Research article Special Issues

An effective approach based on Hybrid B-spline to solve Riesz space fractional partial differential equations

  • Received: 05 November 2021 Revised: 05 November 2021 Accepted: 20 February 2022 Published: 25 March 2022
  • MSC : 35R11, 41A15

  • B-spline is extensively used for the solution of many physical models appearing in the fields of plasma physics, fluid mechanics, atmosphere-ocean dynamics and many other disciplines. In this article, Riesz space fractional PDEs (RSF-PDEs) in two forms are solved by using hybrid B-spline collocation method (HBCM). In the given methodology, RSF-PDEs are discretized into the system of algebraic linear equations by using hybrid B-spline basis function. The resultant system is solved by a numerical technique. The Von Neumann stability analysis method is used for analyzing the stability of proposed method. Numerical experiments are conducted to illustrate the accuracy of proposed method, by representing the results graphically and numerically for different values of fractional parameters.

    Citation: M. S. Hashmi, Rabia Shikrani, Farwa Nawaz, Ghulam Mustafa, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar. An effective approach based on Hybrid B-spline to solve Riesz space fractional partial differential equations[J]. AIMS Mathematics, 2022, 7(6): 10344-10363. doi: 10.3934/math.2022576

    Related Papers:

  • B-spline is extensively used for the solution of many physical models appearing in the fields of plasma physics, fluid mechanics, atmosphere-ocean dynamics and many other disciplines. In this article, Riesz space fractional PDEs (RSF-PDEs) in two forms are solved by using hybrid B-spline collocation method (HBCM). In the given methodology, RSF-PDEs are discretized into the system of algebraic linear equations by using hybrid B-spline basis function. The resultant system is solved by a numerical technique. The Von Neumann stability analysis method is used for analyzing the stability of proposed method. Numerical experiments are conducted to illustrate the accuracy of proposed method, by representing the results graphically and numerically for different values of fractional parameters.



    加载中


    [1] Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
    [2] N. J. Ford, J. A. Connolly, Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations, J. Comput. Appl. Math., 229 (2009), 382–391. https://doi.org/10.1016/j.cam.2008.04.003 doi: 10.1016/j.cam.2008.04.003
    [3] S. Esmaeili, M. Shamsi, A pseudo-spectral scheme for the approximate solution of a family of fractional diffusion equations, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3646–3654. https://doi.org/10.1016/j.cnsns.2010.12.008 doi: 10.1016/j.cnsns.2010.12.008
    [4] R. Hilfer, Applications of fractional calculus in physics, World Scientific Press, 2000.
    [5] R. Magin, Y. Sagher, S. Boregowda, Application of fractional calculus in modeling and solving the bioheat equation, WIT Press, 2004.
    [6] F. Liu, V. Anh, I. Turner, Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166 (2004), 209–219. https://doi.org/10.1016/j.cam.2003.09.028 doi: 10.1016/j.cam.2003.09.028
    [7] A. Akgul, S. A. Khoshnaw, Application of fractional derivative on non-linear biochemical reaction models, Int. J. Intell. Networks, 1 (2020), 52–58. https://doi.org/10.1016/j.ijin.2020.05.001 doi: 10.1016/j.ijin.2020.05.001
    [8] E. Barkai, R. Metzler, J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61 (2000), 132–138. https://doi.org/10.1103/PhysRevE.61.132 doi: 10.1103/PhysRevE.61.132
    [9] R. Metzler, J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A: Stat. Mech. Appl., 278 (2000), 107–125. https://doi.org/10.1016/S0378-4371(99)00503-8 doi: 10.1016/S0378-4371(99)00503-8
    [10] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371 (2002), 461–580. https://doi.org/10.1016/S0370-1573(02)00331-9 doi: 10.1016/S0370-1573(02)00331-9
    [11] A. I. Saichev, G. M. Zaslavsky, Fractional kinetic equation: Solutions and applications, Chaos, 7 (1997), 753–764. https://doi.org/10.1063/1.166272 doi: 10.1063/1.166272
    [12] Q. Yang, F. Liu, I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 34 (2010), 200–218. https://doi.org/10.1016/j.apm.2009.04.006 doi: 10.1016/j.apm.2009.04.006
    [13] S. Shen, F. Liu, V. Anh, I. Turner, The fundamental solution and numerical solution of the Riesz fractional advection dispersion equation, IMA J. Appl. Math., 73 (2008), 850–872. https://doi.org/10.1093/imamat/hxn033 doi: 10.1093/imamat/hxn033
    [14] H. Zhang, F. Liu, V. Anh, Galerkin finite element approximation of symmetric space-fractional partial differential equations, Appl. Math. Comput., 217 (2010), 2534–2545. https://doi.org/10.1016/j.amc.2010.07.066 doi: 10.1016/j.amc.2010.07.066
    [15] H. F. Ding, Y. X. Zhang, New numerical methods for the Riesz space fractional partial differential equations, Comput. Math. Appl., 63 (2012), 1135–1146. https://doi.org/10.1016/j.camwa.2011.12.028 doi: 10.1016/j.camwa.2011.12.028
    [16] H. L. Liao, P. Lyn, S. Vong, Second-order BDF time approximation for Riesz space-fractional diffusion equations, Int. J. Comput. Math., 95 (2018), 144–158. https://doi.org/10.1080/00207160.2017.1366461 doi: 10.1080/00207160.2017.1366461
    [17] X. M. Gu, Y. L. Zhao, X. L. Zhao, B. Carpetieri, Y. Y. Huang, A note on parallel preconditioning for the all-at-once solution of Riesz fractional diffusion equations, Numer. Math. Theor. Meth. Appl., 14 (2021), 893–919. https://doi.org/10.4208/nmtma.OA-2020-0020 doi: 10.4208/nmtma.OA-2020-0020
    [18] Y. Y. Huang, X. M. Gu, U. Gong, H. Li, Y. L. Zhao, B. Carpentieri, A fast preconditioned semi-implicit difference scheme for strongly nonlinear space-fractional diffusion equations, Fractal Fract., 5 (2021), 230. https://doi.org/10.3390/fractalfract5040230 doi: 10.3390/fractalfract5040230
    [19] H. Y. Jian, T. Z. Huang, X. M. Gu, Y. L. Zhao, Fast compact implicit integration factor method with non-uniform meshes for the two-dimensional nonlinear Riesz space-fractional reaction diffusion equation, Appl. Numer. Math., 156 (2020), 346–363. https://doi.org/10.1016/j.apnum.2020.05.005 doi: 10.1016/j.apnum.2020.05.005
    [20] H. Y. Jian, T. Z. Huang, X. M. Gu, X. L. Zhao, Y. L. Zhao, Fast implicit integration factor method for nonlinear space Riesz fractional reaction-diffusion equations, J. Comput. Appl. Math., 378 (2020), 112935. https://doi.org/10.1016/j.cam.2020.112935 doi: 10.1016/j.cam.2020.112935
    [21] H. Y. Jian, T. Z. Huang, A. Ostermann, X. M. Gu, Y. L. Zhao, Fast IIF-WENO method on non-uniform meshes for nonlinear space-fractional convection diffusion reaction equations, J. Sci. Comput., 89 (2021), 13. https://doi.org/10.1007/s10915-021-01622-9 doi: 10.1007/s10915-021-01622-9
    [22] W. K. Zahra, S. M. Elkholy, The use of cubic splines in the numerical solution of fractional differential equations, Int. J. Maths. Math. Sci., 2012 (2012), 638026. https://doi.org/10.1155/2012/638026 doi: 10.1155/2012/638026
    [23] M. Abbas, A. A. Majid, A. Rashid, Numerical method using cubic trigonometric B-spline technique for nonclassical diffusion problems, Abst. Appl. Anal., 2014 (2014), 849682. https://doi.org/10.1155/2014/849682 doi: 10.1155/2014/849682
    [24] T. Nazir, M. Abbas, A. I. M. Ismail, A. A. Majid, A. Rashid, The numerical solution of advection-diffusion problems using new cubic trigonometric B-splines approach, Appl. Math. Model., 40 (2016), 4586–4611. https://doi.org//10.1016/j.apm.2015.11.041 doi: /10.1016/j.apm.2015.11.041
    [25] X. Zhu, Y. Nie, Z. Yuan, J. Wang, Z. Yang, An exponential B-spline collocation method for the fractional sub-diffusion equation, Adv. Differ. Equ., 2017 (2017), 285. https://doi.org/10.1186/s13662-017-1328-6 doi: 10.1186/s13662-017-1328-6
    [26] M. Yaseen, M. Abbas, T. Nazir, D. Baleanu, A finite difference scheme based on cubic trigonometric B-splines for a time fractional diffusion-wave equation, Adv. Differ. Equ., 2017 (2017), 274. https://doi.org/10.1186/s13662-017-1330-z doi: 10.1186/s13662-017-1330-z
    [27] M. S. Hashmi, M. Awais, A. Waheed, Q. Ali, Numerical treatment of Hunter Saxton equation using cubic trigonometric B-spline collocation method, AIP Adv., 7 (2017), 095124. https://doi.org/10.1063/1.4996740 doi: 10.1063/1.4996740
    [28] R. Shikrani, M. S. Hashmi, N. Khan, A. Ghaffar, K. S. Nisar, J. Singh, et al., An efficient numerical approach for space fractional partial differential equations, Alex. Eng. J., 59 (2020), 2911–2919. https://doi.org/10.1016/j.aej.2020.02.036 doi: 10.1016/j.aej.2020.02.036
    [29] M. S. Hashmi, Z. Shehzad, A. Ashraf, Z. Zhang, Y. P. Lv, A. Ghaffar, et al., A new variant of B-spline for the solution of modified fractional Anomalous subdiffusion equation, J. Funct. Spaces, 2021 (2021), 8047727. https://doi.org/10.1155/2021/8047727 doi: 10.1155/2021/8047727
    [30] M. S. Hashmi, M. Wajiha, S. W. Yao, A. Ghaffar, M. Inc, Cubic spline based differential quadrature method: A numerical approach for fractional Burger equation, Results Phys., 26 (2021), 104415. https://doi.org/10.1016/j.rinp.2021.104415 doi: 10.1016/j.rinp.2021.104415
    [31] M. S. Hashmi, U. Aslam, J. Singh, K. S. Nisar, An efficient numerical scheme for fractional model of telegraph equation, Alex. Eng. J., 61 (2022), 6383–6393. https://doi.org/10.1016/j.aej.2021.11.065 doi: 10.1016/j.aej.2021.11.065
    [32] Y. L. Zhao, P. Y. Zhu, X. M. Gu, X. L. Zhao, H. Y. Jian, A preconditioning technique for all-at-once system from the nonlinear tempered fractional diffusion equation, J. Sci. Comput., 83 (2020), 10. https://doi.org/10.1007/s10915-020-01193-1 doi: 10.1007/s10915-020-01193-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1538) PDF downloads(76) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog