Research article Special Issues

Fractional view evaluation system of Schrödinger-KdV equation by a comparative analysis

  • Received: 15 June 2022 Revised: 23 August 2022 Accepted: 30 August 2022 Published: 08 September 2022
  • MSC : 34A34, 35A20, 35A22, 44A10, 33B15

  • The time-fractional coupled Schrödinger-KdV equation is an interesting mathematical model because of its wide and significant application in mathematics and applied sciences. A fractional coupled Schrödinger-KdV equation in the sense of Caputo derivative is investigated in this article. Namely, we provide a comparative study of the considered model using the Adomian decomposition method and the homotopy perturbation method with Shehu transform. Approximate solutions obtained using the Adomian decomposition and homotopy perturbation methods were numerically evaluated and presented in graphs and tables. Then, these solutions were compared to the exact solutions, demonstrating the simplicity, effectiveness, and good accuracy of the applied method. To demonstrate the accuracy and efficiency of the suggested techniques, numerical problem are provided.

    Citation: Rasool Shah, Abd-Allah Hyder, Naveed Iqbal, Thongchai Botmart. Fractional view evaluation system of Schrödinger-KdV equation by a comparative analysis[J]. AIMS Mathematics, 2022, 7(11): 19846-19864. doi: 10.3934/math.20221087

    Related Papers:

  • The time-fractional coupled Schrödinger-KdV equation is an interesting mathematical model because of its wide and significant application in mathematics and applied sciences. A fractional coupled Schrödinger-KdV equation in the sense of Caputo derivative is investigated in this article. Namely, we provide a comparative study of the considered model using the Adomian decomposition method and the homotopy perturbation method with Shehu transform. Approximate solutions obtained using the Adomian decomposition and homotopy perturbation methods were numerically evaluated and presented in graphs and tables. Then, these solutions were compared to the exact solutions, demonstrating the simplicity, effectiveness, and good accuracy of the applied method. To demonstrate the accuracy and efficiency of the suggested techniques, numerical problem are provided.



    加载中


    [1] V. Prajapati, R. Meher, A robust analytical approach to the generalized Burgers-Fisher equation with fractional derivatives including singular and non-singular kernels, J. Ocean Eng. Sci., 2022. https://doi.org/10.1016/j.joes.2022.06.035 doi: 10.1016/j.joes.2022.06.035
    [2] L. Verma, R. Meher, Z. Avazzadeh, O. Nikan, Solution for generalized fuzzy fractional Kortewege-de Varies equation using a robust fuzzy double parametric approach, J. Ocean Eng. Sci., 2022. https://doi.org/10.1016/j.joes.2022.04.026 doi: 10.1016/j.joes.2022.04.026
    [3] M. Alqhtani, K. Saad, W. Weera, W. Hamanah, Analysis of the fractional-order local Poisson equation in fractal porous media, Symmetry, 14 (2022), 1323. https://doi.org/10.3390/sym14071323 doi: 10.3390/sym14071323
    [4] M. Al-Sawalha, R. Agarwal, R. Shah, O. Ababneh, W. Weera, A reliable way to deal with fractional-order equations that describe the unsteady flow of a polytropic gas, Mathematics, 10 (2022), 2293. https://doi.org/10.3390/math10132293 doi: 10.3390/math10132293
    [5] S. Mukhtar, S. Noor, The numerical investigation of a fractional-order multi-dimensional model of Navier-Stokes equation via novel techniques, Symmetry, 14 (2022), 1102. https://doi.org/10.3390/sym14061102 doi: 10.3390/sym14061102
    [6] N. Shah, Y. Hamed, K. Abualnaja, J. Chung, A. Khan, A comparative analysis of fractional-order Kaup-Kupershmidt equation within different operators, Symmetry, 14 (2022), 986. https://doi.org/10.3390/sym14050986 doi: 10.3390/sym14050986
    [7] N. Shah, H. Alyousef, S. El-Tantawy, J. Chung, Analytical investigation of fractional-order Korteweg-De-Vries-Type equations under Atangana-Baleanu-Caputo operator: Modeling nonlinear waves in a plasma and fluid, Symmetry, 14 (2022), 739. https://doi.org/10.3390/sym14040739 doi: 10.3390/sym14040739
    [8] N. Aljahdaly, A. Akgul, R. Shah, I. Mahariq, J. Kafle, A comparative analysis of the fractional-order coupled Korteweg-De Vries equations with the Mittag-Leffler law, J. Math., 2022 (2022), 1–30. https://doi.org/10.1155/2022/8876149 doi: 10.1155/2022/8876149
    [9] H. Ismael, H. Bulut, H. Baskonus, W-shaped surfaces to the nematic liquid crystals with three nonlinearity laws, Soft Comput., 25 (2020), 4513–4524. https://doi.org/10.1007/s00500-020-05459-6 doi: 10.1007/s00500-020-05459-6
    [10] M. Yavuz, T. Sulaiman, A. Yusuf, T. Abdeljawad, The Schrodinger-KdV equation of fractional order with Mittag-Leffler nonsingular kernel, Alex. Eng. J., 60 (2021), 2715–2724. https://doi.org/10.1016/j.aej.2021.01.009 doi: 10.1016/j.aej.2021.01.009
    [11] K. Safare, V. Betageri, D. Prakasha, P. Veeresha, S. Kumar, A mathematical analysis of ongoing outbreak COVID-19 in India through nonsingular derivative, Numer. Meth. Part. D. E., 37 (2020), 1282–1298. https://doi.org/10.1002/num.22579 doi: 10.1002/num.22579
    [12] H. Ismael, H. Baskonus, H. Bulut, Abundant novel solutions of the conformable Lakshmanan-Porsezian-Daniel model, Discrete Cont. Dyn.-S., 14 (2021), 2311. https://doi.org/10.3934/dcdss.2020398. doi: 10.3934/dcdss.2020398
    [13] H. Yasmin, N. Iqbal, A comparative study of the fractional coupled Burgers and Hirota-Satsuma KdV equations via analytical techniques, Symmetry, 14 (2022), 1364. https://doi.org/10.3390/sym14071364 doi: 10.3390/sym14071364
    [14] R. Alyusof, S. Alyusof, N. Iqbal, M. Arefin, Novel evaluation of the fractional acoustic wave model with the exponential-decay kernel, Complexity, 2022 (2022), 1–14. https://doi.org/10.1155/2022/9712388 doi: 10.1155/2022/9712388
    [15] M. Yavuz, T. Sulaiman, A. Yusuf, T. Abdeljawad, The Schrodinger-KdV equation of fractional order with Mittag-Leffler nonsingular kernel, Alex. Eng. J., 60 (2021), 2715–2724. https://doi.org/10.1016/j.aej.2021.01.009 doi: 10.1016/j.aej.2021.01.009
    [16] H. Triki, A. Biswas, Dark solitons for a generalized nonlinear Schrodinger equation with parabolic law and dual-power law nonlinearities, Math. Meth. Appl. Sci., 34 (2011), https://doi.org/10.1002/mma.1414 doi: 10.1002/mma.1414
    [17] L. Zhang, J. Si, New soliton and periodic solutions of (1+2)-dimensional nonlinear Schrodinger equation with dual-power law nonlinearity, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 2747–2754. https://doi.org/10.1016/j.cnsns.2009.10.028 doi: 10.1016/j.cnsns.2009.10.028
    [18] Q. Xu, S. Songhe, Numerical analysis of two local conservative methods for two-dimensional nonlinear Schrodinger equation, SCIENTIA SINICA Math., 48 (2017), 345. https://doi.org/10.1360/scm-2016-0308 doi: 10.1360/scm-2016-0308
    [19] J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, Bose-Einstein condensates in standing waves: The cubic nonlinear Schrödinger equation with a periodic potential, Phys. Rev. Lett., 86 (2001), 1402–1405. https://doi.org/10.1103/PhysRevLett.86.1402 doi: 10.1103/PhysRevLett.86.1402
    [20] A. Trombettoni, A. Smerzi, Discrete solitons and breathers with dilute Bose-Einstein condensates, Phys. Rev. Lett., 86 (2001), 2353–2356. https://doi.org/10.1103/physrevlett.86.2353 doi: 10.1103/physrevlett.86.2353
    [21] A. Biswas, Quasi-stationary non-Kerr law optical solitons, Opt. Fiber Technol., 9 (2003), 224–259. https://doi.org/10.1016/s1068-5200(03)00044-0 doi: 10.1016/s1068-5200(03)00044-0
    [22] M. Eslami, M. Mirzazadeh, Topological 1-soliton solution of nonlinear Schrödinger equation with dual-power law nonlinearity in nonlinear optical fibers, Eur. Phys. J. Plus, 128 (2013). https://doi.org/10.1140/epjp/i2013-13140-y doi: 10.1140/epjp/i2013-13140-y
    [23] A. Hyder, The influence of the differential conformable operators through modern exact solutions of the double Schrödinger-Boussinesq system, Phys. Scripta, 2021. https://doi.org/10.1088/1402-4896/ac169f doi: 10.1088/1402-4896/ac169f
    [24] G. Adomian, R. Rach, Inversion of nonlinear stochastic operators, J. Math. Anal. Appl., 91 (1983), 39–46. https://doi.org/10.1016/0022-247x(83)90090-2 doi: 10.1016/0022-247x(83)90090-2
    [25] S. Alinhac, M. Baouendi, A counterexample to strong uniqueness for partial differential equations of Schrodinger's type, Commun. Part. Diff. Eq., 19 (1994), 1727–1733. https://doi.org/10.1080/03605309408821069 doi: 10.1080/03605309408821069
    [26] J. H. He, Homotopy perturbation technique, Comput. Meth. Appl. Mech. Eng., 178 (1999), 257–262. https://doi.org/10.1016/s0045-7825(99)00018-3 doi: 10.1016/s0045-7825(99)00018-3
    [27] J. H. He, A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Non-Linear Mech., 35 (2000), 743. https://doi.org/10.1016/s0020-7462(98)00085-7 doi: 10.1016/s0020-7462(98)00085-7
    [28] D. D. Ganji, M. Rafei, Solitary wave solutions for a generalized Hirota Satsuma coupled KdV equation by homotopy perturbation method, Phys. Lett. A, 356 (2006), 131–137. https://doi.org/10.1016/j.physleta.2006.03.039 doi: 10.1016/j.physleta.2006.03.039
    [29] A. M. Siddiqui, R. Mahmood, Q. K. Ghori, Homotopy perturbation method for thin film flow of a fourth grade fluid down a vertical cylinder, Phys. Lett. A, 352 (2006), 404–410. https://doi.org/10.1016/j.physleta.2005.12.033 doi: 10.1016/j.physleta.2005.12.033
    [30] Y. Qin, A. Khan, I. Ali, M. Al Qurashi, H. Khan, R. Shah, D. Baleanu, An efficient analytical approach for the solution of certain fractional-order dynamical systems, Energies, 13 (2020), 2725. https://doi.org/10.3390/en13112725 doi: 10.3390/en13112725
    [31] M. Alaoui, R. Fayyaz, A. Khan, R. Shah, M. Abdo, Analytical investigation of Noyes-Field model for time-fractional Belousov-Zhabotinsky reaction, Complexity, 2021 (2021), 1–21. https://doi.org/10.1155/2021/3248376 doi: 10.1155/2021/3248376
    [32] J. H. He, Y. O. El-Dib, Homotopy perturbation method for Fangzhu oscillator, J. Math. Chem., 58 (2020), 2245–2253. https://doi.org/10.1007/s10910-020-01167-6 doi: 10.1007/s10910-020-01167-6
    [33] J. Honggang, Z. Yanmin, Conformable double Laplace-Sumudu transform decomposition method for fractional partial differential equations, Complexity, 2022 (2022), 1–8. https://doi.org/10.1155/2022/7602254 doi: 10.1155/2022/7602254
    [34] L. Akinyemi, O. S. Iyiola, Exact and approximate solutions of time-fractional models arising from physics via Shehu transform, Math. Meth. Appl. Sci., 43 (2020), 7442–7464. https://doi.org/10.1002/mma.6484 doi: 10.1002/mma.6484
    [35] L. Ali, R. Shah, W. Weera, Fractional view analysis of Cahn-Allen equations by new iterative transform method, Fractal Fract., 6 (2022), 293. https://doi.org/10.3390/fractalfract6060293 doi: 10.3390/fractalfract6060293
    [36] S. Maitama, W. Zhao, Homotopy perturbation Shehu transform method for solving fractional models arising in applied sciences, J. Appl. Math. Comput. Mech., 20 (2021), 71–82. https://doi.org/10.17512/jamcm.2021.1.07 doi: 10.17512/jamcm.2021.1.07
    [37] M. Liaqat, A. Khan, M. Alam, M. Pandit, S. Etemad, S. Rezapour, Approximate and Closed-Form solutions of Newell-Whitehead-Segel eEquations via modified conformable Shehu transform decomposition method, Math. Probl. Eng., 2022 (2022), 1–14. https://doi.org/10.1155/2022/6752455 doi: 10.1155/2022/6752455
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1439) PDF downloads(97) Cited by(6)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog