x | xj−2 | xj−1 | xj | xj+1 | xj+2 |
H3,j | 0 | R1 | R2 | R1 | 0 |
H′3,j | 0 | R3 | 0 | −R3 | 0 |
H″3,j | 0 | R4 | R5 | R4 | 0 |
B-spline is extensively used for the solution of many physical models appearing in the fields of plasma physics, fluid mechanics, atmosphere-ocean dynamics and many other disciplines. In this article, Riesz space fractional PDEs (RSF-PDEs) in two forms are solved by using hybrid B-spline collocation method (HBCM). In the given methodology, RSF-PDEs are discretized into the system of algebraic linear equations by using hybrid B-spline basis function. The resultant system is solved by a numerical technique. The Von Neumann stability analysis method is used for analyzing the stability of proposed method. Numerical experiments are conducted to illustrate the accuracy of proposed method, by representing the results graphically and numerically for different values of fractional parameters.
Citation: M. S. Hashmi, Rabia Shikrani, Farwa Nawaz, Ghulam Mustafa, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar. An effective approach based on Hybrid B-spline to solve Riesz space fractional partial differential equations[J]. AIMS Mathematics, 2022, 7(6): 10344-10363. doi: 10.3934/math.2022576
[1] | Mohammad Tamsir, Neeraj Dhiman, Deependra Nigam, Anand Chauhan . Approximation of Caputo time-fractional diffusion equation using redefined cubic exponential B-spline collocation technique. AIMS Mathematics, 2021, 6(4): 3805-3820. doi: 10.3934/math.2021226 |
[2] | Hasim Khan, Mohammad Tamsir, Manoj Singh, Ahmed Hussein Msmali, Mutum Zico Meetei . Numerical approximation of the time-fractional regularized long-wave equation emerging in ion acoustic waves in plasma. AIMS Mathematics, 2025, 10(3): 5651-5670. doi: 10.3934/math.2025261 |
[3] | Azhar Iqbal, Abdullah M. Alsharif, Sahar Albosaily . Numerical study of non-linear waves for one-dimensional planar, cylindrical and spherical flow using B-spline finite element method. AIMS Mathematics, 2022, 7(8): 15417-15435. doi: 10.3934/math.2022844 |
[4] | Yan Wu, Chun-Gang Zhu . Generating bicubic B-spline surfaces by a sixth order PDE. AIMS Mathematics, 2021, 6(2): 1677-1694. doi: 10.3934/math.2021099 |
[5] | Majeed A. Yousif, Juan L. G. Guirao, Pshtiwan Othman Mohammed, Nejmeddine Chorfi, Dumitru Baleanu . A computational study of time-fractional gas dynamics models by means of conformable finite difference method. AIMS Mathematics, 2024, 9(7): 19843-19858. doi: 10.3934/math.2024969 |
[6] | Rabia Noureen, Muhammad Nawaz Naeem, Dumitru Baleanu, Pshtiwan Othman Mohammed, Musawa Yahya Almusawa . Application of trigonometric B-spline functions for solving Caputo time fractional gas dynamics equation. AIMS Mathematics, 2023, 8(11): 25343-25370. doi: 10.3934/math.20231293 |
[7] | Seherish Naz Khalid Ali Khan, Md Yushalify Misro . Hybrid B-spline collocation method with particle swarm optimization for solving linear differential problems. AIMS Mathematics, 2025, 10(3): 5399-5420. doi: 10.3934/math.2025249 |
[8] | M. J. Huntul, Kh. Khompysh, M. K. Shazyndayeva, M. K. Iqbal . An inverse source problem for a pseudoparabolic equation with memory. AIMS Mathematics, 2024, 9(6): 14186-14212. doi: 10.3934/math.2024689 |
[9] | Abdul Samad, Imran Siddique, Fahd Jarad . Meshfree numerical integration for some challenging multi-term fractional order PDEs. AIMS Mathematics, 2022, 7(8): 14249-14269. doi: 10.3934/math.2022785 |
[10] | Shanshan Wang . Split-step quintic B-spline collocation methods for nonlinear Schrödinger equations. AIMS Mathematics, 2023, 8(8): 19794-19815. doi: 10.3934/math.20231009 |
B-spline is extensively used for the solution of many physical models appearing in the fields of plasma physics, fluid mechanics, atmosphere-ocean dynamics and many other disciplines. In this article, Riesz space fractional PDEs (RSF-PDEs) in two forms are solved by using hybrid B-spline collocation method (HBCM). In the given methodology, RSF-PDEs are discretized into the system of algebraic linear equations by using hybrid B-spline basis function. The resultant system is solved by a numerical technique. The Von Neumann stability analysis method is used for analyzing the stability of proposed method. Numerical experiments are conducted to illustrate the accuracy of proposed method, by representing the results graphically and numerically for different values of fractional parameters.
In many areas of the modern life, mathematical modeling and numerical outcomes are integrated. Most of the mathematical methods, which can be used in engineering and natural sciences are based on ordinary differential equations (ODEs), partial differential equations (PDEs) and integral equations (IEs). Many fields of engineering and sciences including probability theory, fluid flow and electromagnetic theory represent the advantages of fractional equations over the ordinary equations [1,2,3].
Fractional differential equations have rich physical background in different fields of sciences. Fractional derivative provides an adequate approach to describe the physical models, which preserve the memory and hereditary properties of physical substances. This versatility of fractional derivative makes it more applicable in the field of physics [4], biology [5], hydrology [6] and chemistry [7]. More expressly, they are used in dynamical systems with quasi-chaotic behaviour, chaotic dynamical behavior, porous media or dynamics of complex material. Now-a-days, the interest of some of the scholars have been demonstrated in the form of research on the study of mathematical theory of fractional differential equations [8,9,10].
Among various definitions of fractional derivative, the Riesz fractional derivative involves a sum of the Riemann-Liouville right- and left- sided derivatives. This induction facilitates to describe the impact of fluid flow on both sides of the domain. The Riesz space fractional PDE was derived by Saichev and Zaslavsky [11] from the kinetics of chaotic dynamics. The kinetic equation with the fractional derivatives are considered for the non-negative values of Kα,Kβ in order to observe the flow from left to right. The discretized version of the Riesz fractional derivative in space can facilitate the solution of inconsistency problem. One of the general form of the Riesz space fractional diffusion equation (RSF-DE) [12] for 1<α⩽2 is
∂G(x,t)∂t=Kα∂αG(x,t)∂|x|α+f(x,t),Kα⩾0,0<t⩽T,a<x<b, | (1.1) |
with boundary conditions G(a,t)=G(b,t)=0, initial condition G(x,0)=ψ(x) and here Kα is diffusion coefficient.
Let us consider the Riesz space fractional advection dispersion equation (RSF-ADE) [12] for 1<α⩽2 and 0<β<1 as
∂G(x,t)∂t=Kα∂αG(x,t)∂|x|α+Kβ∂βG(x,t)∂|x|β+f(x,t),Kα,Kβ⩾0,0<t⩽T,a<x<b, | (1.2) |
with boundary conditions G(a,t)=G(b,t)=0 and initial condition G(x,0)=ψ(x), where α,β are fractional parameters, Kα,Kβ represent the dispersion coefficient and average fluid velocity, G(x,t) is an unknown function of space and time, ψ(x) is a continuous functions and f(x,t) is a source term.
The Riesz fractional operator on a finite interval 0⩽x⩽L for n−1<α⩽n (n is positive integer and L is a real number) is described as
∂αG(x,t)∂|x|α=−Cα(0Dαx+xDαL)G(x,t)=−Cαhα(m+1∑p=0wαpGn+1m−p+1+N−m+1∑p=0wαpGn+1m+p−1)+O(h),∂βG(x,t)∂|x|β=−Cβ(0Dβx+xDβL)G(x,t)=−Cβhβ(m∑p=0wβpGn+1m−p+N−m∑p=0wβpGn+1m+p)+O(h), |
where
Cν=12cos(πν2) ,ν≠1forν∈{α,β}. |
Here xi=a+ih,i=0,1,2,…,N,h=b−aN, Gn+1m+p−1=G(xm+p−1,tn+1), wν0=1,wνp=(−1)νν(ν−1)⋯(ν−p+1)p!, p=1,2,…, ν∈{α,β}. Moreover 0Dνx and xDνL for ν∈{α,β} are Riemann-Liouville left and right sided derivatives [12].
Several numerical techniques have been used to solve RSF-PDEs, Shen et al. [13] have worked over the fundamental solution of RSF-ADE using Laplace and Fourier transforms methods. Zhang et al. [14] have proposed a backward difference scheme and a finite element method to solve a symmetric Space fractional PDE with the Riesz fractional operator and Riemann-Liouville discretization. Ding et al. [15] have introduced a new numerical method, in which they proved its effectiveness for Reisz problem. Liao et al. [16] has used second order BDF approximation for the solution of RSF-DE, a series of fast parallel preconditioning methods based on implicit technique for the solution of said equation has been utilized by Gu et al. [17,18]. Jian et al. [19,20,21] used as fast iterative methods for the solution of fractional reaction diffusion and convection reaction diffusion equation.
From the existing results, it has been seen that spline functions have been used to solve DEs. Zahra and Elkholy [22] presented a numerical solution of FDEs by the use of cubic splines. Non classical diffusion problems by Abbas et al. [23], advection-diffusion problems by Nazir et al. [24] and fractional sub-diffusion equation by Zhu et al. [25] are solved by using B-spline collocation method. Yaseen et al. [26] presented a finite difference scheme based on cubic trigonometric B-splines for a time fractional diffusion-wave equation. Hashmi et al. [27] has solved Hunter-Saxton equation by using cubic trigonometric B-spline collocation method. Most recently, B-spline based collocation method [28,29] and differential quadrature method have been applied by Hashmi et al. [30,31] for the solution of fractional PDEs.
From the existing results, it is evident that no attempt has been made to solve RSF-PDEs using HBCM. In present research, formulation of Riesz space fractional derivatives using the Riemann Liouville right and left sided derivatives, indebted with HBCM has been used. Von Neumann stability analysis approach is used to achieve the convergence, which shows that our proposed method is unconditionally stable. Numerical examples with their tabular and graphical representations are included to illustrate the efficiency of proposed method.
The layout of this paper is as follows: HBCM is given in Section 2. In Section 3, temporal discretization, proposed methodology and convergence analysis of RSF-DE is presented. In Section 4 temporal discretization of RSF-ADE along with proposed method is presented and demonstrated with examples. The conclusion of the proposed technique for both models is discussed in last section.
Let τ be the time step such that tn=nτ, n=0,1,2,…,M, i.e. 0⩽tn⩽T, and h is the step size with xm=a+mh,a⩽xm⩽b,m=0,1,2,…,N. Let Gnm be the numerical estimate of G(x,t) at the mesh point (xm,tn). Now HBCM is used to solve the FPDEs. The approximate solution of G(x,t) is considered as
G(x,t)=N+1∑j=−1Cj(t)H3,j(x) | (2.1) |
where Cj(t) are unknown parameters and H3,j(x) is hybrid cubic B-spline basis function of order three and described as
H3,j(x)=γB3,j(x)+(1−γ)T3,j(x), | (2.2) |
where γ=1 and γ=0, represent the cubic B-spline basis B3,j(x) and trigonometric B-spline basis T3,j(x) function respectively. For Hybrid bases, Table 1 represents the functional values of the hybrid B-spline: Here
R1=γ6+(1−γ)r1,R2=2γ3+(1−γ)r2,R3=γ2h+(1−γ)r3,R4=γh2+(1−γ)r4,R5=−2γh2+(1−γ)r5 |
x | xj−2 | xj−1 | xj | xj+1 | xj+2 |
H3,j | 0 | R1 | R2 | R1 | 0 |
H′3,j | 0 | R3 | 0 | −R3 | 0 |
H″3,j | 0 | R4 | R5 | R4 | 0 |
and
r1=sin2(h2)sin(h)sin(3h2),r2=21+2cos(h),r3=−34sin(3h2),r4=34sin(3h2),r5=3(1+3cos(h))16sin2(h2)(2cos(h2)+cos(3h2)),r6=−3cos2(h2)sin2(h2)(2+4cos(h)). |
The B-spline representation of G(x,t) with its derivatives at (xm,tn+1) have the form
{Gn+1m=R1Cn+1m−1+R2Cn+1m+R1Cn+1m+1,(Gx)n+1m=R3Cn+1m−1−R3Cn+1m+1,(Gxx)n+1m=R4Cn+1m−1+R5Cn+1m+R4Cn+1m+1. | (2.3) |
FPDEs are undergoing rapid development due to their wide application in engineering, economics and physics. In the present research, RSF-DE is solved by using HBCM. The proposed methodology is as follows:
The time derivative and the Riesz fractional derivatives are discretized by implicit Euler scheme and the shifted Grunwald formulae respectively, in order to apply HCBM on (1.1) as follows:
Gn+1m−Gnmτ=−Kα2cos(πα2)hα(m+1∑p=0wαpGn+1m−p+1+N−m+1∑p=0wαpGn+1m+p−1)+fnm, | (3.1) |
simplifying (3.1) with the help of (2.3), the resultant equation becomes
(R1Cn+1m−1+R2Cn+1m+R1Cn+1m+1)−(R1Cnm−1+R2Cnm+R1Cnm+1)+η(m+1∑p=0wαp(R1Cn+1m−p+R2Cn+1m−p+1+R1Cn+1m−p+2)+N−m+1∑p=0wαp(R1Cn+1m+p−2+R2Cn+1m+p−1+R1Cn+1m+p))+τfnm=0 | (3.2) |
where η=Kατ2cos(πα2)hαandwα0=0. For (m=0,…,N), the above equation provides a rectangular system of unknowns. So the BCs are used to obtained two more additional constraints for finding a unique solution of the system described, which are given below
G(x0,tn+1)=R1Cn+1−1+R2Cn+10+R1Cn+11=0, | (3.3) |
G(xN,tn+1)=R1Cn+1N−1+R2Cn+1N+R1Cn+1N+1=0. | (3.4) |
Now the obtained system can be solved by a variant of Thomas algorithm.
First, we will find an initial vector to start the iterative process i.e. C0=[C0−1,C00,…,C0N+1]T. This can be determined by utilizing the IC on the approximate solution
G(x,0)=N+1∑m=−1Cm(0)H3,m(x) | (3.5) |
where Cm(0)′s are unknown parameters. Here G(x,0) is required, which satisfies the following conditions:
{G(xm,0)=ψ(xm)Gx(x0,0)=ψ′(x0)m=0,…,N.Gx(xN,0)=ψ′(xN) | (3.6) |
This can be written as (N+3)×(N+3) matrix system:
AC0=B | (3.7) |
where C0=[C0−1,C00,…,C0N+1]t,
A=(R30−R3…………0R1R2R1⋱⋮0R1R2R1⋱⋮⋱⋮⋮R1R2R10…………R30−R3) |
and B=[ψ′(x0),ψ(x0),…,ψ(xN),ψ′(xN)]t. This will provide us a starting solution to the iterative process given in (3.2)–(3.4).
The stability analysis is performed using Von Neumann stability analysis in terms of evaluation of amplitude of the error. For this, we considered the homogenous problem, it is as follows:
Cnm=ξneimϕh, | (3.8) |
where m and ϕ are real numbers. By substituting (3.8) in (3.1) and simplifying, we have
ξn+1(2R1cos(ϕh)+R2)−ξn(2R1cos(ϕh)+R2)+η(m+1∑p=0wαpe(−p+1)iϕhξn+1(2R1cos(ϕh)+R2)+N−m+1∑p=0wαpe(p−1)iϕhξn+1(2R1cos(ϕh)+R2))=0. | (3.9) |
The Eq (3.9) can be re-written as
ξn+1=1(1+C1+C2)ξn, | (3.10) |
where
C1=ηm+1∑p=0wαpe(−p+1)iϕhandC2=ηN−m+1∑p=0wαpe(p−1)iϕh. | (3.11) |
Now the relation has the form
ξn+1⩽1νξn,whereν=1+C1+C2andν>1. | (3.12) |
It concludes that the system is unconditionally stable.
The convergence estimates for the proposed scheme is presented here for the homogenous case:
Theorem 3.1. Let {G(x,tn)}Mn=0 be the exact solution of the problem and let {Gn} be the approximate solution of proposed problem then
‖en+1‖⩽1D‖en‖ |
where en+1={|G(xm,tn+1)−Gn+1m|;m=0,1,…,N} and D=(1+ηm+1∑p=0wαp+ηN−m+1∑p=0wαp).
Proof. For h>0, we know that R1=γ6+(1−γ)r1,R2=2γ3+(1−γ)r2, then:
● For γ=1 implies R1=16,R2=23 implies R2>R1
● For γ=0 implies R1=sin2(h2)sin(h)sin(3h2),R2=21+2cos(h) implies R2>R1 for all h>0 in the domain of the problem. This results that the coefficient matrix A given in (3.7) is strictly diagonally dominant and will produce a unique solution.
For the proposed problem, let the exact solution satisfies the numerical scheme (3.1), then we have
G(xm,tn+1)−G(xm,tn)τ=−Kα2cos(πα2)hα(m+1∑p=0wαpG(xm−p+1,tn+1)+N−m+1∑p=0wαpG(xm+p−1,tn+1)), |
or
G(xm,tn+1)−G(xm,tn)=−η(m+1∑p=0wαpG(xm−p+1,tn+1)+N−m+1∑p=0wαpG(xm+p−1,tn+1)), |
and then the approximate solution will have the form
Gn+1m−Gnm=−η(m+1∑p=0wαpGn+1m−p+1+N−m+1∑p=0wαpGn+1m+p−1), |
subtracting above two equations gives
en+1=en−η(m+1∑p=0wαpen+1+N−m+1∑p=0wαpen+1), |
where en+1=max. Taking the inner product with e^{n+1} on both sides and using the fact that \langle y, y\rangle = \|y\|^2 , we have
\begin{eqnarray*} \langle e^{n+1},e^{n+1}\rangle & = & \langle e^{n},e^{n+1}\rangle -\eta\left(\sum\limits_{p = 0}^{m+1}w_p^{\alpha}\langle e^{n+1},e^{n+1}\rangle+\sum\limits_{p = 0}^{N-m+1}w_p^{\alpha}\langle e^{n+1},e^{n+1}\rangle\right),\\ \|e^{n+1}\|^2 & = & \langle e^{n},e^{n+1}\rangle -\eta\left(\sum\limits_{p = 0}^{m+1}w_p^{\alpha}\|e^{n+1}\|^2+\sum\limits_{p = 0}^{N-m+1}w_p^{\alpha}\|e^{n+1}\|^2\right),\\ \|e^{n+1}\|^2 &\leqslant & \|e^{n}\|\|e^{n+1}\| -\eta\left(\sum\limits_{p = 0}^{m+1}w_p^{\alpha}\|e^{n+1}\|^2+\sum\limits_{p = 0}^{N-m+1}w_p^{\alpha}\|e^{n+1}\|^2\right).\\ \end{eqnarray*} |
Dividing it by \|e^{n+1}\| gives
\begin{eqnarray*} \|e^{n+1}\| &\leqslant & \|e^{n}\| -\eta\left(\sum\limits_{p = 0}^{m+1}w_p^{\alpha}\|e^{n+1}\|+\sum\limits_{p = 0}^{N-m+1}w_p^{\alpha}\|e^{n+1}\|\right),\\ \end{eqnarray*} |
which means
\begin{eqnarray*} \|e^{n+1}\| \left(1+\eta \sum\limits_{p = 0}^{m+1}w_p^{\alpha}+\eta \sum\limits_{p = 0}^{N-m+1}w_p^{\alpha} \right) &\leqslant & \|e^{n}\|, \\ \|e^{n+1}\| &\leqslant & \frac{1}{D} \|e^{n}\|. \end{eqnarray*} |
It is clear that D\geqslant 1 , hence the proposed scheme is convergent.
In this example, HBCM is applied on RSF-DE to showcase the efficiency of proposed method. Consider an example of the form [12]
\begin{eqnarray} \frac{\partial G(x,t)}{\partial t} = -K_\alpha\frac{\partial^\alpha G(x,t)}{\partial |x|^\alpha} \end{eqnarray} | (3.13) |
with BCs G(0, t) = 0, G(\pi, t) = 0 and the IC G(x, 0) = x^2(\pi-x) . The exact solution is G(x, t) = \sum\limits_{n = 1}^{\infty}b_n sin(n x)e^{(-(n^2)^\frac{\alpha}{2}K_\alpha t)} where b_n = \frac{8}{n^3}(-1)^{n+1}-\frac{4}{n^3} .
Table 2 shows the absolute errors at different values of \gamma , which indicates that the results are acceptable for all choices of \gamma . Table 3 at N = 2^4 and Table 4 at N = 2^6 present the numerical display of absolute errors of the RSF-DE for different values of \alpha . Similarly Table 5 describes the numerical display of errors for N = 2^8 at various values of \alpha . From these taables, we concludes that proposed scheme has more convergent solutions for increasing values of N. Table 6 is providing the comparison between the spline collocation method and the solution obtained by [12]. In Figure 1(a–d), the geometrical display of absolute errors at different value of \alpha has been illustrated, which indicates that the higher values of \alpha provides the improved solution.
x | \gamma = 0 | \gamma = 0.5 | \gamma = 1.0 |
\frac{\pi}{16} | 8.849960\times 10^{-5} | 9.451300\times 10^{-5} | 9.350890\times 10^{-5} |
\frac{3\pi}{16} | 4.415480 \times 10^{-5} | 4.465910 \times 10^{-5} | 4.457410 \times 10^{-5} |
\frac{5\pi}{16} | 1.576210\times 10^{-5} | 1.512030\times 10^{-5} | 1.522870 \times 10^{-5} |
\frac{7\pi}{16} | 8.183400\times 10^{-5} | 8.087850\times 10^{-5} | 8.104000\times 10^{-5} |
\frac{9\pi}{16} | 1.438941 \times 10^{-4} | 1.422872 \times 10^{-4} | 1.425587\times 10^{-4} |
\frac{11\pi}{16} | 1.915568 \times 10^{-4} | 1.883350 \times 10^{-4} | 1.888795\times 10^{-4} |
\frac{13\pi}{16} | 2.086891 \times 10^{-4} | 1.996169 \times 10^{-4} | 2.011500\times 10^{-4} |
\frac{15\pi}{16} | 1.673564 \times 10^{-4} | 5.385036 \times 10^{-4} | 4.192187\times 10^{-4} |
\alpha=1.6 | \alpha=1.8 | |||||
x | Exact | Numerical | Error | Exact | Numerical | Error |
0 | 0.000000 | 0.042532 | 4.253219 \times 10^{-2} | 0.000000 | 0.042407 | 4.240668 \times 10^{-2} |
\frac{\pi}{4} | 1.453388 | 1.453358 | 2.938660 \times 10^{-5} | 1.453394 | 1.453355 | 3.899070\times 10^{-5} |
\frac{\pi}{2} | 3.875748 | 3.875850 | 1.013582\times 10^{-4} | 3.875750 | 3.875849 | 9.873710\times 10^{-5} |
\frac{3\pi}{4} | 4.360192 | 4.360400 | 2.085417\times 10^{-4} | 4.360185 | 4.360408 | 2.229866\times 10^{-4} |
{\pi} | 0.000000 | -0.084675 | 8.467466\times 10^{-2} | 0.000000 | -0.084412 | 8.441232\times 10^{-2} |
\alpha=1.6 | \alpha=1.8 | |||||
x | Exact | Numerical | Error | Exact | Numerical | Error |
0 | 0.000000 | 0.000256 | 2.557016 \times 10^{-4} | 0.000000 | 0.000212 | 2.124213 \times 10^{-4} |
\frac{\pi}{4} | 1.453388 | 1.453359 | 2.895680 \times 10^{-5} | 1.453394 | 1.453355 | 3.930360\times 10^{-5} |
\frac{\pi}{2} | 3.875748 | 3.875849 | 1.005043\times 10^{-4} | 3.875750 | 3.875849 | 9.870570\times 10^{-5} |
\frac{3\pi}{4} | 4.360192 | 4.360397 | 2.054763 \times 10^{-4} | 4.360185 | 4.360407 | 2.226424\times 10^{-4} |
{\pi} | 0.000000 | -0.000666 | 6.664946\times 10^{-4} | 0.000000 | -0.000559 | 5.588218\times 10^{-4} |
\alpha=1.6 | \alpha=1.8 | |||||
x | Exact | Numerical | Error | Exact | Numerical | Error |
0 | 0.000000 | -0.000044 | 4.413990 \times 10^{-5} | 0.000000 | -0.000052 | 5.159910 \times 10^{-5} |
\frac{\pi}{4} | 1.453388 | 1.453359 | 2.888410 \times 10^{-5} | 1.453394 | 1.453355 | 3.955920\times 10^{-5} |
\frac{\pi}{2} | 3.875748 | 3.875849 | 1.002986\times 10^{-4} | 3.875750 | 3.875849 | 9.875220\times 10^{-5} |
\frac{3\pi}{4} | 4.360192 | 4.360397 | 2.047472 \times 10^{-4} | 4.360185 | 4.360407 | 2.227451\times 10^{-4} |
{\pi} | 0.000000 | -0.000425 | 4.245819\times 10^{-4} | 0.000000 | -0.000471 | 4.711657\times 10^{-4} |
h=\pi/N | MTM [12] | Proposed scheme |
\frac{\pi}{10} | 2.217 (-2) | 9.3934 (-2) |
\frac{\pi}{20} | 5.759 (-3) | 2.1073 (-2) |
\frac{\pi}{40} | 1.481 (-3) | 8.3915 (-3) |
\frac{\pi}{80} | 3.727 (-4) | 1.7174 (-3) |
RSF-ADE is used in groundwater hydrology to model the transport of passive tracers carried by fluid flow in a porous medium. The space RSF-ADE have been used to describe important phenomena such as colloid, comb structures, bio-logical systems, glassy, disordered and porous media. In current section, the proposed methodology, stability analysis and numerical application of HBCM on RSF-ADE is performed.
Time derivative and RSF are discretized by implicit Euler scheme and shifted Grunwald formulae respectively in order to apply HBCM on (1.2) as follows:
\begin{eqnarray} \frac{G_m^{n+1}-G_m^{n}}{\tau}& = -\frac{K_\alpha}{2\cos(\frac{\pi\alpha}{2}){h^\alpha}}\left(\sum\limits_{p = 0}^{m+1}w_p^{\alpha}G_{m-p+1}^{n+1}+\sum\limits_{p = 0}^{N-m+1}w_p^{\alpha}G_{m+p-1}^{n+1}\right)\\ &-\frac{K_\beta}{2\cos(\frac{\pi\beta}{2}){h^\beta}}\left(\sum\limits_{p = 0}^{m}w_p^{\beta}G_{m-p}^{n+1}+\sum\limits_{p = 0}^{N-m}w_p^{\beta}G_{m+p}^{n+1}\right)+f_m^n, \end{eqnarray} | (4.1) |
re-arranging and simplifying we have
\begin{eqnarray} &&{G_m^{n+1}-G_m^{n}}+\frac{K_\alpha \tau}{2\cos(\frac{\pi\alpha}{2}){h^\alpha}}\left(\sum\limits_{p = 0}^{m+1}w_p^{\alpha}G_{m-p+1}^{n+1}+\sum\limits_{p = 0}^{N-m+1}w_p^{\alpha}G_{m+p-1}^{n+1}\right)\\ &&+\frac{K_\beta \tau}{2\cos(\frac{\pi\beta}{2}){h^\beta}}\left(\sum\limits_{p = 0}^{m}w_p^{\beta}G_{m-p}^{n+1}+\sum\limits_{p = 0}^{N-m}w_p^{\beta}G_{m+p}^{n+1}\right)-\tau f_m^n = 0. \end{eqnarray} | (4.2) |
By substituting (2.3) in the above equation, we get
\begin{eqnarray} &&(R_{1}C_{m-1}^{n+1}+R_{2}C_{m}^{n+1}+R_{1}C_{m+1}^{n+1})-(R_{1}C_{m-1}^{n}+R_{2}C_{m}^{n}+R_{1}C_{m+1}^{n})\\ &&+\eta_1\left(\sum\limits_{p = 0}^{m+1}w_p^{\alpha}(R_{1}C_{m-p}^{n+1}+R_{2}C_{m-p+1}^{n+1}+R_{1}C_{m-p+2}^{n+1})\right.\\ &&\left.+\sum\limits_{p = 0}^{N-m+1}w_{p}^{\alpha}(R_{1}C_{m+p-2}^{n+1}+R_{2}C_{m+p-1}^{n+1}+R_{1}C_{m+p}^{n+1})\right)\\ &&+\eta_2\left(\sum\limits_{p = 0}^{m}w_p^{\beta}(R_{1}C_{m-p-1}^{n+1}+R_{2}C_{m-p}^{n+1}+R_{1}C_{m-p+1}^{n+1})\right.\\ &&\left.+\sum\limits_{p = 0}^{N-m}w_{p}^{\beta}(R_{1}C_{m+p-1}^{n+1}+R_{2}C_{m+p}^{n+1}+R_{1}C_{m+p+1}^{n+1})\right)-\tau f_m^n = 0 \end{eqnarray} | (4.3) |
where
\begin{eqnarray*} \eta_1 = \frac{K_\alpha \tau}{2\cos(\frac{\pi\alpha}{2}){h^\alpha}} \quad \text{and} \quad \eta_2 = \frac{K_\beta \tau}{2\cos(\frac{\pi\beta}{2}){h^\beta}}. \end{eqnarray*} |
For (m = 0, \ldots, N) , the above equation provides a rectangular system of \left\{C^{n+1}_{-1}, C^{n+1}_{0}, \right. \left.C^{n+1}_{1}, \ldots, C^{n+1}_{N+1}\right\} . The BCs are used to obtained two more constraints for finding a unique solution of the system, which are given below:
\begin{eqnarray} G(x_0,t_{n+1})& = &R_{1}C_{-1}^{n+1}+R_{2}C_{0}^{n+1}+R_{1}C_{1}^{n+1} = \phi_{1}(t_{n+1}), \end{eqnarray} | (4.4) |
\begin{eqnarray} G(x_N,t_{n+1})& = &R_{1}C_{N-1}^{n+1}+R_{2}C_{N}^{n+1}+R_{1}C_{N+1}^{n+1} = \phi_{2}(t_{n+1}). \end{eqnarray} | (4.5) |
The initial vector can be obtained by the procedure as described in pervious section.
From the methodology of previous section, we can proceed by substituting
\begin{equation} C_m^n = \xi_n {e}^{i m \phi h}. \end{equation} | (4.6) |
in homogenous case of (4.3), which will have the form
\begin{eqnarray} &&(R_{1}\xi_{n+1}{e}^{{-}{i \phi h}}+R_{1}\xi_{n+1}{e}^{{}{i \phi h}}+R_{2}\xi_{n+1})-(R_{1}\xi_n{e}^{{-}{i \phi h}}+R_{1}\xi_n{e}^{{i\phi h}}+R_{2}\xi_n)\\ &&+\eta_1\left(\sum\limits_{p = 0}^{m+1}w_{p}^{\alpha}{e}^{(-p+1){i \phi h}}(R_{1}\xi_{n+1}{e}^{{-}{i \phi h}}+R_{2}\xi_{n+1}+R_{1}\xi_{n+1}{e}^{{}{i \phi h}})\right.\\ &&\left.+\sum\limits_{p = 0}^{N-m+1}w_{p}^{\alpha}e^{(p-1){i \phi h}}(R_{1}\xi_{n+1} e^{{-i\phi h}}+R_{2}\xi_{n+1}+R_{1}\xi_{n+1} e^{{i \phi h}})\right)\\ &&+\eta_2\left(\sum\limits_{p = 0}^{m}w_{p}^{\beta}{e}^{(-p){i \phi h}}(R_{1}\xi_{n+1}{e}^{ {-}{i \phi h}}+R_{2}\xi_{n+1}+R_{1}\xi_{n+1}{e}^{{}{i \phi h}})\right.\\ &&\left.+\sum\limits_{p = 0}^{N-m}w_{p}^{\beta}e^{(p){i \phi h}}(R_{1}\xi_{n+1} e^{{-}{i \phi h}}+R_{2}\xi_{n+1}+R_{1}\xi_{n+1} e^{{}{i \phi h}})\right) = 0. \end{eqnarray} | (4.7) |
Simplifying the above relation, we get
\begin{eqnarray} &&\xi_{n+1}-\xi_n+\eta_1\left(\sum\limits_{p = 0}^{m+1}w_{p}^{\alpha}{e}^{(-p+1){i \phi h}}\xi_{n+1}+\sum\limits_{p = 0}^{N-m+1}w_{p}^{\alpha}e^{(p-1){i \phi h}}\xi_{n+1}\right)\\ &&+\eta_2\left(\sum\limits_{p = 0}^{m}w_{p}^{\beta}{e}^{(-p){i \phi h}}\xi_{n+1}+\sum\limits_{p = 0}^{N-m}w_{p}^{\beta}e^{(p){i \phi h}}\xi_{n+1}\right) = 0, \end{eqnarray} |
which can also be written as
\begin{eqnarray} &&\xi_{n+1}-\xi_{n}+C_1\xi_{n+1}+C_2\xi_{n+1}+C_3\xi_{n+1}+C_4\xi_{n+1} = 0, \end{eqnarray} |
where
\begin{eqnarray} \quad C_1 = \eta_1\sum\limits_{p = 0}^{m+1}w_{p}^{\alpha}{e}^{(-p+1){i \phi h}}\;, \qquad C_2 = \eta_1\sum\limits_{p = 0}^{N-m+1}w_{p}^{\alpha}e^{(p-1){i \phi h}}\;,\\ C_3 = \eta_2\sum\limits_{p = 0}^{m}w_{p}^{\beta}{e}^{(-p){i \phi h}}\;, \;\;\; \qquad C_4 = \eta_2\sum\limits_{p = 0}^{N-m}w_{p}^{\beta}e^{(p){i \phi h}}\;. \end{eqnarray} |
Hence
\begin{eqnarray} && \xi_{n+1} = \frac{\xi_{n}}{(1+C_1+C_2+C_3+C_4)}. \end{eqnarray} | (4.8) |
So, we get \xi_{n+1} < |\xi_{n}| because \mu = (1+C_1+C_2+C_3+C_4) > 1 .
This concludes that the system is unconditionally convergent.
The convergence estimates for the proposed scheme is presented here for the homogenous case:
Theorem 4.1. Let \{G(x, t^n)\}_{n = 0}^{M} be the exact solution of the problem and let \{G^n\} be the approximate solution of proposed problem, then
\begin{equation*} \|e^{n+1}\| \leqslant \frac{1}{D} \|e^{n}\| \end{equation*} |
where e^{n+1} = \{|G(x_{m}, t^{n+1})-G_{m}^{n+1}|; \; \; m = 0, 1, \ldots, N\} and
\begin{eqnarray*} D = \left(1+\eta_1 \left(\sum\limits_{p = 0}^{m+1}w_p^{\alpha}+\sum\limits_{p = 0}^{N-m+1}w_p^{\alpha}\right)+\eta_2 \left(\sum\limits_{p = 0}^{m}w_p^{\beta}+\sum\limits_{p = 0}^{N-m}w_p^{\beta}\right) \right). \end{eqnarray*} |
Proof. For the proposed problem, let the exact solution satisfies the numerical scheme (4.2), then we have
\begin{eqnarray*} \frac{G(x_m,t_{n+1})-G(x_m,t_{n})}{\tau}& = &-\frac{K_\alpha}{2\cos(\frac{\pi\alpha}{2}){h^\alpha}}\left(\sum\limits_{p = 0}^{m+1}w_p^{\alpha}G(x_{m-p+1},t^{n+1})+\sum\limits_{p = 0}^{N-m+1}w_p^{\alpha}G(x_{m+p-1},t^{n+1})\right)\\ &&-\frac{K_\beta}{2\cos(\frac{\pi\beta}{2}){h^\beta}}\left(\sum\limits_{p = 0}^{m}w_p^{\beta}G(x_{m-p},t^{n+1})+\sum\limits_{p = 0}^{N-m}w_p^{\beta}G(x_{m+p},t^{n+1})\right) \end{eqnarray*} |
or
\begin{eqnarray*} G(x_m,t_{n+1})-G(x_m,t_{n})& = &-\eta_1 \left(\sum\limits_{p = 0}^{m+1}w_p^{\alpha}G(x_{m-p+1},t^{n+1})+\sum\limits_{p = 0}^{N-m+1}w_p^{\alpha}G(x_{m+p-1},t^{n+1})\right)\\ &&-\eta_2 \left(\sum\limits_{p = 0}^{m}w_p^{\beta}G(x_{m-p},t^{n+1})+\sum\limits_{p = 0}^{N-m}w_p^{\beta}G(x_{m+p},t^{n+1})\right) \end{eqnarray*} |
and
\begin{eqnarray*} G_m^{n+1}-G_m^{n} = -\eta_1 \left(\sum\limits_{p = 0}^{m+1}w_p^{\alpha}G_{m-p+1}^{n+1}+\sum\limits_{p = 0}^{N-m+1}w_p^{\alpha}G_{m+p-1}^{n+1}\right)-\eta_2 \left(\sum\limits_{p = 0}^{m}w_p^{\beta}G_{m-p}^{n+1}+\sum\limits_{p = 0}^{N-m}w_p^{\beta}G_{m+p}^{n+1}\right). \end{eqnarray*} |
Subtracting above two equations gives
\begin{eqnarray*} e^{n+1} = e^{n}-\eta_1 \left(\sum\limits_{p = 0}^{m+1}w_p^{\alpha}e^{n+1}+\sum\limits_{p = 0}^{N-m+1}w_p^{\alpha}e^{n+1}\right)-\eta_2 \left(\sum\limits_{p = 0}^{m}w_p^{\beta}e^{n+1}+\sum\limits_{p = 0}^{N-m}w_p^{\beta}e^{n+1}\right), \end{eqnarray*} |
where e^{n+1} = \max \{|G(x_{m}, t^{n+1})-G_{m}^{n+1}|; \; \; m = 0, 1, \ldots, N\} . Taking the inner product with e^{n+1} on both sides and using the fact that \langle y, y\rangle = \|y\|^2 , we have
\begin{eqnarray*} \langle e^{n+1},e^{n+1}\rangle & = & \langle e^{n},e^{n+1}\rangle -\eta_1 \left(\sum\limits_{p = 0}^{m+1}w_p^{\alpha}\langle e^{n+1},e^{n+1}\rangle+\sum\limits_{p = 0}^{N-m+1}w_p^{\alpha}\langle e^{n+1},e^{n+1}\rangle\right)\\ &&-\eta_2 \left(\sum\limits_{p = 0}^{m+}w_p^{\beta}\langle e^{n+1},e^{n+1}\rangle+\sum\limits_{p = 0}^{N-m}w_p^{\beta}\langle e^{n+1},e^{n+1}\rangle\right)\\ \|e^{n+1}\|^2 & = & \langle e^{n},e^{n+1}\rangle -\eta_1 \left(\sum\limits_{p = 0}^{m+1}w_p^{\alpha}\|e^{n+1}\|^2+\sum\limits_{p = 0}^{N-m+1}w_p^{\alpha}\|e^{n+1}\|^2\right)\\ &&-\eta_2 \left(\sum\limits_{p = 0}^{m}w_p^{\beta}\|e^{n+1}\|^2+\sum\limits_{p = 0}^{N-m}w_p^{\beta}\|e^{n+1}\|^2\right),\\ \|e^{n+1}\|^2 &\leqslant & \|e^{n}\|\|e^{n+1}\| -\eta_1 \left(\sum\limits_{p = 0}^{m+1}w_p^{\alpha}\|e^{n+1}\|^2+\sum\limits_{p = 0}^{N-m+1}w_p^{\alpha}\|e^{n+1}\|^2\right)\\ &&-\eta_2 \left(\sum\limits_{p = 0}^{m}w_p^{\beta}\|e^{n+1}\|^2+\sum\limits_{p = 0}^{N-m}w_p^{\beta}\|e^{n+1}\|^2\right).\\ \end{eqnarray*} |
Dividing by \|e^{n+1}\| gives
\begin{eqnarray*} \|e^{n+1}\| &\leqslant & \|e^{n}\| -\|e^{n+1}\|\left(\eta_1 \left(\sum\limits_{p = 0}^{m+1}w_p^{\alpha}+\sum\limits_{p = 0}^{N-m+1}w_p^{\alpha}\right)+\eta_2 \left(\sum\limits_{p = 0}^{m}w_p^{\beta}+\sum\limits_{p = 0}^{N-m}w_p^{\beta}\right)\right),\\ \end{eqnarray*} |
which means
\begin{eqnarray*} \|e^{n+1}\| \left(1+\eta_1 \left(\sum\limits_{p = 0}^{m+1}w_p^{\alpha}+\sum\limits_{p = 0}^{N-m+1}w_p^{\alpha}\right)+\eta_2 \left(\sum\limits_{p = 0}^{m}w_p^{\beta}+\sum\limits_{p = 0}^{N-m}w_p^{\beta}\right) \right) &\leqslant & \|e^{n}\|, \\ \|e^{n+1}\| &\leqslant & \frac{1}{D} \|e^{n}\|. \end{eqnarray*} |
It is clear that D\geqslant 1 , hence the proposed scheme is convergent.
Consider the following example [12]
\begin{eqnarray} \frac{\partial G(x,t)}{\partial t} = K_\alpha\frac{\partial^\alpha G(x,t)}{\partial |x|^\alpha}+K_\beta\frac{\partial^\beta G(x,t)}{\partial |x|^\beta}+f(x,t) \end{eqnarray} | (4.9) |
with BCs and IC
\begin{eqnarray} G(0,t) = G(1,t) = G(x,0) = 0 \end{eqnarray} | (4.10) |
where
\begin{eqnarray} f(x,t)&& = \frac{K_\alpha t^\alpha e^{\beta t}}{2\cos(\frac{\alpha\pi}{2})}\left(\frac{2}{(2-\alpha)!}(x^{2-\alpha}+(1-x)^{2-\alpha})-\frac{12}{(3-\alpha)!}(x^{3-\alpha}+(1-x)^{3-\alpha})\right.\\ &&\left.+\frac{24}{(4-\alpha)!}(x^{4-\alpha}+(1-x)^{4-\alpha})\right)+\frac{K_\beta t^\alpha e^{\beta t}}{2\cos(\frac{\beta\pi}{2})}\left(\frac{2}{(2-\beta)!}(x^{2-\beta}+(1-x)^{2-\beta})\right.\\ &&\left.-\frac{12}{(3-\beta)!}(x^{3-\beta}+(1-x)^{3-\beta})+\frac{24}{(4-\beta)!}(x^{4-\beta}+(1-x)^{4-\beta})\right)\\ &&+t^{\alpha-1}e^{\beta t}(\alpha+\beta t)x^2(1-x)^2. \end{eqnarray} | (4.11) |
The exact solution is G(x, t) = t^\alpha e^{\beta t}x^2(1-x)^2. Table 7 shows the absolute errors at different values of \gamma , which indicates that the results are nearly same for different values of \gamma . Table 8 for N = 40 shows the numerical display of absolute errors of the RSF-ADE for different values of \alpha in example 2 . Similarly Table 9 describes the numerical display of absolute errors for N = 40 and T = 0.001 at different values of \alpha . From these tables, we see that the solution is better for smaller values of T . Table 10 is providing the comparison between the maximum error of the approximate solution and solution in [12].
x | \gamma = 0 | \gamma = 0.5 | \gamma = 1.0 |
0.00 | 3.159600 \times 10^{-6} | 3.162500 \times 10^{-6} | 3.162000 \times 10^{-6} |
0.20 | 5.093256\times 10^{-7} | 5.137735\times 10^{-7} | 5.130321\times 10^{-7} |
0.40 | 7.738800 \times 10^{-6} | 7.730800 \times 10^{-6} | 7.732100 \times 10^{-6} |
0.60 | 1.583960 \times 10^{-5} | 1.582100\times 10^{-5} | 1.582410 \times 10^{-5} |
0.80 | 1.741160\times 10^{-5} | 1.73353\times 10^{-5} | 1.734800\times 10^{-5} |
1.00 | 2.208280 \times 10^{-7} | 2.780499 \times 10^{-4} | 2.316613 \times 10^{-4} |
x | \alpha=1.2 | \alpha=1.4 | \alpha=1.6 | \alpha=1.8 |
0.00 | 3.159600 \times 10^{-6} | 1.490700 \times 10^{-6} | 7.661871\times 10^{-7} | 4.208717\times 10^{-7} |
0.20 | 5.093256\times 10^{-7} | 8.594544\times 10^{-8} | 6.913968\times 10^{-8} | 6.039970 \times 10^{-8} |
0.40 | 7.738800 \times 10^{-6} | 4.241300\times 10^{-6} | 2.000800 \times 10^{-6} | 8.989871 \times 10^{-7} |
0.60 | 1.583960 \times 10^{-5} | 8.549800\times 10^{-6} | 4.103000\times 10^{-6} | 1.894400\times 10^{-6} |
0.80 | 1.741160\times 10^{-5} | 9.436500\times 10^{-6} | 4.688200\times 10^{-6} | 2.283700\times 10^{-6} |
1.00 | 2.208280 \times 10^{-7} | 7.396369\times 10^{-7} | 6.778882 \times 10^{-7} | 1.776700 \times 10^{-6} |
x | \alpha=1.2 | \alpha=1.4 | \alpha=1.6 | \alpha=1.8 |
0.00 | 1.921803\times 10^{-8} | 5.660408\times 10^{-9} | 1.848237\times 10^{-9} | 6.547472\times 10^{-10} |
0.20 | 8.371194\times 10^{-8} | 3.361751\times 10^{-8} | 1.040720\times 10^{-8} | 2.976077 \times 10^{-9} |
0.40 | 3.525233 \times 10^{-7} | 1.355650\times 10^{-7} | 4.199897 \times 10^{-8} | 1.215795 \times 10^{-8} |
0.60 | 6.204239 \times 10^{-7} | 2.374454\times 10^{-7} | 7.367459\times 10^{-8} | 2.139819\times 10^{-8} |
0.80 | 6.301783\times 10^{-7} | 2.409092\times 10^{-7} | 7.511775\times 10^{-8} | 2.199683\times 10^{-8} |
1.00 | 8.868589 \times 10^{-8} | 3.273835\times 10^{-8} | 1.040274 \times 10^{-8} | 3.472292 \times 10^{-9} |
h=1/N | L1/L2 [12] | Standard/Shifted Grunwald [12] | Proposed scheme |
\frac{1}{50} | 1.8144 (-2) | 2.8191 (-3) | 4.1574 (-3) |
\frac{1}{100} | 9.4917 (-3) | 1.5093 (-3) | 9.3134 (-4) |
\frac{1}{200} | 4.8584 (-3) | 7.7821 (-4) | 4.1598 (-4) |
\frac{1}{400} | 2.4586 (-3) | 3.9459 (-4) | 1.0234 (-4) |
Figure 2(a) shows the geometrical representation of error for N = 2^6 , T = 0.001 at different values of \alpha , which indicates that by increasing the value of \alpha the approximate solution move closer to exact one. Geometrical representation of both solutions for N = 2^6 is shown in Figure 2(b) which indicates that exact and approximate solution are very much coinciding.
Algorithm: Hybrid B-spline collocation method for RSF-DE and RSF-ADE
(1) Discretize x_i, t_j for i = 0, 1, \ldots, N, j = 0, 1, \ldots, M .
(2) Evaluate w_p^\alpha, \; \; p = 0, 1, \ldots, N for RSF-DE ( w_p^\alpha, w_p^\beta, \; \; p = 0, 1, \ldots, N for RSF-ADE).
(3) Initialize the vector C^0 = [C_{-1}^0, C_{0}^0, \ldots, C_{N+1}^0] using initial conditions and Thomas algorithm.
(4) Discretize G(x_m, t_{n+1}) and replace by R_{1}C_{m-1}^{n+1}+R_{2}C_{m}^{n+1}+R_{1}C_{m+1}^{n+1} for k = 0, 1, \ldots, M-1 .
(5) For i = 1, 2, \ldots, N-1
(a) Construction of square system of equations using (3.2) for RSF-DE and (4.2) for RSF-ADE,
(b) Using fsolve evaluate the solution at each time level till final time.
(6) Substitute in B-spline basis function (2.1).
The aim of this research was to solve RSF-DE and RSF-ADE using HBCM. We have used the left and right sided Riemann Liouville formulae to discretize the Riesz fractional derivative. The discretized equation is then updated with the spanning form of hybrid B-spline basis. The convergence of numerical scheme is ensured by using VN stability analysis. The methods are employed on numerical examples of both models to show the applicability of prescribed method. The results are displayed using different tables, which shows that solution becomes convergent by decreasing the values of T . Numerical results are also shown graphically, which indicate that the approximate solutions are very much coinciding with the exact solution. The comparison provided in Tables 6 and 10 with [12] indicate that approximate solution are comparable. The display of CPU time and Memory allocation is placed in Table 11. However, the proposed numerical algorithms can be extended for tempered fractional diffusion equation [32] with some adjustments.
N | M | RSF-DE | RSF-ADE | |||
CPU | Memory | CPU | Memory | |||
2^4 | 2^5 | 2.39 | 649 | 4.19 | 904 | |
2^6 | 9.48 | 1845 | 8.27 | 2012 | ||
2^5 | 2^5 | 6.79 | 1241 | 9.63 | 1024 | |
2^6 | 13.45 | 2575 | 17.84 | 2521 | ||
2^6 | 2^5 | 9.79 | 1920 | 16.73 | 2840 | |
2^6 | 23.71 | 2908 | 28.41 | 4215 |
This work is supported by the Higher Education Commission of Pakistan under the NRPU project grant number 9306/Punjab/NRPU/R & D/HEC/2017.
The authors declare no conflicts of interest.
[1] |
Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
![]() |
[2] |
N. J. Ford, J. A. Connolly, Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations, J. Comput. Appl. Math., 229 (2009), 382–391. https://doi.org/10.1016/j.cam.2008.04.003 doi: 10.1016/j.cam.2008.04.003
![]() |
[3] |
S. Esmaeili, M. Shamsi, A pseudo-spectral scheme for the approximate solution of a family of fractional diffusion equations, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3646–3654. https://doi.org/10.1016/j.cnsns.2010.12.008 doi: 10.1016/j.cnsns.2010.12.008
![]() |
[4] | R. Hilfer, Applications of fractional calculus in physics, World Scientific Press, 2000. |
[5] | R. Magin, Y. Sagher, S. Boregowda, Application of fractional calculus in modeling and solving the bioheat equation, WIT Press, 2004. |
[6] |
F. Liu, V. Anh, I. Turner, Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166 (2004), 209–219. https://doi.org/10.1016/j.cam.2003.09.028 doi: 10.1016/j.cam.2003.09.028
![]() |
[7] |
A. Akgul, S. A. Khoshnaw, Application of fractional derivative on non-linear biochemical reaction models, Int. J. Intell. Networks, 1 (2020), 52–58. https://doi.org/10.1016/j.ijin.2020.05.001 doi: 10.1016/j.ijin.2020.05.001
![]() |
[8] |
E. Barkai, R. Metzler, J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61 (2000), 132–138. https://doi.org/10.1103/PhysRevE.61.132 doi: 10.1103/PhysRevE.61.132
![]() |
[9] |
R. Metzler, J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A: Stat. Mech. Appl., 278 (2000), 107–125. https://doi.org/10.1016/S0378-4371(99)00503-8 doi: 10.1016/S0378-4371(99)00503-8
![]() |
[10] |
G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371 (2002), 461–580. https://doi.org/10.1016/S0370-1573(02)00331-9 doi: 10.1016/S0370-1573(02)00331-9
![]() |
[11] |
A. I. Saichev, G. M. Zaslavsky, Fractional kinetic equation: Solutions and applications, Chaos, 7 (1997), 753–764. https://doi.org/10.1063/1.166272 doi: 10.1063/1.166272
![]() |
[12] |
Q. Yang, F. Liu, I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 34 (2010), 200–218. https://doi.org/10.1016/j.apm.2009.04.006 doi: 10.1016/j.apm.2009.04.006
![]() |
[13] |
S. Shen, F. Liu, V. Anh, I. Turner, The fundamental solution and numerical solution of the Riesz fractional advection dispersion equation, IMA J. Appl. Math., 73 (2008), 850–872. https://doi.org/10.1093/imamat/hxn033 doi: 10.1093/imamat/hxn033
![]() |
[14] |
H. Zhang, F. Liu, V. Anh, Galerkin finite element approximation of symmetric space-fractional partial differential equations, Appl. Math. Comput., 217 (2010), 2534–2545. https://doi.org/10.1016/j.amc.2010.07.066 doi: 10.1016/j.amc.2010.07.066
![]() |
[15] |
H. F. Ding, Y. X. Zhang, New numerical methods for the Riesz space fractional partial differential equations, Comput. Math. Appl., 63 (2012), 1135–1146. https://doi.org/10.1016/j.camwa.2011.12.028 doi: 10.1016/j.camwa.2011.12.028
![]() |
[16] |
H. L. Liao, P. Lyn, S. Vong, Second-order BDF time approximation for Riesz space-fractional diffusion equations, Int. J. Comput. Math., 95 (2018), 144–158. https://doi.org/10.1080/00207160.2017.1366461 doi: 10.1080/00207160.2017.1366461
![]() |
[17] |
X. M. Gu, Y. L. Zhao, X. L. Zhao, B. Carpetieri, Y. Y. Huang, A note on parallel preconditioning for the all-at-once solution of Riesz fractional diffusion equations, Numer. Math. Theor. Meth. Appl., 14 (2021), 893–919. https://doi.org/10.4208/nmtma.OA-2020-0020 doi: 10.4208/nmtma.OA-2020-0020
![]() |
[18] |
Y. Y. Huang, X. M. Gu, U. Gong, H. Li, Y. L. Zhao, B. Carpentieri, A fast preconditioned semi-implicit difference scheme for strongly nonlinear space-fractional diffusion equations, Fractal Fract., 5 (2021), 230. https://doi.org/10.3390/fractalfract5040230 doi: 10.3390/fractalfract5040230
![]() |
[19] |
H. Y. Jian, T. Z. Huang, X. M. Gu, Y. L. Zhao, Fast compact implicit integration factor method with non-uniform meshes for the two-dimensional nonlinear Riesz space-fractional reaction diffusion equation, Appl. Numer. Math., 156 (2020), 346–363. https://doi.org/10.1016/j.apnum.2020.05.005 doi: 10.1016/j.apnum.2020.05.005
![]() |
[20] |
H. Y. Jian, T. Z. Huang, X. M. Gu, X. L. Zhao, Y. L. Zhao, Fast implicit integration factor method for nonlinear space Riesz fractional reaction-diffusion equations, J. Comput. Appl. Math., 378 (2020), 112935. https://doi.org/10.1016/j.cam.2020.112935 doi: 10.1016/j.cam.2020.112935
![]() |
[21] |
H. Y. Jian, T. Z. Huang, A. Ostermann, X. M. Gu, Y. L. Zhao, Fast IIF-WENO method on non-uniform meshes for nonlinear space-fractional convection diffusion reaction equations, J. Sci. Comput., 89 (2021), 13. https://doi.org/10.1007/s10915-021-01622-9 doi: 10.1007/s10915-021-01622-9
![]() |
[22] |
W. K. Zahra, S. M. Elkholy, The use of cubic splines in the numerical solution of fractional differential equations, Int. J. Maths. Math. Sci., 2012 (2012), 638026. https://doi.org/10.1155/2012/638026 doi: 10.1155/2012/638026
![]() |
[23] |
M. Abbas, A. A. Majid, A. Rashid, Numerical method using cubic trigonometric B-spline technique for nonclassical diffusion problems, Abst. Appl. Anal., 2014 (2014), 849682. https://doi.org/10.1155/2014/849682 doi: 10.1155/2014/849682
![]() |
[24] |
T. Nazir, M. Abbas, A. I. M. Ismail, A. A. Majid, A. Rashid, The numerical solution of advection-diffusion problems using new cubic trigonometric B-splines approach, Appl. Math. Model., 40 (2016), 4586–4611. https://doi.org//10.1016/j.apm.2015.11.041 doi: /10.1016/j.apm.2015.11.041
![]() |
[25] |
X. Zhu, Y. Nie, Z. Yuan, J. Wang, Z. Yang, An exponential B-spline collocation method for the fractional sub-diffusion equation, Adv. Differ. Equ., 2017 (2017), 285. https://doi.org/10.1186/s13662-017-1328-6 doi: 10.1186/s13662-017-1328-6
![]() |
[26] |
M. Yaseen, M. Abbas, T. Nazir, D. Baleanu, A finite difference scheme based on cubic trigonometric B-splines for a time fractional diffusion-wave equation, Adv. Differ. Equ., 2017 (2017), 274. https://doi.org/10.1186/s13662-017-1330-z doi: 10.1186/s13662-017-1330-z
![]() |
[27] |
M. S. Hashmi, M. Awais, A. Waheed, Q. Ali, Numerical treatment of Hunter Saxton equation using cubic trigonometric B-spline collocation method, AIP Adv., 7 (2017), 095124. https://doi.org/10.1063/1.4996740 doi: 10.1063/1.4996740
![]() |
[28] |
R. Shikrani, M. S. Hashmi, N. Khan, A. Ghaffar, K. S. Nisar, J. Singh, et al., An efficient numerical approach for space fractional partial differential equations, Alex. Eng. J., 59 (2020), 2911–2919. https://doi.org/10.1016/j.aej.2020.02.036 doi: 10.1016/j.aej.2020.02.036
![]() |
[29] |
M. S. Hashmi, Z. Shehzad, A. Ashraf, Z. Zhang, Y. P. Lv, A. Ghaffar, et al., A new variant of B-spline for the solution of modified fractional Anomalous subdiffusion equation, J. Funct. Spaces, 2021 (2021), 8047727. https://doi.org/10.1155/2021/8047727 doi: 10.1155/2021/8047727
![]() |
[30] |
M. S. Hashmi, M. Wajiha, S. W. Yao, A. Ghaffar, M. Inc, Cubic spline based differential quadrature method: A numerical approach for fractional Burger equation, Results Phys., 26 (2021), 104415. https://doi.org/10.1016/j.rinp.2021.104415 doi: 10.1016/j.rinp.2021.104415
![]() |
[31] |
M. S. Hashmi, U. Aslam, J. Singh, K. S. Nisar, An efficient numerical scheme for fractional model of telegraph equation, Alex. Eng. J., 61 (2022), 6383–6393. https://doi.org/10.1016/j.aej.2021.11.065 doi: 10.1016/j.aej.2021.11.065
![]() |
[32] |
Y. L. Zhao, P. Y. Zhu, X. M. Gu, X. L. Zhao, H. Y. Jian, A preconditioning technique for all-at-once system from the nonlinear tempered fractional diffusion equation, J. Sci. Comput., 83 (2020), 10. https://doi.org/10.1007/s10915-020-01193-1 doi: 10.1007/s10915-020-01193-1
![]() |
x | x_{j-2} | x_{j-1} | x_{j} | x_{j+1} | x_{j+2} |
H_{3, j} | 0 | R_{1} | R_{2} | R_{1} | 0 |
H'_{3, j} | 0 | R_{3} | 0 | -R_{3} | 0 |
H''_{3, j} | 0 | R_{4} | R_{5} | R_{4} | 0 |
x | \gamma = 0 | \gamma = 0.5 | \gamma = 1.0 |
\frac{\pi}{16} | 8.849960\times 10^{-5} | 9.451300\times 10^{-5} | 9.350890\times 10^{-5} |
\frac{3\pi}{16} | 4.415480 \times 10^{-5} | 4.465910 \times 10^{-5} | 4.457410 \times 10^{-5} |
\frac{5\pi}{16} | 1.576210\times 10^{-5} | 1.512030\times 10^{-5} | 1.522870 \times 10^{-5} |
\frac{7\pi}{16} | 8.183400\times 10^{-5} | 8.087850\times 10^{-5} | 8.104000\times 10^{-5} |
\frac{9\pi}{16} | 1.438941 \times 10^{-4} | 1.422872 \times 10^{-4} | 1.425587\times 10^{-4} |
\frac{11\pi}{16} | 1.915568 \times 10^{-4} | 1.883350 \times 10^{-4} | 1.888795\times 10^{-4} |
\frac{13\pi}{16} | 2.086891 \times 10^{-4} | 1.996169 \times 10^{-4} | 2.011500\times 10^{-4} |
\frac{15\pi}{16} | 1.673564 \times 10^{-4} | 5.385036 \times 10^{-4} | 4.192187\times 10^{-4} |
\alpha=1.6 | \alpha=1.8 | |||||
x | Exact | Numerical | Error | Exact | Numerical | Error |
0 | 0.000000 | 0.042532 | 4.253219 \times 10^{-2} | 0.000000 | 0.042407 | 4.240668 \times 10^{-2} |
\frac{\pi}{4} | 1.453388 | 1.453358 | 2.938660 \times 10^{-5} | 1.453394 | 1.453355 | 3.899070\times 10^{-5} |
\frac{\pi}{2} | 3.875748 | 3.875850 | 1.013582\times 10^{-4} | 3.875750 | 3.875849 | 9.873710\times 10^{-5} |
\frac{3\pi}{4} | 4.360192 | 4.360400 | 2.085417\times 10^{-4} | 4.360185 | 4.360408 | 2.229866\times 10^{-4} |
{\pi} | 0.000000 | -0.084675 | 8.467466\times 10^{-2} | 0.000000 | -0.084412 | 8.441232\times 10^{-2} |
\alpha=1.6 | \alpha=1.8 | |||||
x | Exact | Numerical | Error | Exact | Numerical | Error |
0 | 0.000000 | 0.000256 | 2.557016 \times 10^{-4} | 0.000000 | 0.000212 | 2.124213 \times 10^{-4} |
\frac{\pi}{4} | 1.453388 | 1.453359 | 2.895680 \times 10^{-5} | 1.453394 | 1.453355 | 3.930360\times 10^{-5} |
\frac{\pi}{2} | 3.875748 | 3.875849 | 1.005043\times 10^{-4} | 3.875750 | 3.875849 | 9.870570\times 10^{-5} |
\frac{3\pi}{4} | 4.360192 | 4.360397 | 2.054763 \times 10^{-4} | 4.360185 | 4.360407 | 2.226424\times 10^{-4} |
{\pi} | 0.000000 | -0.000666 | 6.664946\times 10^{-4} | 0.000000 | -0.000559 | 5.588218\times 10^{-4} |
\alpha=1.6 | \alpha=1.8 | |||||
x | Exact | Numerical | Error | Exact | Numerical | Error |
0 | 0.000000 | -0.000044 | 4.413990 \times 10^{-5} | 0.000000 | -0.000052 | 5.159910 \times 10^{-5} |
\frac{\pi}{4} | 1.453388 | 1.453359 | 2.888410 \times 10^{-5} | 1.453394 | 1.453355 | 3.955920\times 10^{-5} |
\frac{\pi}{2} | 3.875748 | 3.875849 | 1.002986\times 10^{-4} | 3.875750 | 3.875849 | 9.875220\times 10^{-5} |
\frac{3\pi}{4} | 4.360192 | 4.360397 | 2.047472 \times 10^{-4} | 4.360185 | 4.360407 | 2.227451\times 10^{-4} |
{\pi} | 0.000000 | -0.000425 | 4.245819\times 10^{-4} | 0.000000 | -0.000471 | 4.711657\times 10^{-4} |
x | \gamma = 0 | \gamma = 0.5 | \gamma = 1.0 |
0.00 | 3.159600 \times 10^{-6} | 3.162500 \times 10^{-6} | 3.162000 \times 10^{-6} |
0.20 | 5.093256\times 10^{-7} | 5.137735\times 10^{-7} | 5.130321\times 10^{-7} |
0.40 | 7.738800 \times 10^{-6} | 7.730800 \times 10^{-6} | 7.732100 \times 10^{-6} |
0.60 | 1.583960 \times 10^{-5} | 1.582100\times 10^{-5} | 1.582410 \times 10^{-5} |
0.80 | 1.741160\times 10^{-5} | 1.73353\times 10^{-5} | 1.734800\times 10^{-5} |
1.00 | 2.208280 \times 10^{-7} | 2.780499 \times 10^{-4} | 2.316613 \times 10^{-4} |
x | \alpha=1.2 | \alpha=1.4 | \alpha=1.6 | \alpha=1.8 |
0.00 | 3.159600 \times 10^{-6} | 1.490700 \times 10^{-6} | 7.661871\times 10^{-7} | 4.208717\times 10^{-7} |
0.20 | 5.093256\times 10^{-7} | 8.594544\times 10^{-8} | 6.913968\times 10^{-8} | 6.039970 \times 10^{-8} |
0.40 | 7.738800 \times 10^{-6} | 4.241300\times 10^{-6} | 2.000800 \times 10^{-6} | 8.989871 \times 10^{-7} |
0.60 | 1.583960 \times 10^{-5} | 8.549800\times 10^{-6} | 4.103000\times 10^{-6} | 1.894400\times 10^{-6} |
0.80 | 1.741160\times 10^{-5} | 9.436500\times 10^{-6} | 4.688200\times 10^{-6} | 2.283700\times 10^{-6} |
1.00 | 2.208280 \times 10^{-7} | 7.396369\times 10^{-7} | 6.778882 \times 10^{-7} | 1.776700 \times 10^{-6} |
x | \alpha=1.2 | \alpha=1.4 | \alpha=1.6 | \alpha=1.8 |
0.00 | 1.921803\times 10^{-8} | 5.660408\times 10^{-9} | 1.848237\times 10^{-9} | 6.547472\times 10^{-10} |
0.20 | 8.371194\times 10^{-8} | 3.361751\times 10^{-8} | 1.040720\times 10^{-8} | 2.976077 \times 10^{-9} |
0.40 | 3.525233 \times 10^{-7} | 1.355650\times 10^{-7} | 4.199897 \times 10^{-8} | 1.215795 \times 10^{-8} |
0.60 | 6.204239 \times 10^{-7} | 2.374454\times 10^{-7} | 7.367459\times 10^{-8} | 2.139819\times 10^{-8} |
0.80 | 6.301783\times 10^{-7} | 2.409092\times 10^{-7} | 7.511775\times 10^{-8} | 2.199683\times 10^{-8} |
1.00 | 8.868589 \times 10^{-8} | 3.273835\times 10^{-8} | 1.040274 \times 10^{-8} | 3.472292 \times 10^{-9} |
h=1/N | L1/L2 [12] | Standard/Shifted Grunwald [12] | Proposed scheme |
\frac{1}{50} | 1.8144 (-2) | 2.8191 (-3) | 4.1574 (-3) |
\frac{1}{100} | 9.4917 (-3) | 1.5093 (-3) | 9.3134 (-4) |
\frac{1}{200} | 4.8584 (-3) | 7.7821 (-4) | 4.1598 (-4) |
\frac{1}{400} | 2.4586 (-3) | 3.9459 (-4) | 1.0234 (-4) |
N | M | RSF-DE | RSF-ADE | |||
CPU | Memory | CPU | Memory | |||
2^4 | 2^5 | 2.39 | 649 | 4.19 | 904 | |
2^6 | 9.48 | 1845 | 8.27 | 2012 | ||
2^5 | 2^5 | 6.79 | 1241 | 9.63 | 1024 | |
2^6 | 13.45 | 2575 | 17.84 | 2521 | ||
2^6 | 2^5 | 9.79 | 1920 | 16.73 | 2840 | |
2^6 | 23.71 | 2908 | 28.41 | 4215 |
x | x_{j-2} | x_{j-1} | x_{j} | x_{j+1} | x_{j+2} |
H_{3, j} | 0 | R_{1} | R_{2} | R_{1} | 0 |
H'_{3, j} | 0 | R_{3} | 0 | -R_{3} | 0 |
H''_{3, j} | 0 | R_{4} | R_{5} | R_{4} | 0 |
x | \gamma = 0 | \gamma = 0.5 | \gamma = 1.0 |
\frac{\pi}{16} | 8.849960\times 10^{-5} | 9.451300\times 10^{-5} | 9.350890\times 10^{-5} |
\frac{3\pi}{16} | 4.415480 \times 10^{-5} | 4.465910 \times 10^{-5} | 4.457410 \times 10^{-5} |
\frac{5\pi}{16} | 1.576210\times 10^{-5} | 1.512030\times 10^{-5} | 1.522870 \times 10^{-5} |
\frac{7\pi}{16} | 8.183400\times 10^{-5} | 8.087850\times 10^{-5} | 8.104000\times 10^{-5} |
\frac{9\pi}{16} | 1.438941 \times 10^{-4} | 1.422872 \times 10^{-4} | 1.425587\times 10^{-4} |
\frac{11\pi}{16} | 1.915568 \times 10^{-4} | 1.883350 \times 10^{-4} | 1.888795\times 10^{-4} |
\frac{13\pi}{16} | 2.086891 \times 10^{-4} | 1.996169 \times 10^{-4} | 2.011500\times 10^{-4} |
\frac{15\pi}{16} | 1.673564 \times 10^{-4} | 5.385036 \times 10^{-4} | 4.192187\times 10^{-4} |
\alpha=1.6 | \alpha=1.8 | |||||
x | Exact | Numerical | Error | Exact | Numerical | Error |
0 | 0.000000 | 0.042532 | 4.253219 \times 10^{-2} | 0.000000 | 0.042407 | 4.240668 \times 10^{-2} |
\frac{\pi}{4} | 1.453388 | 1.453358 | 2.938660 \times 10^{-5} | 1.453394 | 1.453355 | 3.899070\times 10^{-5} |
\frac{\pi}{2} | 3.875748 | 3.875850 | 1.013582\times 10^{-4} | 3.875750 | 3.875849 | 9.873710\times 10^{-5} |
\frac{3\pi}{4} | 4.360192 | 4.360400 | 2.085417\times 10^{-4} | 4.360185 | 4.360408 | 2.229866\times 10^{-4} |
{\pi} | 0.000000 | -0.084675 | 8.467466\times 10^{-2} | 0.000000 | -0.084412 | 8.441232\times 10^{-2} |
\alpha=1.6 | \alpha=1.8 | |||||
x | Exact | Numerical | Error | Exact | Numerical | Error |
0 | 0.000000 | 0.000256 | 2.557016 \times 10^{-4} | 0.000000 | 0.000212 | 2.124213 \times 10^{-4} |
\frac{\pi}{4} | 1.453388 | 1.453359 | 2.895680 \times 10^{-5} | 1.453394 | 1.453355 | 3.930360\times 10^{-5} |
\frac{\pi}{2} | 3.875748 | 3.875849 | 1.005043\times 10^{-4} | 3.875750 | 3.875849 | 9.870570\times 10^{-5} |
\frac{3\pi}{4} | 4.360192 | 4.360397 | 2.054763 \times 10^{-4} | 4.360185 | 4.360407 | 2.226424\times 10^{-4} |
{\pi} | 0.000000 | -0.000666 | 6.664946\times 10^{-4} | 0.000000 | -0.000559 | 5.588218\times 10^{-4} |
\alpha=1.6 | \alpha=1.8 | |||||
x | Exact | Numerical | Error | Exact | Numerical | Error |
0 | 0.000000 | -0.000044 | 4.413990 \times 10^{-5} | 0.000000 | -0.000052 | 5.159910 \times 10^{-5} |
\frac{\pi}{4} | 1.453388 | 1.453359 | 2.888410 \times 10^{-5} | 1.453394 | 1.453355 | 3.955920\times 10^{-5} |
\frac{\pi}{2} | 3.875748 | 3.875849 | 1.002986\times 10^{-4} | 3.875750 | 3.875849 | 9.875220\times 10^{-5} |
\frac{3\pi}{4} | 4.360192 | 4.360397 | 2.047472 \times 10^{-4} | 4.360185 | 4.360407 | 2.227451\times 10^{-4} |
{\pi} | 0.000000 | -0.000425 | 4.245819\times 10^{-4} | 0.000000 | -0.000471 | 4.711657\times 10^{-4} |
h=\pi/N | MTM [12] | Proposed scheme |
\frac{\pi}{10} | 2.217 (-2) | 9.3934 (-2) |
\frac{\pi}{20} | 5.759 (-3) | 2.1073 (-2) |
\frac{\pi}{40} | 1.481 (-3) | 8.3915 (-3) |
\frac{\pi}{80} | 3.727 (-4) | 1.7174 (-3) |
x | \gamma = 0 | \gamma = 0.5 | \gamma = 1.0 |
0.00 | 3.159600 \times 10^{-6} | 3.162500 \times 10^{-6} | 3.162000 \times 10^{-6} |
0.20 | 5.093256\times 10^{-7} | 5.137735\times 10^{-7} | 5.130321\times 10^{-7} |
0.40 | 7.738800 \times 10^{-6} | 7.730800 \times 10^{-6} | 7.732100 \times 10^{-6} |
0.60 | 1.583960 \times 10^{-5} | 1.582100\times 10^{-5} | 1.582410 \times 10^{-5} |
0.80 | 1.741160\times 10^{-5} | 1.73353\times 10^{-5} | 1.734800\times 10^{-5} |
1.00 | 2.208280 \times 10^{-7} | 2.780499 \times 10^{-4} | 2.316613 \times 10^{-4} |
x | \alpha=1.2 | \alpha=1.4 | \alpha=1.6 | \alpha=1.8 |
0.00 | 3.159600 \times 10^{-6} | 1.490700 \times 10^{-6} | 7.661871\times 10^{-7} | 4.208717\times 10^{-7} |
0.20 | 5.093256\times 10^{-7} | 8.594544\times 10^{-8} | 6.913968\times 10^{-8} | 6.039970 \times 10^{-8} |
0.40 | 7.738800 \times 10^{-6} | 4.241300\times 10^{-6} | 2.000800 \times 10^{-6} | 8.989871 \times 10^{-7} |
0.60 | 1.583960 \times 10^{-5} | 8.549800\times 10^{-6} | 4.103000\times 10^{-6} | 1.894400\times 10^{-6} |
0.80 | 1.741160\times 10^{-5} | 9.436500\times 10^{-6} | 4.688200\times 10^{-6} | 2.283700\times 10^{-6} |
1.00 | 2.208280 \times 10^{-7} | 7.396369\times 10^{-7} | 6.778882 \times 10^{-7} | 1.776700 \times 10^{-6} |
x | \alpha=1.2 | \alpha=1.4 | \alpha=1.6 | \alpha=1.8 |
0.00 | 1.921803\times 10^{-8} | 5.660408\times 10^{-9} | 1.848237\times 10^{-9} | 6.547472\times 10^{-10} |
0.20 | 8.371194\times 10^{-8} | 3.361751\times 10^{-8} | 1.040720\times 10^{-8} | 2.976077 \times 10^{-9} |
0.40 | 3.525233 \times 10^{-7} | 1.355650\times 10^{-7} | 4.199897 \times 10^{-8} | 1.215795 \times 10^{-8} |
0.60 | 6.204239 \times 10^{-7} | 2.374454\times 10^{-7} | 7.367459\times 10^{-8} | 2.139819\times 10^{-8} |
0.80 | 6.301783\times 10^{-7} | 2.409092\times 10^{-7} | 7.511775\times 10^{-8} | 2.199683\times 10^{-8} |
1.00 | 8.868589 \times 10^{-8} | 3.273835\times 10^{-8} | 1.040274 \times 10^{-8} | 3.472292 \times 10^{-9} |
h=1/N | L1/L2 [12] | Standard/Shifted Grunwald [12] | Proposed scheme |
\frac{1}{50} | 1.8144 (-2) | 2.8191 (-3) | 4.1574 (-3) |
\frac{1}{100} | 9.4917 (-3) | 1.5093 (-3) | 9.3134 (-4) |
\frac{1}{200} | 4.8584 (-3) | 7.7821 (-4) | 4.1598 (-4) |
\frac{1}{400} | 2.4586 (-3) | 3.9459 (-4) | 1.0234 (-4) |
N | M | RSF-DE | RSF-ADE | |||
CPU | Memory | CPU | Memory | |||
2^4 | 2^5 | 2.39 | 649 | 4.19 | 904 | |
2^6 | 9.48 | 1845 | 8.27 | 2012 | ||
2^5 | 2^5 | 6.79 | 1241 | 9.63 | 1024 | |
2^6 | 13.45 | 2575 | 17.84 | 2521 | ||
2^6 | 2^5 | 9.79 | 1920 | 16.73 | 2840 | |
2^6 | 23.71 | 2908 | 28.41 | 4215 |