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Abstract: The consensus tracking problem of leader-follower multi-agent systems (MASs) with
singular structures on jointly connected topology is studied in this paper. To achieve the objective
of consensus tracking, a distributed adaptive control protocol is formulated to adjust the coupling
weights among the agents using the adaptive rate, where the adaptive protocol can be implemented by
each agent in a fully distributed manner without using any global information. A fuzzy logic system
method is used to deal with the nonlinear terms in response to the limitations of nonlinear system
analysis. The consensus tracking problem is transformed into an error system stability analysis, and
two sufficient conditions are provided to guarantee the control objective based on Lyapunov stability
theory and singular system theory. Finally, the effectiveness of this method is verified through a
simulation example.
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1. Introduction

The consensus of MASs has attracted widespread attention in the last few years [1, 2], among
which the leader-follower consensus problem is to design corresponding control protocols through the
interaction information between agents so that multiple parameters of state, such as the speed and
position of all followers, can be tracked to the leader multi-agent. Its advantage is that it only requires
specifying the leader’s motion and designing tracking control strategies, which are small in workload
and easy to implement [3, 4].

In [5], in an undirected graph, as agents move in the plane, consensus can be achieved if the two-way
interaction between agents is frequent enough. [6] emphasizes that the balanced directed graph is a key
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factor in solving the average consensus problem and discusses the consensus of multi-agent networks
under fixed and switched topologies. Reference [7] builds upon the findings of [5], extending the
discussion to directed graphs. It delineates the requirement for information consensus in dynamically
changing interactive topological structures. It emphasizes the significance of the topological structure
of interactions among agents (including directed spanning trees) in achieving asymptotic consensus.
In the study [8], the scenario where the graph maintains frequent connectivity is expanded to a joint
connected topology, and it achieves linear leader-follower consensus by using Riccati-inequality to
calculate the feedback gain matrix. Some less restrictive conditions for the leader-follower consensus
(LFC) problem in MASs under switching topology were obtained in [9], which not only proved that
weak connections can achieve consensus but also extended to the case of disconnection, ensuring a
short disconnection time.

Given that a singular system is a class of dynamical systems described by differential-algebraic or
difference-algebraic equations, the system is hierarchical. It encapsulates both the dynamic properties
of entities, articulated through differential or difference equations, and the static characteristics of
constraints, delineated by algebraic equations [10]. Especially in multi-agent systems, there are
indeed constraints between certain physical quantities characterized by algebraic equations. After
more than 40 years of development, research on singular systems has made great progress and
gradually evolved into one of the most important branches of contemporary control theory. A
multitude of theoretical conclusions derived from general systems have been successfully
extrapolated and applied to the domain of singular systems [11–14]. Considering that the state
response of a singular system does not only include exponential solutions, it perhaps leads to
impulsive behavior. When generalizing the results of general systems to singular systems, the control
protocol needs to ensure that singular systems are regular and impulse-free [15]. Therefore, delving
deeper into the consensus and associated characteristics of singular multi-agent systems (SMASs)
holds profound significance in the academic and applied spheres.

Yang et al. [16] studied the consensus of continuous linear SMASs and first proposed the concept
of SMASs. From then on, the research on the consensus of SMASs entered the public eye. The LFC
problem for a class of SMASs was studied in [17]. The system in question incorporates nonlinear
dynamical behaviors and is characterized by a topology that is represented by a signed directed
graph. [18] added interference on the basis of [16] and studied the consensus tracking control problem
of SMASs with Lipschitz nonlinearity. The research presented in [19] focused on the guaranteed cost
consensus issue for high-order SMASs with switching topology. [20] extended the switching topology
requirement in [19] that the topology transitions from connected graphs to jointly connected graphs.

The adaptive control can automatically adjust the parameters or structure of the controller to adapt
to constantly changing working conditions, thereby achieving more stable and reliable control effects.
Therefore, the development of adaptive technologies capable of autonomously adjusting to fluctuations
in system performance has emerged as a significant research area [21, 22]. The consensus problem in
SMASs usually requires distributed control strategies, and adaptive control can quickly respond to
changes in system state and adjust control inputs based on the local information of each agent to
achieve global consensus. Thus, the use of adaptive control to study singular multi-agent systems is of
great significance, which is a factor that prompted this study.

Unlike [17, 23, 24], which necessitate nonlinear functions to adhere to the Lipschitz condition, for
unknown nonlinear terms, intelligent modeling methods such as fuzzy logic systems are employed to
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overcome the challenge of unknown nonlinearity in the system [25–28]. Although fuzzy methods were
used in the above studies, they were mostly applied in general multi-agent systems. There are not many
studies on the application of fuzzy control schemes to the consensus of SMASs, which is another factor
that prompted this study.

The main contributions of this manuscript are delineated as follows: Considering the
communication topology is a switching joint connected topology with non-connected graphs, which
means that even when there is a short-term communication failure between some agents, the system
can still operate normally and achieve consensus. A distributed adaptive control protocol is designed
using local information to study the consensus and impulse-free of a leader-follower SMAS. In
nonlinear analysis, fuzzy logic systems are introduced to approximate these unknown nonlinear
terms. By transforming the consensus of SMASs into an asymptotic stability analysis of the
associated error dynamics, this study ensures the stability of the closed-loop system.

The subsequent structure of this paper is meticulously organized as follows: Section 2 lays the
groundwork with preliminaries and the problem formulation. The main results are articulated in
Section 3. Section 4 is dedicated to illustrating the simulation results. Finally, Section 5 offers a brief
conclusion.
Notations: Rm×n represents the set of m×n dimensional matrices over the real number set R. C denotes
the field of complex numbers, while C− signifies the open left-half plane of the complex domain. In is
utilized to represent an identity matrix of dimension n × n. The superscript T indicates the transpose
of a real-valued matrix. For a matrix U, the notation U > 0 (< 0) is used to express that U is positive
(negative) definite. The symbol σ(U) denotes the non-zero singular values of matrix U. U∗ refers to
the Hermitian transpose of matrix U. The Kronecker product of matrices P and Q is represented by
P ⊗ Q. The function deg(·) is used to describe the degree of a polynomial. diag (c1, · · · , cn) is used to
define a diagonal matrix with diagonal entries ci, i = 1, 2, · · · , n. The topology of SMASs is defined
by the graph G = {V,E}, whereV = {1, 2, · · · ,N} represents the set of nodes (agents) and E ⊆ V ×V
represents the set of edges (communication links). The adjacency matrix of the graph G is denoted by
A =

[
ai j

]
∈ Rn×n, which is defined such that if the pair (i, j) is an element of E, then ai j = a ji = 1;

otherwise, ai j = 0, with the diagonal elements aii being equal to zero. The Laplace matrix L of G is
characterized by the elements li j = −ai j for i , j and lii =

∑N
k=1 aik.

2. Preliminaries and problem formulation

Consider a MAS represented by linear singular systems with N followers and one leader, and the
dynamic of the follower agents is articulated by the following description:

Eẋi(t) = Axi(t) + Bui(t) (2.1)

where i = 1, 2, · · · ,N, xi ∈ R
n indicates the state, and ui ∈ R

p denotes the control input of the i-th
follower. The leader agent is labeled as i = 0, and its dynamic is represented as:

Eẋ0(t) = Ax0(t) (2.2)

where x0 represents the state of the leader, E, A ∈ Rn×n are constant matrices of appropriate dimensions,
with E possessing singularity and satisfying the condition that rank(E) ≤ n, and B ∈ Rn×p is full-
column rank.
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When there are unknown continuous sector nonlinear functions f (xi(t)), i = 0, 1, · · · ,N in Eqs (2.1)
and (2.2), the nonlinear SMASs are obtained:

Eẋ0(t) = Ax0(t) + f (x0(t)) (2.3)
Eẋi(t) = Axi(t) + f (xi(t)) + Bui(t) (2.4)

Remark 1. The leader considered in SMASs in this paper is zero input dynamic, which means that
the stability of the leader does not depend on control inputs, ensuring that the leader’s dynamic is
predetermined and providing a stable reference model for followers. Followers then follow the leader
through local interactions, which helps to achieve a control structure that combines centralization and
decentralization. However, it cannot solve the partial consensus problem of SMASs that may implement
non-zero control actions on leaders in order to achieve certain goals in practice.

The information exchange between SMASs is described by graphs. Firstly, an undirected graph,
denoted as G, is employed to articulate the exchange of information among a cohort of N follower
agents. A leader-follower multi-agent system communication topology Ḡ = (V̄, Ē),
V̄ = {0, 1, · · · ,N}, consisting of the graph G, leader vertex 0, and edges between 0 and neighboring
agents. The information exchange between the follower and the leader is represented by the diagonal
array D = diag {d1, d2, · · · , dN} ∈ R

n×n. When di = 1, the follower possesses the capacity to access
information from the leader; conversely, di = 0, i = 1, 2, · · · ,N. It is evident that the leader
exclusively utilizes information pertaining to its local state. In contrast, the follower agents depend
not only on their local state information but also on the information received from their neighboring
agents within the network. Furthermore, it is crucial to recognize that, despite the leader not having a
direct link to every agent, the follower agents are nonetheless capable of obtaining the leader’s state
information indirectly through the intermediary of their neighboring agents. To facilitate the
subsequent proof, define the information interaction matrix H = L +D, the matrix H corresponding
to the graph Ḡ adheres to the conditions stipulated in the ensuing lemma.

Lemma 1. ( [8])

(1) The eigenvalues of the matrix H are non-negative.
(2) The matrix H is positive definite if and only if the graph Ḡ is connected.

In the consensus analysis within leader-follower frameworks, it is imperative to extend our scrutiny
beyond merely the characteristics of the Laplacian matrix L. Consequently, ensuring that matrix H
adheres to the stipulations of Lemma 1 is of paramount importance. In addition, we introduced another
lemma as the cornerstone to confirm our main results.

Lemma 2. (Barbalat’s Lemma) Let f (t) be a consistent continuous function, when t exceeds 0, and
f (t) possesses a finite limit value as well as ḟ (t) being uniformly continuous, then limt→∞ ḟ (t) = 0.

These two lemmas are conditions for ensuring LFC of SMASs, noting that the communication
topology graph is time-varying, consider all possible graphs

{
Ḡs : s ∈ Θ

}
, where Θ is the set of indexes

defined on V̄. Define switching signal σ : [0,+∞)→ Θ with Ḡσ(t) ⊆
{
Ḡs : s ∈ Θ

}
.

Consider an infinite sequence of time intervals [tr, tr+1), r = 0, 1, 2, · · · that are non-empty, bounded,
and continuous with t0 = 0, tr+1 − tr ≤ T for some constant T > 0. Suppose that in each interval
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[tr, tr+1), there exists a series of non-overlapping subintervals
[
tr

0, tr
1
)
, · · · ,

[
tr

i, tr
i+1
)
, · · · ,

[
tr

zr−1, tr
zr
)
,

tr = tr
0, tr+1 = tr

zr that satisfy tr
i+1 − tr

i ≥ br, 0 ≤ i ≤ zr − 1, for some integer zr ≥ 0 and a constant bk

that is specified. The interaction topology is invariant in each subinterval. That is, in each subinterval
the topology Ḡσ(t) remains constant, and for the purposes of this discussion, it is henceforth referred
to as Ḡri . In each time interval [tr, tr+1), some or all of the graphs Ḡri , i = 0, 1, · · · , zr − 1 may not be
connected. It is only necessary to ensure that the graphs are jointly connected, as defined below:

Definition 1. ( [8]) An union of graphs Ga,Gb, · · · ,Gc is a graph GU . The vertex and edge sets of
GU are unions of the vertex and edge sets of Ga,Gb, · · · ,Gc. If the union of Ga,Gb, · · · ,Gc forms a
connected graph. Graphs

{
Gσ(s) : s ∈ [t, t + Tk]

}
are said to be jointly connected over time intervals

[t, t + Tk] ,Tk > 0 if their union sets are jointly connected, as shown in Figure 1.
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Figure 1. Jointly connected topology graph.

Important assumptions that guarantee that the leader-follower agent systems in the switching
topology achieve consensus are given next.

Assumption 1. The topology is jointly connected at each time interval [ti, ti+1) , i = 0, 1, · · · .

Assumption 2. The matrix A is devoid of eigenvalues that possess positive real parts.

Assumption 3. Multi-agent systems (2.1) and (2.2) are stabilizable, i.e., (E, A, B) is stabilizable.

Building upon these assumptions, the goal of this paper is to formulate a control protocol leveraging
local information, thereby enabling N follower agents to follow the leader agent. This is made clearer
by the following definition.

Definition 2. The leader-follower multi-agent systems (2.1)–(2.4) achieve consensus if each follower
agent i, i ∈ {1, · · · ,N} has a control protocol ui for any initial state xi(0), i = 0, 1, · · · ,N, such that the
closed-loop system satisfys limt→∞ ∥xi(t) − x0(t)∥ = 0, i = 1, 2, · · · ,N.

Remark 2. Assumptions 1–3 are general assumptions for the consensus problem of SMASs in
switching topology. Assumption 1 ensures that the communication topology is jointly connected.
Under Assumption 2, multi-agent systems do not diverge at an exponential rate, and are a property
instrumental in addressing the consensus issue as delineated in the reference [8, 29, 30].
Assumption 3 affirms the existence of a matrix F that satisfies σ(E, A + BF) ⊂ C−.
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Remark 3. Unlike in the consensus study of leaderless SMASs where the positions of trajectories are
not specified, the leader-follower consensus trajectories can be specified by the leader. The advantage
of having leader consensus is that it only requires specifying the leader’s movement and designing
tracking control strategies, which are small in workload and easy to implement.

3. Main results

This section consists of three parts that give state consensus results for singular linear and nonlinear
MASs under the switching topology, where the nonlinear terms are handled using fuzzy rules.

3.1. Control protocol design

Consider the control protocol

ui(t) = F

 N∑
j=1

ωi j(t)ai j(t)(xi(t) − x j(t)) + ωi(t)di(t)(xi(t) − x0(t))


ω̇i j(t) = ψi jai j(t)(xi(t) − x j(t))TΓ(xi(t) − x j(t))
ω̇i(t) = ψidi(t)(xi(t) − x0(t))TΓ(xi(t) − x0(t)) (3.1)

where i, j = 1, · · · ,N, F ∈ Rp×n,Γ ∈ Rn×n are the state feedback matrices, ψi j = ψ ji and ψi are positive
numbers, ωi j(t) denotes the coupling weight automatically adjusted over time between the follower i
and j with ωi j(0) = ω ji(0); ωi(t) denotes the coupling weight automatically adjusted over time between
the leader and the follower i.

Compared to fixed topologies, communication between agents in switching topologies is
dynamically adjusted and can adapt to more complex and dynamically changing environments. It is
observable that the difference between switching and fixed topology is that ai j(t) and di(t) both change
over time.

Remark 4. Linear systems and nonlinear systems are two important concepts in control theory. They
each have different characteristics and behaviors, and they are extensively utilized across a spectrum
of practical applications. For example, in the field of engineering, many systems have both linear and
nonlinear parts. Therefore, considering both linear and nonlinear characteristics comprehensively
is crucial for designing and optimizing complex systems. Therefore, studying singular linear and
nonlinear systems is of great significance, which helps us to have a more comprehensive understanding
and processing of the characteristics and behaviors of various systems.

3.2. Adaptive consensus protocol design for linear SMASs

Theorem 1. Consider the linear SMASs (2.1) and (2.2), under Assumptions 1–3, when
F = −BT P−1,Γ = (P−1)T BBT P−1 and with

rank
[

E 0
A − BBT P−1 E

]
= n + rank(E)
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where P > 0 is a solution of AX+XT AT −2BBT < 0, then under the influence of control protocol (3.1),
it is ensured that all follower agents are capable of tracking the leader, irrespective of their initial
conditions, realizing the LFC of SMASs under the switching topology.

Proof. Since rank
[

E 0
A − BBT P−1 E

]
= n + rank(E), then one gets that (E, A + BF) is regular and

impulse-free. Let ςi(t) = xi(t) − x0(t), ς(t) =
[
ς1

T (t), ς2
T (t), · · · , ςN

T (t)
]T

. It can be deduced that

Eς̇i(t) = Aςi(t) + BF
[

N∑
j=1
ωi j(t)ai j(t)(ςi(t) − ς j(t))

]
+ BFωi(t)di(t)ςi(t)

ω̇i j(t) = ψi jai j(t)(ςi(t) − ς j(t))TΓ(ςi(t) − ς j(t))
ω̇i(t) = ψidi(t)ςi

T (t)Γςi(t).

(3.2)

Constructing the Lyapunov function as follows:

V1(t) =
N∑

i=1

ςi
T (t)ET P−1ςi(t) +

N∑
i=1

N∑
j=1, j,i

(ωi j(t) − χ)2

2ψi j
+

N∑
i=1

(ωi(t) − χ)2

ψi
. (3.3)

Here χ represents a positive constant. Clearly, V1(t) is continuously differentiable except at the
switching moment.

First, it is important to show that V̇1(t) < 0 holds at any non-switching moment.
As F = −BT P−1,Γ = (P−1)T BBT P−1 and ωi j(t) = ω ji(t), let δ̃i(t) = P−1ςi(t),

δ̃(t) =
[
δ̃1(t)T

, δ̃2(t)T
, · · · , δ̃N(t)T ]T , it can be deduced that

V̇1(t) = 2
N∑

i=1

ςi(t)T (P−1)T
Aςi(t) − 2χ

N∑
i=1

di(t)ςi(t)T (P−1)T
BBT P−1ςi(t)

− 2χ
N∑

i=1

N∑
j=1

ai j(t)ςi(t)T (P−1)T
BBT P−1(ςi(t) − ς j(t))

=

N∑
i=1

δ̃i(t)
T (AP + PT AT

)
δ̃i(t) − 2χ

N∑
i=1

N∑
j=1

li j(t)δ̃i(t)T BBT δ̃ j(t) − 2χ
N∑

i=1

di(t)δ̃i(t)BBT δ̃i(t)

= δ̃(t)
[
IN ⊗
(
AP + PT AT

)
− 2χHs ⊗ BBT

]
δ̃(t). (3.4)

For any s ∈ Θ, Hs is a symmetric matrix with eigenvalues labeled
{
λs

1, · · · , λs
i, · · · , λs

N
}
, λs

i ≥ 0.
It may be assumed that the number of 0 eigenvalues is qs(0 ≤ qs < N). Then a unitary matrix Ms can
be found such that

Ms
T HsMs = Λs

∆
= diag

(
0, · · · , 0, λs

qs+1, · · · , λs
N
)

(3.5)

holds.
Let δ̂i(t) = Ms

T δ̃i(t), it can be obtained that

V̇1(t) = δ̂(t)
[
IN ⊗
(
AP + PT AT

)
− 2χΛs ⊗ BBT

]
δ̂(t)

≤

N∑
i=qs+1

δ̂i(t)
T [

AP + PT AT − 2χλs
iBBT
]
δ̂i(t). (3.6)
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Choosing a sufficiently large χ such that χλs
i ≥ 1, i = qs + 1, · · · ,N. The following inequality

follows from AP + PT AT − 2BBT < 0.

AP + PT AT − 2χλs
iBBT ≤ AP + PT AT − 2BBT < 0. (3.7)

This yields V̇1(t) < 0 and hence there exists limt→∞V1(t). Next, it is necessary to prove limt→∞ς(t) =
0. By the Cauchy convergence criterion, for any ε > 0, there exists a positive integer Ψ such that
|V1(tk+1) − V1(tk)| < ε holds, i.e.,

∣∣∣∣∫ tk+1

tk
V̇1(t)dt

∣∣∣∣ < ε for all k ≥ Ψ.
Representing [tk, tk+1) as subintervals yields the following inequality of integral sum.∫ tk1

tk0
(−V̇1(t))dt +

∫ tk2

tk1
(−V̇1(t))dt + · · · +

∫ tkzk

tkzk−1
(−V̇1(t))dt < ε. (3.8)

As
∫ tki+1

tki (−V̇1(t))dt < ε, i = 0, 1, · · · , zk − 1, that means

− ε <

∫ tki+1

tki
V̇1(t)dt

≤

∫ tki+1

tki

N∑
i=qs+1

δ̂T
i (t)
[
AP + PT AT − 2χλs

iBBT
]
δ̂i(t)dt

≤

∫ tki+τ

tki

N∑
i=qs+1

δ̂T
i (t)
[
AP + PT AT − 2χλs

iBBT
]
δ̂i(t)dt. (3.9)

Let qki , i = 0, 1, · · · , zk − 1 represents the number of eigenvalues 0 in the corresponding matrix Hki

of the topology graph Ḡki of the interval
[
tk

i, tk
i+1
)
, denoted as Ξs

i = AP+ PT AT − 2χλs
iBBT . From this

premise, we can derive the following conclusion:

lim
t→∞

∫ t+τ

t

 N∑
i=qk0+1

δ̂T
i (v)Ξs

iδ̂i(v) + · · · +
N∑

i=qkzk−1+1

δ̂T
i (v)Ξs

iδ̂i(v)

 dv = 0. (3.10)

According to Lemma 1, when the communication topology between agents in the interval [tk, tk+1)
satisfies jointly connected, it can be obtained that qσ(tk) = 0 and

lim
t→∞

∫ t+τ

t

N∑
i=1

πiδ̂
T
i (v)Ξs

iδ̂i(v)dv = 0 (3.11)

where π1, · · · , πN are some positive integers.
Since V1(t) is bounded and V̇1(t) < 0, it is established that ς(t), ωi j(t), ωi(t) is bounded.

Consider (3.2) to obtain that ς̇(t) is bounded. Therefore,
N∑

i=1
πiδ̂

T
i (t)Ξs

iδ̂i(t) is uniformly continuous,

and according to Lemma 2, limt→∞

N∑
i=1
πiδ̂

T
i (t)Ξs

iδ̂i(t) = 0 can be obtained. Given Ξs
i < 0, this indicates

limt→∞

N∑
i=1
ςi(t) = 0. Therefore, all follower agents have been implemented to track the leader and

achieve consensus. □
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Remark 5. In this section, it is necessary to assume that the interaction between followers is
bidirectional, which makes the matrix H symmetric. There is no requirement for the undirected
communication topology between the leader and follower agents, which implies that the leader’s
influence can be isolated from the overall system dynamics. For ease of description, this section
directly assumes Ḡ an undirected graph. If the interaction between followers is directional, the
non-zero eigenvalues of the corresponding Laplace matrix may assume complex values, precluding
the possibility of diagonalizing the Laplacian matrix. Therefore, the matrix Hs in Eq (3.4) cannot be
reduced to a diagonal form, and the controller in this section cannot achieve stability.

3.3. Adaptive consensus protocol design for nonlinear SMASs

In this subsection, an introduction is provided for a fuzzy logic-based system that is designed to
manage unknown nonlinear functions. The set of IF-THEN rules that underpin the fuzzy model are
delineated as follows:

R j : IF l1 is Z1
j and · · · and lN is ZN

j

THEN h is H j, j = 1, 2, · · · ,N.

Employing a singleton fuzzifier, product-inference rules, and the center-average defuzzifier, the
fuzzy logic system can be articulated mathematically as follows:

g(l) =

∑N
j=1 η j

∏n
i=1 µZi

j(li)∑N
j=1
∏n

i=1 µZi
j(li)

= ηTϑ(l). (3.12)

Within the framework of the fuzzy logic system, l = [l1, l2, · · · , lN]T denotes the vector of inputs, and
h represents the corresponding output. Zi

j and H j correspond to the fuzzy sets employed in the model.
µZi

j is the corresponding membership function. Additionally, η =
[
η1, η2, · · · , ηN

]T signifies the vector
of adjustable parameters that are pivotal in the system’s operation. Let ϑ(l) = [ϑ1(l), ϑ2(l), · · · , ϑN(l)]T ,
where the fuzzy basis function ϑ j(l) = (

∏n
i=1 µZi

j(li))/
[∑N

j=1 (
∏n

i=1 µZi
j(li))
]
, j = 1, 2, · · · ,N.

Lemma 3. Define h(l) be a continuous and bounded (l ∈ U ⊂ Rn) nonlinear function. For an
arbitrarily constant ε > 0, there exists a FLS (3.12) such that

sup
X∈U
|h(X) − ηTϑ(X)| < ε. (3.13)

From this, it can be concluded that h(l) closely approximates ηTϑ(l). Here, η is the vector of
adjustable parameters. By defining η̃ as the optimal vector, we can establish the minimum estimation
error γ̃ = h(l) − η̃Tϑ(l) with |γ̃| ≤ γ, and γ is a positive constant.

Assuming g(l) = ηTϑ(z) satisfies the Lipschitz condition, it implies that there exists a Lipschitz
constant υ > 0 such that for all la, lb ∈ R

n, the following inequality holds:∥∥∥ηTϑ(la) − ηTϑ(lb)
∥∥∥ ≤ υ ∥la − lb∥ . (3.14)

Theorem 2. Consider the nonlinear SMASs (2.3) and (2.4), under Assumptions 1 and 2, when F =
−BT Qv

−1,Γ = (Qv
−1)T BBT Qv

−1 and with
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rank
[

E 0
A − BBT Qv

−1 E

]
= n + rank(E)

where Qv > 0 is a solution of [
AQv + Qv

T AT − κBBT + υ2I Qv

Qv −I

]
< 0,

where κ > 0, under the stipulations of the control protocol (3.1), it is posited that each agent within
the network is capable of aligning with the leader’s trajectory, regardless of their initial states. This
means that the LFC of SMASs is achieved under the switching topology.

Proof. Since rank
[

E 0
A − BBT Qv

−1 E

]
= n + rank(E), then one gets that (E, A + BF) is regular and

impulse-free. Let ςi(t) = xi(t) − x0(t), ς(t) =
[
ς1

T (t), ς2
T (t), · · · , ςN

T (t)
]T

. It can be obtained that

Eς̇i(t) = Aςi(t) + f (xi(t)) − f (x0(t))

+ BF

 N∑
j=1

ωi j(t)ai j(t)(ςi(t) − ς j(t)) + ωi(t)di(t)ςi(t)


ω̇i j(t) = ψi jai j(t)(ςi(t) − ς j(t))TΓ(ςi(t) − ς j(t))
ω̇i(t) = ψidi(t)ςi

T (t)Γςi(t). (3.15)

Constructing the Lyapunov function as follows:

V2(t) =
N∑

i=1

ςi
T (t)ET Qv

−1ςi(t) +
N∑

i=1

N∑
j=1, j,i

(ωi j(t) − χ′)2

2ψi j
+

N∑
i=1

(ωi(t) − χ′)2

ψi
. (3.16)

Here χ′ is a positive constant. It is evident that V2(t) is continuously differentiable except at the
switching moment.

First, it is important to show that V̇2(t) < 0 holds at any non-switching moment.
Based on the fuzzy logic system satisfying the Lipschitz condition, the nonlinear term f (xi(t)) of

the nonlinear SMASs (2.3) and (2.4) satisfy∥∥∥ f (xi(t)) − f (x j(t))
∥∥∥ = ∥∥∥ f (xi(t)) − ηTϑ(xi(t)) + ηTϑ(xi(t)) + ηTϑ(x j(t)) − f (x j(t)) − ηTϑ(x j(t))

∥∥∥
≤γ + γ +

∥∥∥ηTϑ(xi(t)) − ηTϑ(x j(t))
∥∥∥

≤2γ + υ
∥∥∥xi(t) − x j(t)

∥∥∥ ,
i, j = 0, 1, · · · ,N. (3.17)

As F = −BT Qv
−1,Γ = (Qv

−1)T BBT Qv
−1 and ωi j(t) = ω ji(t), let δ̃i(t) = Qv

−1ςi(t),

δ̃(t) =
[
δ̃1(t)T

, δ̃2(t)T
, · · · , δ̃N(t)T ]T , by using (3.17), and omit ’(t)’ in the process for simple expression,

the following result can be obtained:

V̇2(t) = 2
N∑

i=1

ςi
T (Qv

−1)T
Aςi − 2χ′

N∑
i=1

diςi
T (Qv

−1)T
BBT Qv

−1ςi
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+ 2
N∑

i=1

ςi
T (Qv

−1)T [
f (xi) − f (x0)

]
− 2χ′

N∑
i=1

N∑
j=1

ai jςi
T (Qv

−1)T
BBT Qv

−1(ςi − ς j)

≤

N∑
i=1

δ̃T
i

(
AQv + Qv

T AT + υ2I + Qv
2
)
δ̃i − 2χ′

N∑
i=1

N∑
j=1

li jδ̃
T
i BBT δ̃ j − 2χ′

N∑
i=1

diδ̃iBBT δ̃i

= δ̃(t)T [IN ⊗
(
AQv + Qv

T AT + υ2I + Qv
2
)
−2χ′Hs ⊗ BBT

]
δ̃(t). (3.18)

Similar to the process in Theorem 1, assuming that the number of 0 eigenvalues of Hs is qs(0 ≤ qs <

N), a unitary matrix Ms can be found such that

Ms
T HsMs = Λs

∆
= diag

(
0, · · · , 0, λs

qs+1, · · · , λs
N
)

(3.19)

holds.
Let δ̂i(t) = Ms

T δ̃i(t), it can be obtained that

V̇2(t) ≤
N∑

i=q+1

δ̂i(t)
T [

AQv + Qv
T AT + υ2I + Qv

2 − 2χ′λs
iBBT
]
δ̂i(t). (3.20)

Choosing a sufficiently large χ′ such that χ′λs
i ≥ κ, i = qs + 1, · · · ,N. The following inequality can

be obtained from Schur’s complement lemma.

AQv + Qv
T AT + υ2I + Qv

2 − 2χ′λs
iBBT

≤ AQv + Qv
T AT − κBBT + υ2I + Qv

2

< 0. (3.21)

This yields V̇2(t) < 0 and hence there exists limt→∞V2(t).
Next, it is necessary to prove limt→∞ς(t) = 0. By the Cauchy convergence criterion, for an arbitrary

small positive value ε, it is guaranteed that there exists a positive integer Ψ. This integer serves as a
threshold such that for all iterations k ≥ Ψ, |V2(tk+1) − V2(tk)| < ε holds, i.e.,

∣∣∣∣∫ tk+1

tk
V̇2(t)dt

∣∣∣∣ < ε.
Similarly, by representing it as an integral sum, it can be obtained that∫ tk1

tk0
(−V̇2(t))dt +

∫ tk2

tk1
(−V̇2(t))dt + · · · +

∫ tkzk

tkzk−1
(−V̇2(t))dt < ε. (3.22)

As
∫ tki+1

tki (−V̇2(t))dt < ε, i = 0, 1, · · · , zk − 1, that means

−ε <

∫ tki+1

tki
V̇2(t)dt

≤

∫ tki+τ

tki

N∑
i=qs+1

δ̂T
i (t)
[
AQv + Qv

T AT + υ2I +Qv
2 − 2χ′λs

iBBT
]
δ̂i(t)dt (3.23)
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Let qσ(tki), i = 0, 1, · · · , zk − 1 represents the number of eigenvalues 0 in the corresponding matrix
Hσ(tki) of the topology graph Ḡσ(tki) of interval

[
tk

i, tk
i+1
)
, denoted as ℏs

i = AQv + Qv
T AT + υ2I + Qv

2 −

2χ′λs
iBBT . Consequently, this derivation enables us to deduce

lim
t→∞

∫ t+τ

t


N∑

i=qσ(tk
0)+1

δ̂T
i (v)ℏs

iδ̂i(v) + · · · +
N∑

i=q
σ(tk

zk−1)
+1

δ̂T
i (v)ℏs

iδ̂i(v)

 dv = 0. (3.24)

According to Lemma 1, when the communication topology between agents in the [tk, tk+1) interval
satisfies jointly connected, it can be obtained that qσ(tk) = 0 and

lim
t→∞

∫ t+τ

t

N∑
i=1

πiδ̂
T
i (v)ℏs

iδ̂i(v)dv = 0 (3.25)

where π1, · · · , πN are some positive integers.
Since V2(t) is bounded and V̇2(t) < 0, it is evident that ς(t), ωi j(t), ωi(t) is bounded. Consider (3.15)

to obtain that ς̇(t) is bounded. Therefore,
N∑

i=1
πiδ̂

T
i (t)ℏs

iδ̂i(t) is uniformly continuous, and In light of

Lemma 2, limt→∞

N∑
i=1
πiδ̂

T
i (t)ℏs

iδ̂i(t) = 0 can be obtained. Given ℏs
i < 0, this indicates limt→∞

N∑
i=1
ςi(t) =

0. Therefore, all follower agents have been implemented to track the leader and achieve consensus. □

4. Numerical simulation

In this segment, a detailed numerical illustration is furnished to evidence the effectiveness of the
aforementioned algorithm, denoted by (3.1).

In this example, consider the problem of unmanned vehicle formation, which involves one leader
unmanned aerial vehicle and four follower unmanned aerial vehicles with SMAS dynamics. The leader
system is described as

ẋ01 = −3x01 − 2x02 + sin(x01)
0 = 2x01 + x02 + cos(x02). (4.1)

The follower agent system is represented as

ẋi1 = −3xi1 − 2xi2 + sin(xi1) + ui1 (4.2)
0 = 2xi1 + xi2 + cos(xi2) + ui2 (4.3)

where i = 1, 2, 3, 4, 5, and xi1, xi2 ∈ R, ui1, ui2 ∈ R represent state and control input, respectively.
Assuming all possible topologies are

{
Ḡ1, Ḡ2, Ḡ3, Ḡ4, Ḡ5, Ḡ6

}
, as shown in Figure 1.

The communication topology switches in sequence Ḡ1 → Ḡ2 → Ḡ3 → Ḡ4 → Ḡ5 → Ḡ6 → Ḡ1 →

Ḡ2 → · · · , with a dwell time of 1/3 second for each graph. The switching signal is shown in Figure 2.
Since

{
Ḡ1 ∪ Ḡ2 ∪ Ḡ3

}
and
{
Ḡ4 ∪ Ḡ5 ∪ Ḡ6

}
are connected, if tk = k and tk+1 = k + 1 are selected, then

tk
0 = k, tk

1 = k + 1
3 , tk

2 = k + 2
3 , tk

3 = k + 1, k = 0, 1, · · · .
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Figure 2. A switching signal describing time-vary interaction topology.

Fuzzy logic multi-agent system: By using fuzzy modeling method, the premise variables are defined
as z1 = cos(xi2) = (θi1(z1)+θi2(z1)2/π)xi2, z2 = sin(xi1) = (θi1(z2)+θi2(z2)2/π)xi1, with i = 0, 1, 2, 3, 4, 5.
The membership functions are described as follows:

θi1(z1) =

 z1−2cos−1(z1)/π
(1−2/π)cos−1(z1) , z1 , 0

1, otherwise

θi2(z1) =

 cos−1(z1)−z1
(1−2/π)cos−1(z1) , z1 , 0

0, otherwise
(4.4)

Υi1(z2) =

 z2−2sin−1(z2)/π
(1−2/π)sin−1(z2)

, z2 , 0
1, otherwise

Υi2(z2) =

 sin−1(z2)−z2

(1−2/π)sin−1(z2)
, z2 , 0

0, otherwise.
(4.5)

Therefore, the fuzzy rules of the SMAS are represented as follows:
Fuzzy Rule 1 if z1 is θi1, and z2 is Υi1, then

ẋ1i = −2xi1 − 2xi2 + ui1

0 = 2xi1 + 2x2i + ui2. (4.6)

Fuzzy Rule 2 if z1 is θi2, and z2 is Υi1, then

ẋi1 = (−3 +
2
π

)xi1 − 2x2i + ui1

0 = 2xi1 + 2x2i + ui2. (4.7)

Fuzzy Rule 3 if z1 is θi1, and z2 is Υi2, then

ẋ1i = −2xi1 − 2xi2 + ui1
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0 = 2xi1 + (1 +
2
π

)x2i + ui2. (4.8)

Fuzzy Rule 4 if z1 is θi2, and z2 is Υi2, then

ẋi1 = (−3 +
2
π

)xi1 − 2x2i + ui1

0 = 2xi1 + (1 +
2
π

)x2i + ui2, (4.9)

where i = 0, 1, 2, 3, 4, 5. When i = 0, there is ui1 = ui2 = 0.
Therefore, the fuzzy model of the SMAS is modeled as follows:

ẋi1 = θi1(−2xi1 − 2xi2 + ui1) + θi2((−3 +
2
π

)xi1 − 2x2i + ui1)

0 = Υi1(2xi1 + 2x2i + ui2) + Υi2(2xi1 + (1 +
2
π

)x2i + ui2),

i = 0, 1, 2, 3, 4, 5. (4.10)

Consider parameters ψi j = 0.1, ψi = 0.3, i, j = 1, 2, 3, 4, 5,κ = 2, l = 0.1. The initial states are
x0(0) = [3,−6]T , x1(0) = [2,−4]T , x2(0) = [4,−8]T , x3(0) = [−2, 4]T , x4(0) = [−4, 8]T , x5(0) =
[1,−2]T .

Figures 3 and 4 illustrate the trajectory of the error, denoted as ei, which is defined as the difference
between the follower state xi, i = 1, 2, 3, 4, 5 and the leader state x0. From this, it is deduced that the
trajectories of all follower agents converge towards the state of the leader agent, thus achieving the
goal of this paper and achieving consensus. The results indicate that the designed adaptive controller
is effective. Figure 5 illustrates the convergence of the control input, as the topology of the model
is a switching topology with non-connected graphs, when agent i does not have communication with
other agents, ui is 0. This is because the control protocol contains ai j and di, which change with the
topology. Therefore, the control input signal is non-smooth and will appear at the switching signal. But
it can be seen that the control input is generally bounded and approaches zero. It can be demonstrated
that under the adjustment of the adaptive controller designed in this paper, the nonlinear SMASs can
achieve consensus under the switching topology.
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Figure 3. Trajectories of error xi1 − x01.
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Figure 4. Trajectories of error xi2 − x02.
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Figure 5. Control inputs ui.

5. Conclusions

This paper proposes a new distributed adaptive collaborative algorithm for LFC tracking in the
SMASs under switching topologies. The method is designed to ensure the regularity and impulse-free
nature of the system, culminating in the stabilization of all agent states. First, a tolerance domain for
linear SMASs is proposed. A fuzzy logic system provides a universal and adaptive approach to solving
nonlinear items in nonlinear SMASs. Subsequently, through a rigorous analysis of the error system’s
asymptotic stability, the stability of the closed-loop system is obtained. Finally, a simulation example
is exhibited, which confirms the effectiveness of the proposed method. This study not only helps to
deepen the understanding of the dynamic behavior of SMASs but also provides important theoretical
support for the design and control of SMASs in practical applications.
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