We consider a generalization of a Ricci soliton as $ \eta $-Ricci-Bourguignon solitons on a Riemannian manifold endowed with a semi-symmetric metric and semi-symmetric non-metric connection. We find some properties of $ \eta $-Ricci-Bourguignon soliton on Riemannian manifolds equipped with a semi-symmetric metric and semi-symmetric non-metric connection when the potential vector field is torse-forming with respect to a semi-symmetric metric and semi-symmetric non-metric connection.
Citation: Yusuf Dogru. $ \eta $-Ricci-Bourguignon solitons with a semi-symmetric metric and semi-symmetric non-metric connection[J]. AIMS Mathematics, 2023, 8(5): 11943-11952. doi: 10.3934/math.2023603
We consider a generalization of a Ricci soliton as $ \eta $-Ricci-Bourguignon solitons on a Riemannian manifold endowed with a semi-symmetric metric and semi-symmetric non-metric connection. We find some properties of $ \eta $-Ricci-Bourguignon soliton on Riemannian manifolds equipped with a semi-symmetric metric and semi-symmetric non-metric connection when the potential vector field is torse-forming with respect to a semi-symmetric metric and semi-symmetric non-metric connection.
[1] | N. Agashe, M. Chafle, A semi-symmetric nonmetric connection on a Riemannian manifold, Indian J. Pure Appl. Math., 23 (1992), 399–409. |
[2] | A. Besse, Einstein manifolds, Berlin: Springer-Verlag, 2008. http://dx.doi.org/10.1007/978-3-540-74311-8 |
[3] | A. Blaga, Solutions of some types of soliton equations in $\mathbb{R}^{3}$, Filomat, 33 (2019), 1159–1162. http://dx.doi.org/10.2298/FIL1904159B doi: 10.2298/FIL1904159B |
[4] | A. Blaga, C. Özgür, Almost $\eta $-Ricci and almost $\eta $-Yamabe solitons with a torse-forming potential vector field, Quaest. Math., 45 (2022), 143–163. http://dx.doi.org/10.2989/16073606.2020.1850538 doi: 10.2989/16073606.2020.1850538 |
[5] | A. Blaga, C. Özgür, Remarks on submanifolds as almost $\eta$-Ricci-Bourguignon solitons, Facta Univ. Ser. Math. Inform., 37 (2022), 397–407. http://dx.doi.org/10.22190/FUMI220318027B doi: 10.22190/FUMI220318027B |
[6] | M. Chaki, R. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57 (2000) 297–306. |
[7] | M. Chaki, On generalized quasi Einstein manifolds, Publ. Math. Debrecen, 58 (2001), 683–691. |
[8] | B. Chen, A survey on Ricci solitons on Riemannian submanifolds, Contemporary Mathematics, 674 (2016), 27–39. http://dx.doi.org/10.1090/conm/674/13552 doi: 10.1090/conm/674/13552 |
[9] | U. De, G. Ghosh, On generalized quasi Einstein manifolds, Kyungpook Math. J., 44 (2004), 607–615. |
[10] | A. Fialkow, Conformal geodesics, Trans. Amer. Math. Soc, 45 (1939) 443–473. |
[11] | A. Friedmann, J. Schouten, Über die Geometrie der halbsymmetrischen Übertragungen, Math. Z, 21 (1924), 211–223. http://dx.doi.org/10.1007/BF01187468 doi: 10.1007/BF01187468 |
[12] | R. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom., 17 (1982), 255–306. http://dx.doi.org/10.4310/jdg/1214436922 doi: 10.4310/jdg/1214436922 |
[13] | J. Inoguchi, Minimal surfaces in 3-dimensional solvable Lie groups, Chinese Ann. Math. B, 24 (2003), 73–84. http://dx.doi.org/10.1142/S0252959903000086 doi: 10.1142/S0252959903000086 |
[14] | A. Mihai, I. Mihai, Torse forming vector fields and exterior concurrent vector fields on Riemannian manifolds and applications, J. Geom. Phys., 73 (2013), 200–208. http://dx.doi.org/10.1016/j.geomphys.2013.06.002 doi: 10.1016/j.geomphys.2013.06.002 |
[15] | C. Özgür, On Ricci solitons with a semi-symmetric metric connection, Filomat, 35 (2021), 3635–3641. http://dx.doi.org/10.2298/FIL2111635O doi: 10.2298/FIL2111635O |
[16] | A. Shaikh, C. Özgür, A. Patra, On hyper-generalized quasi-Einstein manifolds, International Journal of Mathematical Sciences and Engineering Applications, 5 (2011), 189–206. |
[17] | J. Schouten, Ricci-calculus: an introduction to tensor analysis and its geometrical applications, Berlin: Springer-Verlag, 1954. http://dx.doi.org/10.1007/978-3-662-12927-2 |
[18] | M. Siddiqi, M. Akyol, $\eta$-Ricci-Yamabe soliton on Riemannian submersions from Riemannian manifolds, arXiv: 2004.14124. |
[19] | K. Yano, On the torse-forming directions in Riemannian spaces, Proc. Imp. Acad., 20 (1944), 340–345. http://dx.doi.org/10.3792/pia/1195572958 doi: 10.3792/pia/1195572958 |
[20] | K. Yano, On semi-symmetric metric connection, Rev. Roum. Math. Pures et Appl., 15 (1970), 1579–1586. |