc.6060 doi: 10.1002/rnc.6060 |
[19] | J. Xi, Y. Yu, G. Liu, Y. S. Sheng, Guaranteed-cost consensus for singular multi-agent systems with switching topologies, IEEE Trans. Circuits Syst. I: Regular Papers, 61 (2014), 1531–1542. https://doi.org/10.1109/TCSI.2013.2289399 doi: 10.1109/TCSI.2013.2289399 |
[20] | S. Wang, J. Huang, Cooperative output regulation of singular multi-agent systems under switching network by standard reduction, IEEE Trans. Circ. Syst. I: Regular Papers, 65 (2018), 1377–1385. https://doi.org/10.1109/TCSI.2017.2755686 doi: 10.1109/TCSI.2017.2755686 |
[21] | J. Li, Z. Jin, Y. Zhang, Optimal output agreement for T-S fuzzy multi-agent systems: an adaptive distributed approach, Int. J. Fuzzy Syst., 25 (2023), 2453–2463. https://doi.org/10.1007/s40815-023-01493-2 doi: 10.1007/s40815-023-01493-2 |
[22] | J. Sun, H. Lei, J. Zhang, L. Liu, Q. Shan, Adaptive consensus control of multiagent systems with an unstable high-dimensional leader and switching topologies, IEEE Trans. Ind. Inform., 20 (2024), 10946–10953. https://doi.org/10.1109/TII.2024.3395661 doi: 10.1109/TII.2024.3395661 |
[23] | X. Jiang, G. Xia, Z. Feng, Guaranteed-performance consensus tracking of singular multi-agent systems with Lipschitz nonlinear dynamics and switching topologies, Int. J. Robust Nonlinear Control, 29 (2019), 5227–5250. https://doi.org/10.1002/rnc.4670 doi: 10.1002/rnc.4670 |
[24] | T. Zheng, M. He, J. X. Xi, G. B. Liu, Leader-following guaranteed-performance consensus design for singular multi-agent systems with Lipschitz nonlinear dynamics, Neurocomputing, 266 (2017), 651–658. https://doi.org/10.1016/j.neucom.2017.05.073 doi: 10.1016/j.neucom.2017.05.073 |
[25] | K. Li, Y. Li, Fuzzy adaptive optimal consensus fault-tolerant control for stochastic nonlinear multiagent systems, IEEE Trans. Fuzzy Syst., 30 (2022), 2870–2885. https://doi.org/10.1109/TFUZZ.2021.3094716 doi: 10.1109/TFUZZ.2021.3094716 |
[26] | D. Chen, X. Liu, W. Yu, Finite-time fuzzy adaptive consensus for heterogeneous nonlinear multi-agent systems, IEEE Trans. Netw. Sci. Eng., 7 (2020), 3057–3066. https://doi.org/10.1109/TNSE.2020.3013528 doi: 10.1109/TNSE.2020.3013528 |
[27] | Y. Li, J. Zhang, S. Tong, Fuzzy adaptive optimized leader-following formation control for second-order stochastic multiagent systems, IEEE Trans. Industr. Inform., 18 (2022), 6026–6037. https://doi.org/10.1109/TII.2021.3133927 doi: 10.1109/TII.2021.3133927 |
[28] | S. Sui, H. Xu, S. Tong, C. L. P. Chen, Prescribed performance fuzzy adaptive output feedback control for nonlinear MIMO systems in a finite time, IEEE Trans. Fuzzy Syst., 30 (2022), 3633–3644. https://doi.org/10.1109/TFUZZ.2021.3119750 doi: 10.1109/TFUZZ.2021.3119750 |
[29] | J. H. Jiang, Y. Y. Jiang, Leader-following consensus of linear time-varying multi-agent systems under fixed and switching topologies, Automatica, 113 (2020), 108804. https://doi.org/10.1016/j.automatica.2020.108804 doi: 10.1016/j.automatica.2020.108804 |
[30] | L. An, G. H. Yang, Distributed optimal coordination for heterogeneous linear multiagent systems, IEEE Trans. Autom. Control, 67 (2022), 6850–6857. https://doi.org/10.1109/TAC.2021.3133269 doi: 10.1109/TAC.2021.3133269 |