Processing math: 63%
Research article

Adaptive algorithms for change point detection in financial time series

  • The detection of change points in chaotic and non-stationary time series presents a critical challenge for numerous practical applications, particularly in fields such as finance, climatology, and engineering. Traditional statistical methods, grounded in stationary models, are often ill-suited to capture the dynamics of processes governed by stochastic chaos. This paper explores modern approaches to change point detection, focusing on multivariate regression analysis and machine learning techniques. We demonstrate the limitations of conventional models and propose hybrid methods that leverage long-term correlations and metric-based learning to improve detection accuracy. Our study presents comparative analyses of existing early detection techniques and introduces advanced algorithms tailored to non-stationary environments, including online and offline segmentation strategies. By applying these methods to financial market data, particularly in monitoring currency pairs like EUR/USD, we illustrate how dynamic filtering and multiregression analysis can significantly enhance the identification of change points. The results underscore the importance of adapting detection models to the specific characteristics of chaotic data, offering practical solutions for improving decision-making in complex systems. Key findings reveal that while no universal solution exists for detecting change points in chaotic time series, integrating machine learning and multivariate approaches allows for more robust and adaptive forecasting models. The work highlights the potential for future advancements in neural network applications and multi-expert decision systems, further enhancing predictive accuracy in volatile environments.

    Citation: Alexander Musaev, Dmitry Grigoriev, Maxim Kolosov. Adaptive algorithms for change point detection in financial time series[J]. AIMS Mathematics, 2024, 9(12): 35238-35263. doi: 10.3934/math.20241674

    Related Papers:

    [1] Muhammad Akram, Uzma Noreen, Mohammed M. Ali Al-Shamiri, Dragan Pamucar . Integrated decision-making methods based on 2-tuple linguistic m-polar fuzzy information. AIMS Mathematics, 2022, 7(8): 14557-14594. doi: 10.3934/math.2022802
    [2] Muhammad Riaz, Maryam Saba, Muhammad Abdullah Khokhar, Muhammad Aslam . Novel concepts of m-polar spherical fuzzy sets and new correlation measures with application to pattern recognition and medical diagnosis. AIMS Mathematics, 2021, 6(10): 11346-11379. doi: 10.3934/math.2021659
    [3] Jingjie Zhao, Jiale Zhang, Yu Lei, Baolin Yi . Proportional grey picture fuzzy sets and their application in multi-criteria decision-making with high-dimensional data. AIMS Mathematics, 2025, 10(1): 208-233. doi: 10.3934/math.2025011
    [4] Muhammad Riaz, Khadija Akmal, Yahya Almalki, S. A. Alblowi . Cubic m-polar fuzzy topology with multi-criteria group decision-making. AIMS Mathematics, 2022, 7(7): 13019-13052. doi: 10.3934/math.2022721
    [5] Nasser Aedh Alreshidi, Muhammad Rahim, Fazli Amin, Abdulaziz Alenazi . Trapezoidal type-2 Pythagorean fuzzy TODIM approach for sensible decision-making with unknown weights in the presence of hesitancy. AIMS Mathematics, 2023, 8(12): 30462-30486. doi: 10.3934/math.20231556
    [6] Anas Al-Masarwah, Abd Ghafur Ahmad . On (complete) normality of m-pF subalgebras in BCK/BCI-algebras. AIMS Mathematics, 2019, 4(3): 740-750. doi: 10.3934/math.2019.3.740
    [7] T. M. Athira, Sunil Jacob John, Harish Garg . A novel entropy measure of Pythagorean fuzzy soft sets. AIMS Mathematics, 2020, 5(2): 1050-1061. doi: 10.3934/math.2020073
    [8] Ghous Ali, Kholood Alsager . Novel Heronian mean based m-polar fuzzy power geometric aggregation operators and their application to urban transportation management. AIMS Mathematics, 2024, 9(12): 34109-34146. doi: 10.3934/math.20241626
    [9] Harish Garg, Rishu Arora . TOPSIS method based on correlation coefficient for solving decision-making problems with intuitionistic fuzzy soft set information. AIMS Mathematics, 2020, 5(4): 2944-2966. doi: 10.3934/math.2020190
    [10] Muhammad Naeem, Younas Khan, Shahzaib Ashraf, Wajaree Weera, Bushra Batool . A novel picture fuzzy Aczel-Alsina geometric aggregation information: Application to determining the factors affecting mango crops. AIMS Mathematics, 2022, 7(7): 12264-12288. doi: 10.3934/math.2022681
  • The detection of change points in chaotic and non-stationary time series presents a critical challenge for numerous practical applications, particularly in fields such as finance, climatology, and engineering. Traditional statistical methods, grounded in stationary models, are often ill-suited to capture the dynamics of processes governed by stochastic chaos. This paper explores modern approaches to change point detection, focusing on multivariate regression analysis and machine learning techniques. We demonstrate the limitations of conventional models and propose hybrid methods that leverage long-term correlations and metric-based learning to improve detection accuracy. Our study presents comparative analyses of existing early detection techniques and introduces advanced algorithms tailored to non-stationary environments, including online and offline segmentation strategies. By applying these methods to financial market data, particularly in monitoring currency pairs like EUR/USD, we illustrate how dynamic filtering and multiregression analysis can significantly enhance the identification of change points. The results underscore the importance of adapting detection models to the specific characteristics of chaotic data, offering practical solutions for improving decision-making in complex systems. Key findings reveal that while no universal solution exists for detecting change points in chaotic time series, integrating machine learning and multivariate approaches allows for more robust and adaptive forecasting models. The work highlights the potential for future advancements in neural network applications and multi-expert decision systems, further enhancing predictive accuracy in volatile environments.



    Fractional calculus represents a significant extension of classical calculus, enabling the analysis of phenomena that cannot be adequately described by integer-order derivatives and integrals. Over the centuries, mathematicians like Euler, Laplace, Riemann, and Liouville contributed to its development. However, it was not until the 20th century that fractional calculus started gaining significant attention and applications. Fractional calculus often provides more accurate and flexible models for real-world phenomena. It can capture memory effects, non-locality, and complex dynamics that traditional integer-order calculus might miss. It has numerous applications in various fields of science and engineering, including: It is applied in the analysis of electromagnetic fields and waves, where fractional derivatives help model complex behaviors. Fractional calculus is utilized in control systems to model and analyze dynamical systems, enhancing the design of controllers for systems with memory effects. In materials science, fractional calculus models the behavior of viscoelastic materials, which exhibit both viscous and elastic characteristics, allowing for a more accurate representation of their stress-strain relationships. For some other applications in various domains, check [1,2,3,4] and the references therein.

    Mathematical inequalities provide a foundational framework for understanding the behavior of functions under integration, leading to significant applications in both theoretical and applied mathematics. Convex integral inequalities are a powerful tool in mathematical analysis, providing relationships between integrals of convex functions and their values at specific points. They find applications in various fields, including probability theory, information theory, and optimization (see [5,6,7,8]). These inequalities are crucial for numerical methods, especially for estimating the error bounds in numerical integration techniques like the trapezoidal rule, Simpson's rule, and others. Several notable integral inequalities have been documented in the literature, including Hermite-Hadamard [9], Newton [10], Simpson [11], Bullen [12], and others.

    Through the use of the different classes of generalized convex mappings, authors have interpreted the double Hermite and Hadamard (H-H) inequality in various ways. The double inequality was proposed by Hermite (1822–1901) and Hadamard (1865–1963). In addition to their contributions to number theory, nonlinear analysis, and complex analysis, Hermite and Hadamard have made significant contributions to other fields as well. To learn more about their contributions, see [13]. This inequality is a significant discovery in convex analysis and is widely used in various fields of applied analysis, particularly optimality analysis. Let us describe it as below.

    Suppose that ψ:ΩRR is a convex mapping defined over the interval Ω of real numbers, as well as ω1,ω2Ω together with ω1ω2. Then one has (see [14]):

    ψ(ω1+ω22)1ω2ω1ω2ω1ψ(θ)dθψ(ω1)+ψ(ω2)2. (1.1)

    This inequality is applied in geometric contexts to determine correlations between a function's value at the midpoint of an interval and its average over that interval. In information theory, the inequality has been used to set boundaries and estimations, especially in relation to quantum integral inequalities and quantum calculus. An effective tool for examining a variety of economic phenomena involving convex functions, such as asset pricing and optimization as well as income distribution and production, is due to Hermite-Hadamard inequality (see [15]).

    The bidimensional convex function is primarily used to prove that all convex mappings are convex over their coordinates. Additionally, there are bidimensional convex functions that are not convex (see, for instance, [16]). Hermite-Hadamard type inequality of the following kind was established for convex co-ordinated mappings on R2, that is:

    Let a function ψ:[ω1,ω2]×[ω3,ω4]R2R is convex across its coordinate plane. Then, we have the following double inequalities (see [17]):

    4ψ(ω1+ω22,ω3+ω42)[1ω2ω1ω2ω1ψ(x,ω3+ω42)dx+1ω4ω3ω4ω3ψ(ω1+ω22,y)dy]1(ω2ω1)(ω4ω3)ω2ω1ω4ω3ψ(x,y)dydx[1ω2ω1ω2ω1[ψ(x,ω3)+ψ(x,ω4)]dx+1ω4ω3ω4ω3[ψ(ω1,y)+ψ(ω2,y)]dy]ψ(ω1,ω3)+ψ(ω1,ω4)+ψ(ω2,ω3)+ψ(ω2,ω4). (1.2)

    First, the authors in [18] employed inclusion order and interval-valued functions for two-dimensional double inequality and proposed a number of innovative variations of inequalities in terms of inclusions. They further show that when the interval is wrapped, these results generalize many earlier discoveries. In [19], the authors provide several new refinements and reversals for bidimensional double inequality using s-convex mappings on the rectangular plane. Furthermore, this inequality has been investigated using different types of convex mappings as well as integral operators. For example, in [20], the authors used different types of convex, continuous, and differentiable mappings and found various bounds of double inequalities. In [21], the authors define two variable logarithmic convex mappings and develop Hermite-Hadamard inequality with applications. In [22], the authors define two-dimensional preinvex type mappings and develop various types of Hermite-Hadamard inequalities. In [23], the authors exploited the q-jackson quantum double integral on the plane to established the double inequality with its fascinating applications in quantum calculus. Kalsoom et al. [24] used quantum integrals to established the Fejer and Pachapatte type inequalities utilizing two different forms of invex mappings. In [25], authors introduced a new type of fractional integral operators with singular kernels to develop Hermite-Hadamard inequality by employing several types of integral identities. In the realm of interval maps, Shi et al. [26] created multiple new bounds for double Hermite-Hadamard inequality using two types of generalized convex mappings. Zareen et al. [27] exploited generalized double fractional integrals and generated numerous novel Hermite-Hadamard type inequalities with coordinated convex mappings. Saeed et al. [28] employed generalized double fractional integrals to establish numerous novel Hermite-Hadamard type inequalities over convex set relevant to fuzzy-number-valued settings using coordinated convex mappings. In [29], the authors refined the Hadamard inequality for coordinated convex functions and explored their applications. Afzal et al. [30] exploited coordinated convex mappings to produce Hermite-Hadamard, Pachpatte, and Fejer type integral inequalities using innovative fractional integral operators via fully interval-order relations. For some further recent advancements for coordinated convex mappings, we refer to [31,32,33,34] and the references therein.

    Since this article mainly deals with a cr-interval order relations, we should recollect recent advancements focusing on center-radius order relations using some other form of convex mapping. The concept of cr-order was introduced for the first time by the authors in [35] in 2014. This relation is more compatible than other order relations and has several additional properties that other interval order relations do not have. Based on their work, authors in [36] defined a new type of convex mapping for convex optimizing problems in the realm of cr-order. Liu et al. [37,38] first created discrete versions of Jensen and Hermite-Hadamard inequalities utilizing two distinct kinds of generalized convex mappings employing cr-order as a result of these discoveries. Khan and Saad [39] created several novel bounds for various kinds of double inequalities by utilizing superquadratic functions in the relam of fractional frame of reference via cr-order relation. Fahad et al. [40] used geometric and arithmetic-cr-convex functions to explore characteristics and several applications related to entropy and means. Using the concepts of cr-order and various classes of convex and Godunova-Levin functions, the authors of [41,42,43,44] generated a number of novel inequalities connected to these findings with applications. For more recent developments on comparable results using different types of related convex classes, see [45,46,47,48,49] and the references therein.

    "Order relations" and "convex mappings" are the basic concepts for adjusting inequalities within interval set-valued mappings. Despite that, authors have extensively used the interval partial order relation "p" to develop different types of inequalities and analyze that this type of order relation though it is not very suitable for adjusting inequalities in interval maps because there are some inequalities that are not adjusted under the same assumptions. For instance, please see reference [50] in which several major results are not developed in interval maps. To overcome this limitation, the authors established a new sort of order relation known as cr-order, whose definition is now standard. This is considered a natural generalization of all recently developed order relations such as inclusion, left-right, pseudo, up and down, and various others. Furthermore, the cr-order is full order, which means it possesses all relational features between intervals, including reflexivity, anti-symmetry, transitivity, and comparability, but the inclusion partial order relation lacks comparability between two intervals.

    Inspired by well built appropriate literature, particularly these works [18,24,39,40,41], we derived a novel and improved form of inequalities employing cr-interval order. This paper is organized into five sections, beginning with an introduction and fundamental discussion of the subject connected to preliminary. In Section 3, we first show that double integral preserves cr-order, and then we show that the newly developed mappings after we apply cr-order, including midpoint and center, are both convex in nature. Next, we developed different variants of double inequalities that generalize various previous findings. Finally, in Section 4, we provide a precise conclusion and some future prospects.

    In this section, we discuss some basic concepts related to fractional and interval calculus. Further some key concepts are not thoroughly discussed here, thus we refer to [39].

    Ri: intervals in R;

    ψ_=¯ψ: interval maps become dysfunctional;

    : inclusion interval order;

    cr: cr-interval order;

    : basic order;

    ivfs: interval-valued functions.

    Let R be the one-dimensional Euclidean space, and consider Rc the family of all non-empty compact convex subsets of R, that is

    Rc={[ω1,ω2]:ω1,ω2Randω1ω2}.

    To define the Hausdorff metric in Rc, use this formula:

    D(ω1,ω2)=max{d(ω1,ω2),d(ω2,ω1)}, (2.1)

    where d(ω1,ω2)=supνω1d(ν,ω2), and d(ν,ω2)=minμω2d(ν,μ)=minμω2|νμ|.

    Remark 2.1. The Hausdorff metric described in (2.1) is alternatively represented in the following manner:

    H([ω1_,¯ω1],[ω2_,¯ω2])=max{|ω1_ω2_|,|¯ω1¯ω2|}.

    In interval space, we call this the Moore metric.

    For instance, if H1=[ω1_,¯ω1] and H2=[ω2_,¯ω2] are two closed intervals, then the Minkowski sum, scalar multiplication, and difference are defined as follows:

    H1+H2={ω1+ω2ω1H1,ω2H2} andΓH1={Γω1ω1H1}

    and

    H1H2=[ω1_¯ω2,¯ω1ω2_],

    with the product

    H1H2=[min{ω1ω2_,ω1_¯ω2,¯ω1ω2_,¯ω1¯ω2},sup{ω1ω2_,ω1_¯ω2,¯ω1ω2_,¯ω1¯ω2}],

    and the division

    H1H2=[min{ω1_ω2_,ω1¯ω2,¯ω1ω2_,¯ω1¯ω2},max{ω1_¯ω2,ω1_¯ω2,¯ω1ω2_,¯ω1¯ω2}],

    where 0H2.

    The order relation that permeates our primary findings is outlined by Bhunia and Samanta [51]; it is commonly referred to as center-radius order.

    Definition 2.1. [41] For any two intervals the center-radius order relation is defined as H1=[ω1_,¯ω2]=ωc,ωr=ω1_+¯ω22,¯ω2ω1_2, H2=[Ω1_,¯Ω2]=Ωc,Ωr=Ω1_+¯Ω22,¯Ω2Ω1_2, where

    H1crH2{ωc<Ωc,ifωcΩc;ωrΩr,ifωr=Ωr.

    The relation cr satisfies the following relational properties for any three intervals H1=[ω1_,¯ω2]=ωc,ωr, H2=[Ω1_,¯Ω2]=Ωc,Ωr and H3=[η1_,¯η2]=ηc,ηr: Reflexivity: H1crH1. Anti-symmetry: H1crH2 and H2crH1. Transitivity: H1crH2 and H2crH3, then H1crH3. Comparability: H2crH3 or H3crH2.

    Theorem 2.1. [42] Let ψ:[ω1,ω2]Rc be an ivfs represented by ψ(ω)=[ψ_(ω),¯ψ(ω)]. ψIR([ω1,ω2]), iff ψ_(ω),¯ψ(ω)R([ω1,ω2]) and

    (I R)ω2ω1ψ(ω)dω=[(R)ω2ω1ψ_(ω)dω,(R)ω2ω1¯ψ(ω)dω].

    Theorem 2.2. [41] Let ψ,χ:[ω1,ω2]Rc be an ivfs defined by χ=[χ_,¯χ],ψ=[ψ_,¯ψ]. If ψ(ω)crχ(ω) for all ω[ω1,ω2], then

    ω2ω1ψ(ω)dωcrω2ω1χ(ω)dω.

    Theorem 2.3. [18] Let Δ=[ω1,ω2]×[ω3,ω4]. If ψ:ΔRc is UD-integrable over Δ, then we have

    (UD)Δψ(ω,Ω)dA=(I R)ω2ω1(I R)ω4ω3ψ(ω,Ω)dωdΩ.

    Using Zhao et al. [18] concept of interval-valued double integrals, we provide the following definitions for Hadamard and Katugampola integrals as follows:

    Definition 2.2. Let ψIR([ω1,ω2]×[ω3,ω4]). For bidimensional interval-valued functions, the Hadamard integrals of order θ1,θ2>0 with ω1,ω30 are represented as

    Gθ1,θ2ω1+,ω3+ψ(x,y):=1Γ(θ1)Γ(θ2)(I R)xω1yω3(lnxt)θ11(lnys)θ21ψ(t,s)tsdtds,x>ω1,y>ω3,Gθ1,θ2ω1+,ω4ψ(x,y):=1Γ(θ1)Γ(θ2)(I R)xω1ω4y(lnxt)θ11(lnsy)θ21ψ(t,s)tsdtds,x>ω1,y<ω4,Gθ1,θ2ω2,ω3+ψ(x,y):=1Γ(θ1)Γ(θ2)(I R)ω2xyω3(lntx)θ11(lnys)θ21ψ(t,s)tsdtds,x<ω2,y>ω3,

    and

    Gθ1,θ2ω2,ω4ψ(x,y):=1Γ(θ1)Γ(θ2)(I R)ω2xω4y(lntx)θ11(lnys)θ21ψ(t,s)tsdtds,x<ω2,y<ω4.

    Definition 2.3. Let ψIR([ω1,ω2]×[ω3,ω4]). For bidimensional interval-valued functions, the Katugampola fractional integrals are defined as

    η,σIθ1,θ2ω1+,ω3+ψ(x,y):=η1θ1σ1θ2Γ(θ1)Γ(θ2)(I R)xω1yω3tη1[xηtη]1θ1sσ1[yσsσ]1θ2ψ(t,s)dtds,x>ω1,y>ω3,η,σIθ1,θ2ω1+,ω4ψ(x,y):=η1θ1σ1θ2Γ(θ1)Γ(θ2)(I R)xω1ω4ytη1[xηtη]1θ1sσ1[sσyσ]1θ2ψ(t,s)dtds,x>ω1,y<ω4,η,σIθ1,θ2ω1+,ω3+ψ(x,y):=η1θ1σ1θ2Γ(θ1)Γ(θ2)(I R)yxyω3tη1[tηxη]1θ1sσ1)[yσsσ]1θ2ψ(t,s)dtds,x<ω2,y>ω3,

    and

    η,σIθ1,θ2ω2,ω4ψ(x,y):=η1θ1σ1θ2Γ(θ1)Γ(θ2)(I R)ω2xω4ttη1[tηxη]1θ1sσ1[sσyσ]1θ2ψ(t,s)dtds,x<ω2,y<ω4.

    We have now established a new type of double fractional integral operators under cr-order that generalize various existing operators by specifying different sorts of functions.

    Definition 2.4. Let ζ:[ω1,ω2]R be a increasing and positive monotone function on (ω1,ω2], having a continuous derivative on (ω1,ω2), and let κ:[ω3,ω4]R be a increasing and positive monotone function on (ω3,ω4], having a continuous derivative on (ω3,ω4). Let ψIR([ω1,ω2]×[ω3,ω4]). The fractional integral operators for interval-valued functions of two variables are defined by

    Jθ1,θ2ω1+,ω3+;ζ,κψ(x,y):=1Γ(θ1)Γ(θ2)(I R)xω1yω3ζ(t)[ζ(x)ζ(t)]1θ1κ(s)[κ(y)κ(s)]1θ2ψ(t,s)dtds,x>ω1,y>ω3,Jθ1,θ2ω1+,ω4;ζ,κψ(x,y):=1Γ(θ1)Γ(θ2)(I R)xω1ω4yζ(t)[ζ(x)ζ(t)]1θ1κ(s)[κ(s)κ(y)]1θ2ψ(t,s)dtds,x>ω1,y<ω4,Jθ1,θ2ω2,ω3+;ζ,κψ(x,y):=1Γ(θ1)Γ(θ2)(I R)ω2xyω3ζ(t)[ζ(t)ζ(x)]1θ1κ(s)[κ(y)κ(s)]1θ2ψ(t,s)dtds,x<ω2,y>ω3,

    and

    Jθ1,θ2ω2,ω4;ζ,κψ(x,y):=1Γ(θ1)Γ(θ2)(I R)ω2xω4yζ(t)[ζ(t)ζ(x)]1θ1κ(s)[κ(s)κ(y)]1θ2ψ(t,s)dtds,x<ω2,y<ω4

    for θ1,θ2>0.

    Similar to the preceding definitions, we can provide the following integrals:

    Jθ1ω1+;ζψ(x,ω3+ω42):=1Γ(θ1)(I R)xω1ζ(t)[ζ(x)ζ(t)]1θ1ψ(t,ω3+ω42)dt,x>ω1,Jθ1ω2;ζψ(x,ω3+ω42):=1Γ(θ1)(I R)ω2xζ(t)[ζ(t)ζ(x)]1θ1ψ(t,ω3+ω42)dt,x<ω2,Jθ2ω3+;κψ(ω1+ω22,y):=1Γ(θ2)(I R)yω3κ(t)[κ(y)κ(s)]1θ2ψ(ω1+ω22,s)ds,y>ω3,

    and

    Jθ2ω4;κψ(ω1+ω22,y):=1Γ(θ2)(I R)yω3κ(t)[κ(s)κ(y)]1θ2ψ(ω1+ω22,s)ds,y<ω4.

    Next, according to the definition provided by the authors [17,18], we discuss the bidimensional convexity via classical and interval order relation.

    Definition 2.5. [17] Let ψ:Ω=[ω1,ω2]×[ω3,ω4]R2R+ be a two-variable convex function if

    ψ(s1ω1+(1s1)ω2,r1ω3+(1r1)ω4)r1s1ψ(ω1,ω3)+s1(1r1)ψ(ω1,ω4)+r1(1s1)ψ(ω2,ω3)+(1s1)(1r1)ψ(ω2,ω4)

    holds true for every (ω1,ω2),(ω3,ω4)Ω along with r1,s1[0,1].

    Definition 2.6. [18] Let ψ:Ω=[ω1,ω2]×[ω3,ω4]R2Ri+ be a two-variable set-valued convex mapping defined as ψ=[ψ_(ω,Ω),¯ψ(ω,Ω)] with 0ω1<ω2,0ω3<ω4, then we have

    ψ(s1ω1+(1s1)ω2,r1ω3+(1r1)ω4)r1s1ψ(ω1,ω3)+s1(1r1)ψ(ω1,ω4)+r1(1s1)ψ(ω2,ω3)+(1s1)(1r1)ψ(ω2,ω4)

    holds true for every (ω1,ω2),(ω3,ω4)Ω along with r1,s1[0,1].

    Definition 2.7. [52] Let ψ:Ω=[ω1,ω2]×[ω3,ω4]R2Ri+ be a two-variable set-valued strongly convex mapping defined as ψ=[ψ_(ω,Ω),¯ψ(ω,Ω)] with 0ω1<ω2,0ω3<ω4 and κ1,κ2 are positive real numbers, then we have

    ψ(s1ω1+(1s1)ω2,r1ω3+(1r1)ω4)r1s1ψ(ω1,ω3)+s1(1r1)ψ(ω1,ω4)+r1(1s1)ψ(ω2,ω3)+(1s1)(1r1)ψ(ω2,ω4)κ1s1(1s1)(ω1ω2)22κ2r1(1r1)(ω3ω4)2

    holds true for every (ω1,ω2),(ω3,ω4)Ω along with r1,s1[0,1].

    Definition 2.8. [46] Let ψ:Ω=[ω1,ω2]Ri+ be a ivfs defined as ψ=[ψ_(ω),¯ψ(ω)] with 0ω1<ω2. Then ψ is cr-convex if

    ψ(r1ω1+(1r1)ω2)crr1ψ(ω1)+(1r1)ψ(ω2)

    holds true for every (ω1,ω2)Ω along with r1[0,1].

    Motivated by the aforementioned definitions, we now effectively extend Definition 2.8 into R2 by the use of cr-order.

    Definition 2.9. Let ψ:Ω=[ω1,ω2]×[ω3,ω4]R2Ri+ be a two-variable set-valued cr convex mapping defined as ψ=[ψ_(ω,Ω),¯ψ(ω,Ω)] with 0ω1<ω2,0ω3<ω4, then we have

    ψ(s1ω1+(1s1)ω2,r1ω3+(1r1)ω4)crr1s1ψ(ω1,ω3)+s1(1r1)ψ(ω1,ω4)+r1(1s1)ψ(ω2,ω3)+(1s1)(1r1)ψ(ω2,ω4)

    holds true for every (ω1,ω2),(ω3,ω4)Ω along with r1,s1[0,1].

    Remark 2.2. (1) If ψ_¯ψ, we have Definition 2, as stated by Zhao et al. in [18] and Definition 6, as stated by Khan et al. in [53].

    (2) If ψ_=¯ψ, we have Definition 2.1, as stated by Silvestru Sever in [17].

    Example 2.1. Let ψ:[ω1,ω2]×[ω3,ω4]R2Ri+ be a two variable set-valued function defined as (see Figure 1)

    ψ=[ω2Ω210e5ωΩ+17e4ωΩ+7,2ω2+2Ω2+12e5ωΩ+1+10e4ωΩ+9],(ω,Ω)[1,1]×[1,1]. (2.2)
    Figure 1.  pictorial view of the cr set-valued function ψ.

    Then (see Figure 2),

    ψc=ω2+Ω2+2e5ωΩ+1+3e4ωΩ+162andψr=3ω2+3Ω2+22e5ωΩ+1+17e4ωΩ+22. (2.3)
    Figure 2.  pictorial view of the cr set-valued functions ψc and ψr.

    In this section, we first show that double integral preserves cr-order, and then we show that the newly developed mappings after we apply cr-order, including midpoint and center, are both convex in nature. Finally, we developed different variants of double inequalities that generalize various previous findings.

    Theorem 3.1. Let ψ,ϕ:[ω1,ω2]×[ω3,ω4]Rc given by ϕ=[ϕ_(ω,Ω),¯ϕ(ω,Ω)], and ψ=[ψ_(ω,Ω),¯ψ(ω,Ω)]. If ψ,ϕ IR([ω1,ω2]×[ω3,ω4]), and ψ(ω,Ω)crϕ(ω,Ω) for all ω,Ω[ω1,ω2]×[ω3,ω4]Rc, then

    Δψ(ω,Ω)dA=ω2ω1ω4ω3ψ(ω,Ω)dωdΩcrω2ω1ω4ω3ϕ(ω,Ω)dωdΩ.

    Proof. Since ψ(ω,Ω)crϕ(ω,Ω) for all ω,Ω[ω1,ω2]×[ω3,ω4]Rc, then we have

    {ψc(ω,Ω)crϕc(ω,Ω), ifψc(ω,Ω)ϕc(ω,Ω),ψr(ω,Ω)crϕr(ω,Ω), ifψr(ω,Ω)ϕr(ω,Ω).

    Since ψ,ϕ IR([ω1,ω2]×[ω3,ω4]), by Theorem 2.1, we have ψ_(ω,Ω),¯ψ(ω,Ω),ϕ_(ω,Ω),¯ϕ(ω,Ω)IR([ω1,ω2]×[ω3,ω4]). When ψc(ω,Ω)ϕc(ω,Ω),ω,Ω[ω1,ω2]×[ω3,ω4], then

    ω2ω1ω4ω3(ψ_(ω,Ω)+¯ψ(ω,Ω))dωdΩω2ω1ω4ω3(ϕ_(ω,Ω)+¯ϕ(ω,Ω))dωdΩ.

    That is

    ω2ω1ω4ω3ψ(ω,Ω)dωdΩcrω2ω1ω4ω3ϕ(ω,Ω)dωdΩ.

    When ψc(ω,Ω)=ϕc(ω,Ω),ω,Ω[ω1,ω2]×[ω3,ω4], then

    ω2ω1ω4ω3(¯ψ(ω,Ω)ψ_(ω,Ω))dωdΩω2ω1ω4ω3(¯ϕ(ω,Ω)ϕ_(ω,Ω))dωdΩ.

    That is

    ω2ω1ω4ω3ψ(ω,Ω)dωdΩcrω2ω1ω4ω3ϕ(ω,Ω)dωdΩ.

    This completes the proof.

    Now, we have defined a coordinated strongly convex mapping utilizing the center-radius ordering relation.

    Definition 3.1. Let ψ:Ω=[ω1,ω2]×[ω3,ω4]R2Ri+ be a two-variable cr set-valued strongly convex mapping defined as ψ=[ψ_(ω,Ω),¯ψ(ω,Ω)] with 0ω1<ω2,0ω3<ω4 and κ1,κ2 are positive real numbers, then we have

    ψ(s1ω1+(1s1)ω2,r1ω3+(1r1)ω4)crr1s1ψ(ω1,ω3)+s1(1r1)ψ(ω1,ω4)+r1(1s1)ψ(ω2,ω3)+(1s1)(1r1)ψ(ω2,ω4)κ1s1(1s1)(ω1ω2)22κ2r1(1r1)(ω3ω4)2

    holds true for every (ω1,ω2),(ω3,ω4)Ω along with r1,s1[0,1].

    Proposition 3.1. Let ψ:Ω=[ω1,ω2]×[ω3,ω4]R2Ri+ be a two-variable set-valued function represented as ψ=[ψ_(ω,Ω),¯ψ(ω,Ω)] with 0ω1<ω2,0ω3<ω4 and κ1,κ2. Then ψ is set-valued cr-strongly convex iff ψc and ψr are strongly convex functions.

    Proof. As ψc and ψr are strongly coordinated convex in nature, then for all (ω1,ω2),(ω3,ω4)[0,1]×[0,1], we have

    ψc(s1ω1+(1s1)ω2,r1ω3+(1r1)ω4)crr1s1ψc(ω1,ω3)+s1(1r1)ψc(ω1,ω4)+r1(1s1)ψc(ω2,ω3)+(1s1)(1r1)ψ(ω2,ω4)κ1s1(1s1)(ω1ω2)22κ2r1(1r1)(ω3ω4)2,

    and

    ψr(s1ω1+(1s1)ω2,r1ω3+(1r1)ω4)crr1s1ψr(ω1,ω3)+s1(1r1)ψc(ω1,ω4)+r1(1s1)ψr(ω2,ω3)+(1s1)(1r1)ψ(ω2,ω4)κ1s1(1s1)(ω1ω2)22κ2r1(1r1)(ω3ω4)2.

    Now, if

    ψc(s1ω1+(1s1)ω2,r1ω3+(1r1)ω4)r1s1ψc(ω1,ω3)+s1(1r1)ψc(ω1,ω4)+r1(1s1)ψc(ω2,ω3)+(1s1)(1r1)ψ(ω2,ω4)κ1s1(1s1)(ω1ω2)22κ2r1(1r1)(ω3ω4)2.

    This implies

    ψc(s1ω1+(1s1)ω2,r1ω3+(1r1)ω4)crr1s1ψc(ω1,ω3)+s1(1r1)ψc(ω1,ω4)+r1(1s1)ψc(ω2,ω3)+(1s1)(1r1)ψ(ω2,ω4)κ1s1(1s1)(ω1ω2)22κ2r1(1r1)(ω3ω4)2.

    Otherwise, we have

    ψr(s1ω1+(1s1)ω2,r1ω3+(1r1)ω4)r1s1ψr(ω1,ω3)+s1(1r1)ψc(ω1,ω4)+r1(1s1)ψr(ω2,ω3)+(1s1)(1r1)ψ(ω2,ω4)κ1s1(1s1)(ω1ω2)22κ2r1(1r1)(ω3ω4)2.

    This implies

    ψr(s1ω1+(1s1)ω2,r1ω3+(1r1)ω4)crr1s1ψr(ω1,ω3)+s1(1r1)ψc(ω1,ω4)+r1(1s1)ψr(ω2,ω3)+(1s1)(1r1)ψ(ω2,ω4)κ1s1(1s1)(ω1ω2)22κ2r1(1r1)(ω3ω4)2.

    This can be summed up as follows using the Definition 3.1 and the previously mentioned results:

    ψ(s1ω1+(1s1)ω2,r1ω3+(1r1)ω4)crr1s1ψ(ω1,ω3)+s1(1r1)ψ(ω1,ω4)+r1(1s1)ψ(ω2,ω3)+(1s1)(1r1)ψ(ω2,ω4)κ1s1(1s1)(ω1ω2)22κ2r1(1r1)(ω3ω4)2.

    This concludes the proof.

    In this section, we employ coordinated center and radius order relations to create various new bounds for double inequality. Let ψIR([ω1,ω2]×[ω3,ω4]). First, we specify the functions that will be utilized frequently:

    ψ1(ω,Ω)=ψ(ω1+ω2ω,Ω),ψ2(ω,Ω)=ψ(ω,ω3+ω4Ω),ψ3(ω,Ω)=ψ(ω1+ω2ω,ω3+ω4Ω),G(ω,Ω)=ψ(ω,Ω)+ψ2(ω,Ω),H(ω,Ω)=ψ(ω,Ω)+ψ1(ω,Ω),K(ω,Ω)=ψ1(ω,Ω)+ψ3(ω,Ω),L(ω,Ω)=ψ2(ω,Ω)+ψ3(ω,Ω),F(ω,Ω)=ψ1(ω,Ω)+ψ2(ω,Ω)+ψ3(ω,Ω)+ψ(ω,Ω)=G(ω,Ω)+H(ω,Ω)+K(ω,Ω)+L(ω,Ω)2.

    Theorem 3.2. Let ζ:[ω1,ω2]R be a increasing and positive monotone function on (ω1,ω2], having a continuous derivative on (ω1,ω2), and let κ:[ω3,ω4]R be a increasing and positive monotone function on (ω3,ω4], having a continuous derivative on (ω3,ω4). Let ψIR([ω1,ω2]×[ω3,ω4]), then for θ1,θ2>0 the following Hermite-Hadamard-type relation hold:

    4ψ(ω1+ω22,ω3+ω42)crΓ(θ1+1)Γ(θ2+1)4[ζ(ω2)ζ(ω1)]θ1[κ(ω4)κ(ω3)]θ2×[Jθ1,θ2ω1+,ω3+;ζ,κψ(ω2,ω4)+Jθ1,θ2ω1+,ω4;ζ,κψ(ω2,ω3)+Jθ1,θ2ω2,ω3+;ζ,κψ(ω1,ω4)+Jθ1,θ2ω2,ω4;ζ,κψ(ω1,ω3)]crψ(ω1,ω3)+ψ(ω1,ω4)+ψ(ω2,ω3)+ψ(ω2,ω4). (3.1)

    Proof. As ψ represents a set-valued coordinated cr-convex mapping on Δ, we have

    ψ(κ1+κ22,κ3+κ42)crψ(κ1,κ3)+ψ(κ1,κ4)+ψ(κ3,κ1)+ψ(κ2,κ4)4, (3.2)

    for (κ1,κ3),(κ2,κ4)Δ. Now, for t,s[0,1], let κ1=tω1+(1t)ω2,κ2=(1t)ω1+tω2,κ3=ω3s+(1s)ω4, and κ4=(1s)ω3+sω4. Then, we have

    4ψ(ω1+ω22,ω3+ω42)crψ(tω1+(1t)ω2,sω3+(1s)ω4)+ψ(tω1+(1t)ω2,(1s)ω3+sω4)+ψ((1t)ω1+tω2,sω3+(1s)ω4)+ψ((1t)ω1+tω2,(1s)ω3+sω4). (3.3)

    Multiply the above relation by ζ((1t)ω1+tω2)[ζ(ω2)ζ((1t)ω1+tω2)]1θ1κ((1s)ω3+sω4)[κ(ω4)κ((1s)ω3+sω4)]1θ2, then integrate the resulting relation with respect to t,s over [0,1]×[0,1], we get

    (ω2ω1)(ω4ω3)Γ(θ1)Γ(θ2)ψ(ω1+ω22,ω3+ω42)(I R)1010[ζ((1t)ω1+tω2)[ζ(ω2)ζ((1t)ω1+tω2)]1θ1κ((1s)ω3+sω4)[κ(ω4)κ((1s)ω3+sω4)]1θ2]dtdscr(ω2ω1)(ω4ω3)4Γ(θ1)Γ(θ2)(I R)1010[ζ((1t)ω1+tω2)[ζ(ω2)ζ((1t)ω1+tω2)]1θ1κ((1s)ω3+sω4)[κ(ω4)κ((1s)ω3+sω4)]1θ2ψ(tω1+(1t)ω2,sω3+(1s)ω4)]dtds+(ω2ω1)(ω4ω3)4Γ(θ1)Γ(θ2)( IR)1010[ζ((1t)ω1+tω2)[ζ(ω2)ζ((1t)ω1+tω2)]1θ1κ((1s)ω3+sω4)[κ(ω4)κ((1s)ω3+sω4)]1θ2ψ(tω1+(1t)ω2,(1s)ω3+sω4)]dtds+(ω2ω1)(ω4ω3)4Γ(θ1)Γ(θ2)(I R)1010[ζ((1t)ω1+tω2)[ζ(ω2)ζ((1t)ω1+tω2)]1θ1κ((1s)ω3+sω4)[κ(ω4)κ((1s)ω3+sω4)]1θ2ψ((1t)ω1+tω2,sω3+(1s)ω4)]dtds+(ω2ω1)(ω4ω3)4Γ(θ1)Γ(θ2)(I R)1010[ζ((1t)ω1+tω2)[ζ(ω2)ζ((1t)ω1+tω2)]1θ1κ((1s)ω3+sω4)[κ(ω4)κ((1s)ω3+sω4)]1θ2ψ((1t)ω1+tω2,(1s)ω3+sω4)]dtds.

    Using basic computation, we have

    (I R)1010ζ((1t)ω1+tω2)[ζ(ω2)ζ((1t)ω1+tω2)]1θ1κ((1s)ω3+sω4)[κ(ω4)κ((1s)ω3+sω4)]1θ2dtds=[ζ(ω2)ζ(ω1)]θ1[κ(ω4)κ(ω3)]θ2θ1θ2(ω2ω1)(ω4ω3).

    Making use of the variable change τ=(1t)ω1+tω2 and η=(1s)ω3+sω4, we obtain

    [ζ(ω2)ζ(ω1)]θ1[κ(ω4)κ(ω3)]θ2Γ(θ1+1)Γ(θ2+1)ψ(ω1+ω22,ω3+ω42)cr14Γ(θ1)Γ(θ2)(I R)ω2ω1ω4ω3ζ(τ)[ζ(ω2)ζ(τ)]1θ1κ(η)[κ(ω4)κ(η)]1θ2ψ(ω1+ω2τ,ω3+ω4η)dηdτ+14Γ(θ1)Γ(θ2)(I R)ω2ω1ω4ω3ζ(τ)[ζ(ω2)ζ(τ)]1θ1κ(η)[κ(ω4)κ(η)]1θ2ψ(ω1+ω2τ,η)dηdτ+14Γ(θ1)Γ(θ2)(I R)ω2ω1ω4ω3ζ(τ)[ζ(ω2)ζ(τ)]1θ1κ(η)[κ(ω4)κ(η)]1θ2ψ(τ,ω3+ω4η)dηdτ+14Γ(θ1)Γ(θ2)(I R)ω4ω1ω4ω3ζ(τ)[ζ(ω2)ζ(τ)]1θ1κ(η)[κ(ω4)κ(η)]1θ2ψ(τ,η)dηdτ=14[Jθ1,θ2ω1+,ω3+;ζ,κψ3(ω2.ω4)+Jθ1,θ2ω1+,ω3+:ζ,κψ1(ω2.ω4)+Jθ1,θ2ω1+,ω3+;ζ,κψ2(ω2.ω4)+Jθ1,θ2ω1+,ω3+;ζ,κψ(ω2,ω4)]=14Jθ1,θ2ω1+,ω3+;ζ,κψ(ω2,ω4). (3.4)

    That is, we have

    [ζ(ω2)ζ(ω1)]θ1[κ(ω4)κ(ω3)]θ2Γ(θ1+1)Γ(θ2+1)ψ(ω1+ω22,ω3+ω42)cr14Jθ1,θ2ω1+,ω3+;ζ,κψ(ω2,ω4). (3.5)

    In a similar manner, multiplying (3.3) on both sides by

    (ω2ω1)(ω4ω3)Γ(θ1)Γ(θ2)ζ((1t)ω1+tω2)[ζ(ω2)ζ((1t)ω1+tω2)]1θ1κ((1s)ω3+sω4)[κ((1s)ω3+sω4)κ(ω3)]1θ2,

    and by integrating the above relation across [0,1]×[0,1], we get

    [ζ(ω2)ζ(ω1)]θ1[κ(ω4)κ(ω3)]θ2Γ(θ1+1)Γ(θ2+1)ψ(ω1+ω22,ω3+ω42)cr14Jθ1,θ2ω1+,ω4;ζ,κψ(ω2,ω3). (3.6)

    Moreover, multiplying both sides of (3.3) by

    (ω2ω1)(ω4ω3)Γ(θ1)Γ(θ2)ζ((1t)ω1+tω2)[ζ((1t)ω1+tω2)ζ(ω1)]1θ1κ((1s)ω3+sω4)[κ(ω4)κ((1s)ω3+sω4)]1θ2,

    and

    (ω2ω1)(ω4ω3)Γ(θ1)Γ(θ2)ζ((1t)ω1+tω2)[ζ((1t)ω1+tω2)ζ(ω1)]1θ1κ((1s)ω3+sω4)[κ((1s)ω3+sω4)κ(ω3)]1θ2,

    then incorporating the aforementioned relation with reference to t,s across [0,1]×[0,1], we get

    [ζ(ω2)ζ(ω1)]θ1[κ(ω4)κ(ω3)]θ2Γ(θ1+1)Γ(θ2+1)ψ(ω1+ω22,ω3+ω42)cr14Jθ1,θ2ω2,ω3+;ζ,κψ(ω1,ω4), (3.7)

    and

    [ζ(ω2)ζ(ω1)]θ1[κ(ω4)κ(ω3)]θ2Γ(θ1+1)Γ(θ2+1)ψ(ω1+ω22,ω3+ω42)cr14Jθ1,θ2ω2,ω4;ζ,κψ(ω1,ω3), (3.8)

    respectively.

    Summing the relations (3.5) to (3.8), we have

    ψ(ω1+ω22,ω3+ω42)crΓ(θ1+1)Γ(θ2+1)16[ζ(ω2)ζ(ω1)]θ1[κ(ω4)κ(ω3)]θ2×[Jθ1,θ2ω1+,ω3+;ζ,κψ(ω2,ω4)+Jθ1,θ2ω2,ω3+;ζ,κψ(ω1,ω3)+Jθ1,θ2ω2,ω3+;ζ,κψ(ω1,ω4)+Jθ1,θ2ω2,ω4;ζ,κψ(ω1,ω3)]. (3.9)

    This concludes the demonstration of the first part of relation in (3.1). To prove the second part in (3.1), again taking into account bidimensional convex mappings, we have

    ψ(tω1+(1t)ω2,sω3+(1s)ω4)+ψ(tω1+(1t)ω2,(1s)ω3+sω4)+ψ((1t)ω1+tω2,sω3+(1s)ω4)+ψ((1t)ω1+tω2,(1s)ω3+sω4)crψ(ω1,ω3)+ψ(ω1,ω4)+ψ(ω2,ω3)+ψ(ω2,ω4). (3.10)

    Multiplying both sides of (3.10) by

    (ω2ω1)(ω4ω3)Γ(θ1)Γ(θ2)ζ((1t)ω1+tω2)[ζ(ω2)ζ((1t)ω1+tω2)]1θ1κ((1s)ω3+sω4)[κ(ω4)κ((1s)ω3+sω4)]1θ2,

    then incorporating the aforementioned relation with reference to t,s across [0,1]×[0,1], we get

    (ω2ω1)(ω4ω3)Γ(θ1)Γ(θ2)(I R)1010[ζ((1t)ω1+tω2)[ζ(ω2)ζ((1t)ω1+tω2)]1θ1κ((1s)ω3+sω4)[κ(ω4)κ((1s)ω3+sω4)]1θ2ψ(tω1+(1t)ω2,sω3+(1s)ω4)]dtds+(ω2ω1)(ω4ω3)Γ(θ1)Γ(θ2)(I R)1010[ζ((1t)ω1+tω2)[ζ(ω2)ζ((1t)ω1+tω2)]1θ1κ((1s)ω3+sω4)[κ(ω4)κ((1s)ω3+sω4)]1θ2ψ(tω1+(1t)ω2,(1s)ω3+sω4)]dtds+(ω2ω1)(ω4ω3)Γ(θ1)Γ(θ2)(I R)1010[ζ((1t)ω1+tω2)[ζ(ω2)ζ((1t)ω1+tω2)]1θ1κ((1s)ω3+sω4)[κ(ω4)κ((1s)ω3+sω4)]1θ2ψ((1t)ω1+tω2,sω3+(1s)ω4)]dtds+(ω2ω1)(ω4ω3)Γ(θ1)Γ(θ2)1010[ζ((1t)ω1+tω2)[ζ(ω2)ζ((1t)ω1+tω2)]1θ1κ((1s)ω3+sω4)[κ(ω4)κ((1s)ω3+sω4)]1θ2ψ((1t)ω1+tω2,(1s)ω3+sω4)]dtds2(ω2ω1)(ω4ω3)Γ(θ1)Γ(θ2)[ψ(ω1,ω3)+ψ(ω1,ω4)+ψ(ω2,ω3)+ψ(ω2,ω4)]×(I R)10ζ((1t)ω1+tω2)[ζ(ω2)ζ((1t)ω1+tω2)]1θ1κ((1s)ω3+sω4)[κ(ω4)κ((1s)ω3+sω4)]1θ2dtds.

    Then, we get

    Jθ1,θ2ω1+,ω3+;ζ,κψ3(ω2.ω4)+Jθ1,θ2ω1+,ω3+;ζ,κψ1(ω2.ω4)+Jθ1,θ2ω1+,ω3+;ζ,κψ2(ω2.ω4)+Jθ1,θ2ω1+,ω3+;ζ,κψ(ω2,ω4)cr[ψ(ω1,ω3)+ψ(ω1,ω4)+ψ(ω2,ω3)+ψ(ω2,ω4)][ζ(ω2)ζ(ω1)]θ1[κ(ω4)κ(ω3)]θ2Γ(θ1+1)Γ(θ2+1), (3.11)

    that is,

    Γ(θ1+1)Γ(θ2+1)[ζ(ω2)ζ(ω1)]θ1[κ(ω4)κ(ω3)]θ2Jθ1,θ2ω1+,ω3+;ζ,κψ(ω2,ω4)crψ(ω1,ω3)+ψ(ω1,ω4)+ψ(ω2,ω3)+ψ(ω2,ω4). (3.12)

    Similarly, multiplying both sides of (3.10) by

    (ω2ω1)(ω4ω3)Γ(θ1)Γ(θ2)ζ((1t)ω1+tω2)[ζ(ω2)ζ((1t)ω1+tω2)]1θ1κ((1s)ω3+sω4)[κ((1s)ω3+sω4)κ(ω3)]1θ2,(ω2ω1)(ω4ω3)Γ(θ1)Γ(θ2)ζ((1t)ω1+tω2)[ζ((1t)ω1+tω2)ζ(ω1)]1θ1κ((1s)ω3+sω4)[κ(ω4)κ((1s)ω3+sω4)]1θ2,

    and

    (ω2ω1)(ω4ω3)Γ(θ1)Γ(θ2)ζ((1t)ω1+tω2)[ζ((1t)ω1+tω2)ζ(ω1)]1θ1κ((1s)ω3+sω4)[κ((1s)ω3+sω4)κ(ω3)]1θ2,

    and then incorporating the aforementioned relation with reference to \mathtt{t, s} across [0, 1] \times[0, 1] , we get

    \begin{align} &\quad \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)\\ & \preceq_{\mathtt{\mathtt{cr}}} \psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4), \\ \\ &\quad \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)\\ & \preceq_{\mathtt{\mathtt{cr}}} \psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4), \end{align} (3.13)

    and

    \begin{align} &\quad\frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \mathsf{J}_{{\omega_2}-, {\omega_3}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\\ & \preceq_{\mathtt{\mathtt{cr}}} \psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4). \end{align} (3.14)

    By adding the relations (3.12) to (3.14), we have

    \begin{align} &\quad \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \\ &\quad \times\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta \cdot \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} 4[\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)] . \end{align} (3.15)

    Dividing both sides of relation (3.15) by 16 yields the second relation in (3.1). This concludes the proof.

    Remark 3.1. The relationship for set-valued Riemann-Liouville integrals is as follows if we take into account \zeta(\omega) = \omega and \kappa(\Omega) = \Omega with \underline{\psi}\neq \overline{\psi} in Theorem 3.2:

    \begin{align*} & 4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ \supseteq&\frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{(\omega_2-\omega_1)^{{\theta_1}}(\omega_4-\omega_3)^{{\theta_2}}}\\ &\left[\mathcal{J}_{{\omega_1}+, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathcal{J}_{{\omega_1}+, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)+\mathcal{J}_{{\omega_2}-, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathcal{J}_{{\omega_2}-, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ \supseteq&{\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)}, \end{align*}

    which was proved by the authors in [54].

    Remark 3.2. The relationship for Riemann integrals is as follows if we take into account \zeta(\omega) = \omega and \kappa(\Omega) = \Omega, \, {{{{\theta_1}}}} = {{{{\theta_2}}}} = 1 with \underline{\psi}\neq \overline{\psi} in Theorem 3.2:

    \begin{align*} & 4{{\psi}}\left(\frac{{{\omega_1}}+{{\omega_2}}}{2}, \frac{{{\omega_3}}+{{\omega_4}}}{2}\right) \\ \supseteq & \frac{4}{({{\omega_2}}-{{\omega_1}})({{\omega_4}}-{{\omega_3}})} \int_{{\omega_1}}^{{\omega_2}} \int_{{\omega_3}}^{{\omega_4}} {{\psi}}(\omega, \Omega) \mathrm{d} \Omega \mathrm{d} \omega \\ \supseteq &{{{\psi}}({{\omega_1}}, {{\omega_3}})+{{\psi}}({{\omega_2}}, {{\omega_3}})+{{\psi}}({{\omega_1}}, {{\omega_4}})+{{\psi}}({{\omega_2}}, {{\omega_4}})}, \end{align*}

    which was proved by the authors in [18].

    Remark 3.3. The relationship for Riemann-Liouville integrals is as follows if we take into account \zeta(\omega) = \omega and \kappa(\Omega) = \Omega with \underline{\psi} = \overline{\psi} in Theorem 3.2:

    \begin{align*} & \quad 4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \leq \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{(\omega_2-\omega_1)^{{\theta_1}}(\omega_4-\omega_3)^{{\theta_2}}}\\ &\quad\left[\mathcal{J}_{{\omega_1}+, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathcal{J}_{{\omega_1}+, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)+\mathcal{J}_{{\omega_2}-, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathcal{J}_{{\omega_2}-, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \leq{\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)}, \end{align*}

    which was proved by the authors in [55].

    Remark 3.4. The relationship for fractional integrals is as follows if we take into account \underline{\psi} = \overline{\psi} in Theorem 3.2:

    \begin{align*} \label{f990} &\quad 4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \nonumber\\ & \leq\frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \nonumber\\ &\quad \times\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \nonumber\\ & \leq{\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)}. \end{align*}

    which was proved by the authors in [34].

    Remark 3.5. The relationship for Riemann integrals is as follows if we take into account \zeta(\omega) = \omega and \kappa(\Omega) = \Omega, \, {{{{\theta_1}}}} = {{{{\theta_2}}}} = 1 with \underline{\psi}\neq \overline{\psi} in Theorem 3.2, which was proved by the authors in [53].

    Corollary 3.1. The relationship for Hadamard fractional integrals is as follows if we take into account \zeta(\omega) = \ln\omega and \kappa(\Omega) = \ln\Omega in Theorem 3.2:

    \begin{align*} & \quad 4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{cr}}\frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4\left[\ln \omega_2- \ln \omega_1 \right]^{{\theta_1}} \left[\ln \omega_4-\ln \omega_3 \right]^{{\theta_2}}}\\ &\quad\left[\mathfrak{G}_{{\omega_1}+, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathfrak{G}_{{\omega_1}+, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)\right. \left.+\mathfrak{G}_{{\omega_2}-, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathfrak{G}_{{\omega_2}-, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{cr}}{\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)} . \end{align*}

    Corollary 3.2. The relationship for Katugampola fractional integrals is as follows if we take into account \zeta(\omega) = \frac{{\omega}^\mathtt{p}}{\eta} and \kappa(\Omega) = \frac{{\Omega}^\sigma}{\sigma}, \eta, \sigma > 0 in Theorem 3.2:

    \begin{align*} & 4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{cr}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1) \eta^{{\theta_1}} \sigma^{{\theta_2}}}{4\left[{\omega_2}^\eta-{\omega_1}^\eta\right]^{{\theta_1}}\left[{\omega_4}^\sigma-{\omega_3}^\sigma\right]^{{\theta_2}}}\nonumber\\& \quad\left[{}^{\eta, \sigma} \mathsf{I}_{{\omega_1}+, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+{}^{\eta, \sigma} \mathsf{I}_{{\omega_1}+, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)\right.\left.+{}^{\eta, \sigma} \mathsf{I}_{{\omega_2}-, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+{}^{\eta, \sigma} \mathsf{I}_{{\omega_2}-, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{cr}} {\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)} . \end{align*}

    Example 3.1. Let \psi(\omega, \Omega) = \left[24e^{ \omega}+24e^{ \Omega}+4e^{{ \Omega} { \omega}}+ 144, 216e^{ \omega}+216e^{ \Omega}+36e^{{ \Omega} { \omega}}+ 1296\right], [\omega_1, \omega_2] = [0, 1], [\omega_3, \omega_4] = [0, 1], \theta_1 = \theta_2 = 1 , \zeta(\omega) = \ln\omega and \kappa(\Omega) = \ln\Omega , then we have

    \begin{align*} & \quad \psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \approx[88.4109, 351.0176], \\ & \quad\frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{16[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \nonumber\\ & \quad\times\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)\right. \left.+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right]\nonumber\\ & \approx[117.4421, 557.1243], \\ &\quad \frac{\psi(\omega_2, \omega_3)+\psi(\omega_1, \omega_3)+\psi(\omega_2, \omega_4)+\psi(\omega_1, \omega_4)}{4} \approx[123.5321, 741.1931] . \end{align*}

    Thus,

    [88.4109, 351.0176] \preceq_{\mathtt{cr}}[117.4421, 557.1243] \preceq_{\mathtt{cr}}[123.5321, 741.1931].

    As a result, Theorem 3.2 holds true.

    Theorem 3.3. Considering the same hypotheses that were considered in Theorem 3.2, we get the following center-radius order relationships:

    \begin{align} &\quad 4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{2[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right)\right] \\ &\quad +\frac{\Gamma({{\theta_2}}+1)}{2[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \\ & \quad\times\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta \cdot \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta \cdot \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_3)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_4)\right] \\ & \quad+\frac{\Gamma({{\theta_2}}+1)}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \mathcal{G}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_3)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \mathcal{G}(\omega_2, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} {\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)}. \end{align} (3.16)

    Proof. As \psi is a bidimesional convex on \Delta , if we have the mapping \sigma_{\mathtt{x}}^1:[\omega_3, \omega_4] \rightarrow \mathsf{R}, \sigma_{\mathtt{x}}^1(\mathtt{y}) = \psi(\mathtt{x}, \mathtt{y}) , then \sigma_{\mathtt{x}}^1(\mathtt{y}) is convex \forall x \in[\omega_1, \omega_2] and \mathcal{H}_{\mathtt{x}}^1(\mathtt{y}) = \sigma_{\mathtt{x}}^1(\mathtt{y})+\widetilde{\sigma_{\mathtt{x}}^1}(\mathtt{y}) = \psi(\mathtt{x}, \mathtt{y})+\psi_2(\mathtt{x}, \mathtt{y}) = \mathcal{G}(\mathtt{x}, \mathtt{y}), then for the convex mapping \sigma_{\mathtt{x}}^1(\mathtt{y}) , we have

    \begin{align*} & \quad\sigma_{\mathtt{x}}^1\left(\frac{\omega_3+\omega_4}{2}\right)\\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_2}}+1)}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \mathcal{H}_{\mathtt{x}}^1(\omega_4)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \mathcal{H}_{\mathtt{x}}^1(\omega_3)\right]\\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\sigma_{\mathtt{x}}^1(\omega_3)+\sigma_{\mathtt{x}}^1(\omega_4)}{2}, \end{align*}

    that is,

    \begin{align} &\quad \psi\left(\mathtt{x}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{{{\theta_2}}}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \\ &\quad\left[(\operatorname{I R}) \int_{\omega_3}^{\omega_4} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\omega_4)-\kappa(\mathtt{y})]^{1-{{\theta_2}}}} \mathcal{C}(\mathtt{x}, \mathtt{y}) \mathtt{d y}+(\operatorname{I R}) \int_{\omega_3}^{\omega_4} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\mathtt{y})-\kappa(\omega_3)]^{1-{{\theta_2}}}} \mathcal{C}(\mathtt{x}, \mathtt{y}) \mathtt{dy}\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi(\mathtt{x}, \omega_3)+\psi(\mathtt{x}, \omega_4)}{2} . \end{align} (3.17)

    Multiplying the relation (3.17) by

    \frac{{{\theta_1}}}{[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\omega_2)-\zeta(\mathtt{x})]^{1-{{\theta_1}}}},

    and

    \frac{{{\theta_1}}}{[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\mathtt{x})-\zeta(\omega_1)]^{1-{{\theta_1}}}}.

    Next, we obtain by integrating the given results from \omega_1 to \omega_2 with regard to \mathtt{x} .

    \begin{align} & \quad\frac{\Gamma(\theta_1+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}} \mathsf{J}_{{\omega_1}+; \zeta}^{\theta_1} \psi\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1) \Gamma(\theta_2+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}[\kappa(\omega_4)-\kappa(\omega_3)]^{\theta_2}}\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{\theta_1, {\theta_2}} \mathcal{C}(\omega_2, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{\theta_1, {\theta_2}} \mathcal{G}(\omega_2, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1)}{2[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{\theta_1} \psi(\omega_2, \omega_3)+\mathsf{J}_{{\omega_1}+; \zeta}^{\theta_1} \psi(\omega_2, \omega_4)\right], \end{align} (3.18)

    and

    \begin{align} & \quad\frac{\Gamma(\theta_1+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}} \mathsf{J}_{{\omega_2}-; \zeta}^{\theta_1} \psi\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1) \Gamma(\theta_2+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}[\kappa(\omega_4)-\kappa(\omega_3)]^{\theta_2}}\left[\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{\theta_1, {\theta_2}} \mathcal{G}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta, \kappa}^{\theta_1, {\theta_2}} \mathcal{G}(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1)}{2[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}}\left[\mathsf{J}_{{\omega_2}-; \zeta}^{\theta_1} \psi(\omega_1, \omega_3)+\mathsf{J}_{{\omega_2}-; \zeta}^{\theta_1} \psi(\omega_1, \omega_4)\right], \end{align} (3.19)

    respectively.

    Also, if we define another mapping \sigma_{\mathtt{x}}^2:[\omega_3, \omega_4] \rightarrow \mathsf{R}, \sigma_{\mathtt{x}}^2(\mathtt{y}) = \psi_1(\mathtt{x, y}) , then \sigma_{\mathtt{x}}^2(\mathtt{y}) is convex \forall x \in[\omega_1, \omega_2] and \mathcal{H}_\mathtt{x}^2(\mathtt{y}) = \psi_1(\mathtt{x, y})+\psi_3(\mathtt{x, y}) = \mathcal{K}(\mathtt{x, y}) , then for the convex function \sigma_{\mathtt{x}}^2(\mathtt{y}) , we have

    \begin{align*} &\quad\sigma_{\mathtt{x}}^2\left(\frac{\omega_3+\omega_4}{2}\right) \\ &\preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_2+1)}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{\theta_2}}\left[\mathsf{J}_{{\omega_3}+; \kappa} \mathcal{H}_\mathtt{x}^2( \omega_4)+\mathsf{J}_{{\omega_4}-; \kappa} \mathcal{H}_\mathtt{x}^2( \omega_3)\right]\\ &\preceq_{\mathtt{\mathtt{cr}}} \frac{\sigma_{\mathtt{x}}^2( \omega_3)+\sigma_{\mathtt{x}}^2( \omega_4)}{2}, \end{align*}

    that is,

    \begin{align} &\quad \psi_1\left(\mathtt{x}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{{\theta_2}}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{\theta_2}}\\ &\quad \left[(\operatorname{I R}) \int_{\omega_3}^{\omega_4} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\omega_4)-w(\mathtt{y})]^{1-{\theta_2}}} \mathcal{K}(\mathtt{x, y}) \mathtt{y}+(\operatorname{I R}) \int_{\omega_3}^{\omega_4} \frac{{\kappa}^{\prime}(\mathtt{y})}{[w(\mathtt{y})-\kappa(\omega_3)]^{1-{\theta_2}}} \mathcal{K}(\mathtt{x, y}) \mathtt{dy}\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi_1(\mathtt{x}, \omega_3)+\psi_1(\mathtt{x}, \omega_4)}{2} . \end{align} (3.20)

    Similarly, multiplying the relation (3.20) by

    \frac{{\theta_1}}{[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\omega_2)-\zeta(\mathtt{x})]^{1-{\theta_1}}},

    and

    \frac{{\theta_1}}{[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\mathtt{x})-\zeta(\omega_1)]^{1-{\theta_1}}}.

    Therefore, from \omega_1 to \omega_2 , integrating the acquired output with reference to \mathtt{x} , we obtain

    \begin{align} & \quad\frac{\Gamma(\theta_1+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}} \mathsf{J}_{{\omega_1}+; \zeta}^{\theta_1} \psi_1\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1) \Gamma(\theta_2+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}[\kappa(\omega_4)-\kappa(\omega_3)]^{\theta_2}}\left[\mathsf{J}_{{\omega_1}+, , {\omega_3}+; \zeta, \kappa}^{\theta_1, {\theta_2}} \mathcal{K}(\omega_2, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{\theta_1, {\theta_2}} \mathcal{K}(\omega_2, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1)}{2[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{\theta_1} \psi_1(\omega_2, \omega_3)+\mathsf{J}_{{\omega_1}+; \zeta}^{\theta_1} \psi_1(\omega_2, \omega_4)\right], \end{align} (3.21)

    and

    \begin{align} & \quad\frac{\Gamma(\theta_1+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}} \mathsf{J}_{{\omega_2}-; \zeta}^{\theta_1} \psi_1\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1) \Gamma(\theta_2+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}[\kappa(\omega_4)-\kappa(\omega_3)]^{\theta_2}}\left[\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{\theta_1, {\theta_2}} \mathcal{K}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta, \kappa}^{\theta_1, {\theta_2}} \mathcal{K}(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1)}{2[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}}\left[\mathsf{J}_{{\omega_2}-; \zeta}^{\theta_1} \psi_1(\omega_1, \omega_3)+\mathsf{J}_{{\omega_2}-; \zeta}^{\theta_1} \psi_1(\omega_1, \omega_4)\right], \end{align} (3.22)

    respectively.

    Moreover, if we have mapping {\sigma_{\mathtt{y}}}^1:[\omega_1, \omega_2] \rightarrow \mathsf{R}, {\sigma_{\mathtt{y}}}^1(\mathtt{x}) = \psi(\mathtt{x, y}) , then {\sigma_{\mathtt{y}}}^1(\mathtt{x}) is convex for all \forall \mathtt{y}\in[\omega_3, \omega_4] and \mathcal{H}_y^1(\mathtt{x}) = {\sigma_{\mathtt{y}}}^1(\mathtt{x})+\widetilde{{\sigma_{\mathtt{y}}}^1}(\mathtt{x}) = \psi(\mathtt{x, y})+\psi_1(\mathtt{x, y}) = \mathcal{H}(\mathtt{x, y}) , then for the convex function {\sigma_{\mathtt{y}}}^1(\mathtt{x}) , we have

    \begin{align*} & \quad{\sigma_{\mathtt{y}}}^1\left(\frac{\omega_1+\omega_2}{2}\right)\\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{\theta_1} \mathcal{H}_y^1(\omega_2)+\mathsf{J}_{{\omega_2}-; \kappa}^{\theta_1} \mathcal{H}_y^1(\omega_1)\right]\\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{{\sigma_{\mathtt{y}}}^1(\omega_1)+{\sigma_{\mathtt{y}}}^1(\omega_2)}{2}, \end{align*}

    that is,

    \begin{align} &\quad \psi\left(\frac{\omega_1+\omega_2}{2}, \mathtt{y}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{{\theta_1}}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}}\\ &\quad \left[(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\omega_1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}} \mathcal{H}(\mathtt{x, y}) \mathtt{dx}+(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\mathtt{x})-\zeta(\omega_1)]^{1-{\theta_1}}} \mathcal{H}(\mathtt{x, y}) \mathtt{dx}\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi(\omega_1, \mathtt{y})+\psi(\omega_2, \mathtt{y})}{2} . \end{align} (3.23)

    Multiplying the relation (3.23) by

    \begin{align} \frac{{\theta_2}}{[\kappa(\omega_4)-\kappa(\omega_3)]^{\theta_2}} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\omega_4)-w(\mathtt{y})]^{1-{\theta_2}}}, \end{align} (3.24)

    and

    \begin{align} \frac{{\theta_2}}{[\kappa(\omega_4)-\kappa(\omega_3)]^{\theta_2}} \frac{{\kappa}^{\prime}(\mathtt{y})}{[w(\mathtt{y})-\kappa(\omega_3)]^{1-{\theta_2}}}. \end{align} (3.25)

    Next, by integrating the known findings from \omega_3 to \omega_4 with respect to \mathtt{y} , we derive the subsequent relation:

    \begin{align} & \quad\frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_1}+, , {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_1, \omega_4)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_2}}+1)}{2[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi(\omega_1, \omega_4)+\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi(\omega_2, \omega_4)\right], \end{align} (3.26)

    and

    \begin{align} & \quad\frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_2}}+1)}{2[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi(\omega_1, \omega_3)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi(\omega_2, \omega_3)\right], \end{align} (3.27)

    respectively.

    Furthermore, if we have mapping {\sigma_{\mathtt{y}}}^2:[\omega_1, \omega_2] \rightarrow \mathsf{R}, {\sigma_{\mathtt{y}}}^2(\mathtt{x}) = \psi_2(\mathtt{x}, \mathtt{y}) , then {\sigma_{\mathtt{y}}}^2(\mathtt{x}) is convex for all \mathtt{y}\in[\omega_3, \omega_4] and \mathcal{H}_{\mathtt{y}}^2(\mathtt{x}) = {\sigma_{\mathtt{y}}}^2(\mathtt{x})+\widetilde{{\sigma_{\mathtt{y}}}^2}(\mathtt{x}) = \psi_2(\mathtt{x}, \mathtt{y})+\psi_3(\mathtt{x}, \mathtt{y}) = \mathcal{L}(\mathtt{x}, \mathtt{y}) , the for the convex mapping {\sigma_{\mathtt{y}}}^2(\mathtt{x}) , we have

    {\sigma_{\mathtt{y}}}^2\left(\frac{\omega_1+\omega_2}{2}\right) \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}_{\mathtt{y}}^2(\omega_2)+\mathsf{J}_{{\omega_2}-; \kappa}^{{\theta_1}} \mathcal{H}_{\mathtt{y}}^2(\omega_1)\right] \preceq_{\mathtt{\mathtt{cr}}} \frac{{\sigma_{\mathtt{y}}}^2(\omega_1)+{\sigma_{\mathtt{y}}}^2(\omega_2)}{2},

    that is,

    \begin{align} & \quad\psi_2\left(\frac{\omega_1+\omega_2}{2}, \mathtt{y}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{{{\theta_1}}}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\\ &\quad \left[(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\omega_2)-\zeta(\mathtt{x})]^{1-{{\theta_1}}}} \mathcal{L}(\mathtt{x}, \mathtt{y}) \mathtt{dx}+(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\mathtt{x})-\zeta(\omega_1)]^{1-{{\theta_1}}}} \mathcal{L}(\mathtt{x}, \mathtt{y}) \mathtt{dx}\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi_2(\omega_1, \mathtt{y})+\psi_2(\omega_2, \mathtt{y})}{2} . \end{align} (3.28)

    Multiplying the relations (3.28) by

    \frac{{{\theta_2}}}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\omega_4)-\kappa(\mathtt{y})]^{1-{{\theta_2}}}},

    and

    \frac{{{\theta_2}}}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\mathtt{y})-\kappa(\omega_3)]^{1-{{\theta_2}}}},

    subsequently integrating the established findings from \omega_3 to \omega_4 with respect to \mathtt{y} , we derive the following relations:

    \begin{align} &\quad \frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_1, \omega_4)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_2}}+1)}{2[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi(\omega_1, \omega_4)+\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi(\omega_2, \omega_4)\right], \end{align} (3.29)

    and

    \begin{align} &\quad \frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta \cdot \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_2}}+1)}{2[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi(\omega_1, \omega_3)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi(\omega_2, \omega_3)\right], \end{align} (3.30)

    respectively.

    Again, if we define the mapping {\sigma_{\mathtt{y}}}^2:[\omega_1, \omega_2] \rightarrow \mathsf{R}, {\sigma_{\mathtt{y}}}^2(\mathtt{x}) = \psi_2(\mathtt{x}, \mathtt{y}) , then {\sigma_{\mathtt{y}}}^2(\mathtt{x}) is convex \forall \mathtt{y} \in[\omega_3, \omega_4] and \mathcal{H}_{\mathtt{y}}^2(\mathtt{x}) = {\sigma_{\mathtt{y}}}^2(\mathtt{x})+\widetilde{{\sigma_{\mathtt{y}}}^2}(\mathtt{x}) = \psi_2(\mathtt{x}, \mathtt{y})+\psi_3(\mathtt{x}, \mathtt{y}) = \mathcal{L}(\mathtt{x}, \mathtt{y}) , then for the convex mapping {\sigma_{\mathtt{y}}}^2(\mathtt{x}) , we have

    \begin{align*} {\sigma_{\mathtt{y}}}^2\left(\frac{\omega_1+\omega_2}{2}\right) &\preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}_{\mathtt{y}}^2(\omega_2)+\mathsf{J}_{{\omega_2}-; \kappa}^{{\theta_1}} \mathcal{H}_{\mathtt{y}}^2(\omega_1)\right] \\ &\preceq_{\mathtt{\mathtt{cr}}} \frac{{\sigma_{\mathtt{y}}}^2(\omega_1)+{\sigma_{\mathtt{y}}}^2(\omega_2)}{2}, \end{align*}

    that is,

    \begin{align} &\quad \psi_2\left(\frac{\omega_1+\omega_2}{2}, \mathtt{y}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{{{\theta_1}}}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\\ &\quad \left[(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\omega_2)-\zeta(\mathtt{x})]^{1-{{\theta_1}}}} \mathcal{L}(\mathtt{x}, \mathtt{y}) \mathtt{dx}+(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\mathtt{x})-\zeta(\omega_1)]^{1-{{\theta_1}}}} \mathcal{L}(\mathtt{x}, \mathtt{y}) \mathtt{dx}\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi_2(\omega_1, \mathtt{y})+\psi_2(\omega_2, \mathtt{y})}{2} . \end{align} (3.31)

    Similarly, multiplying the relations (3.31) by

    \frac{{{\theta_2}}}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\omega_4)-\kappa(\mathtt{y})]^{1-{{\theta_2}}}},

    and

    \frac{{{\theta_2}}}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\mathtt{y})-\kappa(\omega_3)]^{1-{{\theta_2}}}},

    upon integrating the acquired outcomes concerning \mathtt{y} between \omega_3 and \omega_4 , we derive the subsequent relationships:

    \begin{align} & \quad\frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi_2\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{L}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{L}(\omega_1, \omega_4)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_2}}+1)}{2[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi_2(\omega_1, \omega_4)+\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi_2(\omega_2.\omega_4)\right], \end{align} (3.32)

    and

    \begin{align} &\quad \frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi_2\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{L}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta \cdot \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{L}(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_2}}+1)}{2[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi_2(\omega_1, \omega_3)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi_2(\omega_2, \omega_3)\right], \end{align} (3.33)

    respectively.

    Summing the relations (3.18), (3.19), (3.21), (3.22), (3.26), (3.27)–(3.30) and (3.33), we have the following result:

    \begin{align*} &\quad \frac{\Gamma({{\theta_1}}+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{\omega_1+\zeta}^{{\theta_1}} \psi\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right)+\mathsf{J}_{\omega_2-\zeta}^{{\theta_1}} \psi\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right)\right. \\ & \quad\left.+\mathsf{J}_{\omega_1+\zeta}^{{\theta_1}} \psi_1\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right)+\mathsf{J}_{\omega_2-\zeta}^{{\theta_1}} \psi_1\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right)\right] \\ &\quad +\frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right)\right. \\ & \quad\left.+\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi_2\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi_2\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \\ &\quad \times\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{G}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{G}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{G}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}-: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{G}(\omega_1, \omega_3)\right. \\ &\quad +\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{K}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{K}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_3}+: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{K}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}-: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{K}(\omega_1, \omega_3) \\ & \quad+\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_4}-: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_1, \omega_3) \\ &\quad \left.+\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{L}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_3}+: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{L}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{L}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_4}-: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{L}(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{2[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{\omega_1+\zeta}^{{\theta_1}} \psi(\omega_2, \omega_3)+\mathsf{J}_{\omega_1+\zeta}^{{\theta_1}} \psi(\omega_2, \omega_4)+\mathsf{J}_{\omega_2-\zeta}^{{\theta_1}} \psi(\omega_1, \omega_3)+\mathsf{J}_{\omega_2-\zeta}^{{\theta_1}} \psi(\omega_1, \omega_4)\right. \\ &\quad \left.+\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \psi_1(\omega_2, \omega_3)+\mathsf{J}_{\omega_1+\zeta}^{{\theta_1}} \psi_1(\omega_2.\omega_4)+\mathsf{J}_{\omega_2- \zeta}^{{\theta_1}} \psi_1(\omega_1, \omega_3)+\mathsf{J}_{\omega_2-\zeta}^{{\theta_1}} \psi_1(\omega_1, \omega_4)\right] \\ & \quad+\frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi(\omega_1, \omega_4)+\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi(\omega_2, \omega_4)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi(\omega_1, \omega_3)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi(\omega_2, \omega_3)\right. \\ & \quad\left.+\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi_2(\omega_1, \omega_4)+\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi_2(\omega_2.\omega_4)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi_2(\omega_1, \omega_3)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi_2(\omega_2, \omega_3)\right] . \end{align*}

    That is, we have

    \begin{align*} & \quad\frac{\Gamma({{\theta_1}}+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right)\right] \\ & \quad+\frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right)+\mathsf{J}_{{\omega_4}-;, \kappa}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{2[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \\ &\quad \times\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+;, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_3}+;, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}+;, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{2[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_3)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_4)\right] \\ & \quad+\frac{\Gamma({{\theta_2}}+1)}{2[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+;, \kappa}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_3}+;, \kappa}^{{\theta_2}} \mathcal{G}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_3)+\mathsf{J}_{\omega_4-\kappa;, }^{{\theta_2}} \mathcal{G}(\omega_2, \omega_3)\right]. \end{align*}

    This concludes the verification of relations second and third in (3.16). On the other hand, for symmetric function, we have the following relation:

    \begin{align} \psi\left(\frac{\omega_1+\omega_2}{2}\right) & \preceq_{\mathtt{\mathtt{cr}}} \frac{{{\theta_1}}}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\omega_2)-\zeta(\mathtt{x})]^{{\theta_1}}}[\psi(\mathtt{x})+\psi(\omega_1+\omega_2-\mathtt{x})] \mathtt{dx}\right. \\ & \quad\left.+\int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\mathtt{x})-\zeta(\omega_1)]^{{\theta_1}}}[\psi(\mathtt{x})+\psi(\omega_1+\omega_2-\mathtt{x})] \mathtt{dx}\right] . \end{align} (3.34)

    As \psi is set-valued bidimensional convex on \Delta , by using relation (3.34), we obtain

    \begin{align} &\quad\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{{{\theta_1}}}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\omega_2)-\zeta(\mathtt{x})]^{{\theta_1}}}\left[\psi\left(\mathtt{x}, \frac{\omega_3+\omega_4}{2}\right)+\psi\left(\omega_1+\omega_2-\mathtt{x}, \frac{\omega_3+\omega_4}{2}\right)\right] \mathtt{dx}\right. \\ & \quad\left.+(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\mathtt{x})-\zeta(\omega_1)]^{{\theta_1}}}\left[\psi\left(\mathtt{x}, \frac{\omega_3+\omega_4}{2}\right)+\psi\left(\omega_1+\omega_2-\mathtt{x}, \frac{\omega_3+\omega_4}{2}\right)\right] \mathtt{dx}\right] \\ & = \frac{\Gamma({{\theta_1}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{\omega_1+\zeta}^{{\theta_1}} \mathcal{H}\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right)\right], \end{align} (3.35)

    and similarly, we have

    \begin{align} & \quad\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{{{\theta_2}}}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[(\operatorname{I R}) \int_{\omega_3}^{\omega_4} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\omega_4)-\kappa(\mathtt{y})]^{{\theta_1}}}\left[\psi\left(\frac{\omega_1+\omega_2}{2}, \mathtt{y}\right)+\psi\left(\frac{\omega_1+\omega_2}{2}, \omega_3+\omega_4-\mathtt{y}\right)\right] \mathtt{dy}\right. \\ & \quad\left.+(\operatorname{I R}) \int_{\omega_3}^{\omega_4} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\mathtt{y})-\kappa(\omega_3)]^{{\theta_1}}}\left[\psi\left(\frac{\omega_1+\omega_2}{2}, \mathtt{y}\right)+\psi\left(\frac{\omega_1+\omega_2}{2}, \omega_3+\omega_4-\mathtt{y}\right)\right] \mathtt{dy}\right] \\ & = \frac{\Gamma({{\theta_2}}+1)}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right)\right] . \end{align} (3.36)

    Combining the relations (3.35) and (3.36), we obtain the first relation in (3.16). For the second relation, we following double relation:

    \begin{align} & \quad\frac{{{\theta_1}}}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\omega_2)-\zeta(\mathtt{x})]^{{\theta_1}}}[\psi(\mathtt{x})+\psi(\omega_1+\omega_2-\mathtt{x})] \mathtt{dx}\right. \\ & \quad\left.+(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\mathtt{x})-\zeta(\omega_1)]^{{\theta_1}}}[\psi(\mathtt{x})+\psi(\omega_1+\omega_2-\mathtt{x})] \mathtt{dx}\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi(\omega_1)+\psi(\omega_2)}{2} . \end{align} (3.37)

    By using relation (3.37), we obtain the following relations:

    \begin{align} & \frac{\Gamma({{\theta_1}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_3)\right] \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi(\omega_1, \omega_3)+\psi(\omega_2, \omega_3)}{2}, \\ & \frac{\Gamma({{\theta_1}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_4)\right] \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_4)}{2}, \\ & \frac{\Gamma({{\theta_2}}+1)}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_3)\right] \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)}{2}, \end{align} (3.38)

    and

    \begin{align} \frac{\Gamma({{\theta_2}}+1)}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \mathcal{G}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \mathcal{G}(\omega_2, \omega_3)\right] \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)}{2} . \end{align} (3.39)

    Combining the relations (3.38) to (3.39), we obtain the last relation in (3.16). This completes the proof.

    Remark 3.6. If we consider \zeta(\mathtt{t}) = \mathtt{t} and \kappa(\mathtt{s}) = \mathtt{s} in Theorem 3.3, then we obtain the following relationship for Riemann-Liouville integrals:

    \begin{align*} & \quad4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{(\omega_2-\omega_1)^{{\theta_1}}}\left[\mathcal{J}_{\omega_1+}^{{\theta_1}} \psi\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right)+\mathcal{J}_{\omega_2-}^{{\theta_1}} \psi\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right)\right] \\ & \quad+\frac{\Gamma({{\theta_2}}+1)}{(\omega_4-\omega_3)^{{\theta_2}}}\left[\mathcal{J}_{\omega_3+}^{{\theta_2}} \psi\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right)+\mathcal{J}_{\omega_4-}^{{\theta_2}} \psi\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4(\omega_2-\omega_1)^{{\theta_1}}(\omega_4-\omega_3)^{{\theta_2}}}\\ &\quad\left[\mathcal{J}_{{\omega_1}+, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathcal{J}_{{\omega_1}+, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)+\mathcal{J}_{{\omega_2}-, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathcal{J}_{{\omega_2}-, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{2(\omega_2-\omega_1)^{{\theta_1}}}\left[\mathcal{J}_{\omega_1+}^{{\theta_1}} \psi(\omega_2, \omega_3)+\mathcal{J}_{\omega_1+}^{{\theta_1}} \psi(\omega_2, \omega_4)+\mathcal{J}_{\omega_2-}^{{\theta_1}} \psi(\omega_1, \omega_3)+\mathcal{J}_{\omega_2-}^{{\theta_1}} \psi(\omega_1, \omega_4)\right] \\ &\quad +\frac{\Gamma({{\theta_2}}+1)}{2(\omega_4-\omega_3)^{{\theta_2}}}\left[\mathcal{J}_{\omega_3+}^{{\theta_2}} \psi(\omega_1, \omega_4)+\mathcal{J}_{\omega_3+}^{{\theta_2}} \psi(\omega_2, \omega_4)+\mathcal{J}_{\omega_4-}^{{\theta_2}} \psi(\omega_1, \omega_3)+\mathcal{J}_{\omega_4-}^{{\theta_2}} \psi(\omega_2, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} {\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)}. \end{align*}

    Corollary 3.3. If we consider \zeta(\mathtt{t}) = \mathtt{t} and \kappa(\mathtt{s}) = \mathtt{s} in Theorem 3.3, then we obtain the following relationship for Hadamard integrals:

    \begin{align*} &\quad 4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{2\left[\ln\omega_2-\ln\omega_1\right]^{{\theta_1}}}\left[\mathfrak{G}_{\omega_1+}^{{\theta_1}} \mathcal{H}\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right)+\mathfrak{G}_{\omega_2-}^{{\theta_1}} \mathcal{H}\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right)\right] \\ &\quad +\frac{\Gamma({{\theta_2}}+1)}{2\left[\ln\omega_4-\ln\omega_3 \right]^{{\theta_2}}}\left[\mathfrak{G}_{\omega_3+}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right)+\mathfrak{G}_{\omega_4-}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right)\right]\\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4\left[\ln\omega_2-\ln\omega_1 \right]^{{\theta_1}}\left[\ln\omega_4-\ln\omega_3 \right]^{{\theta_2}}}\\ &\quad\left[\mathfrak{G}_{{\omega_1}+, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathfrak{G}_{{\omega_1}+, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)+\right. \left.\mathfrak{G}_{{\omega_2}-, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathfrak{G}_{{\omega_2}-, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{4\left[\ln\omega_2-\ln\omega_1 \right]^{{\theta_1}}}\left[\mathfrak{T}_{\omega_1+}^{{\theta_1}} \mathcal{H}(\omega_2, \omega_3)+\mathfrak{G}_{\omega_1+}^{{\theta_1}} \mathcal{H}(\omega_2.\omega_4)+\mathfrak{G}_{\omega_2-}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_3)+\mathfrak{G}_{\omega_2-}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_4)\right] \\ &\quad +\frac{\Gamma({{\theta_2}}+1)}{4\left[\ln\omega_4-\ln\omega_3 \right]^{{\theta_2}}}\left[\mathfrak{G}_{\omega_3+}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_4)+\mathfrak{G}_{\omega_3+}^{{\theta_2}} \mathcal{G}(\omega_2.\omega_4)+\mathfrak{G}_{\omega_4-}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_3)+\mathfrak{G}_{\omega_4-}^{{\theta_2}} \mathcal{G}(\omega_2, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} {\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)} . \end{align*}

    Corollary 3.4. If we consider \zeta(\mathtt{t}) = \frac{{\mathtt{t}}^\eta}{\eta} and \kappa(\mathtt{s}) = \frac{{\mathtt{s}}^\sigma}{\sigma} in Theorem 3.3, then we obtain the following relationship for Katugampola integrals:

    \begin{align*} & \quad4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \eta^{{\theta_1}}}{2\left[{\omega_2}^\eta-{\omega_1}^\eta\right]^{{\theta_1}}}\left[{}_{\mathsf{I}_{\omega_1+}^{{\theta_1}}} \mathcal{H}\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right)+{}^\eta \mathsf{I}_{\omega_2-}^{{\theta_1}} \mathcal{H}\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right)\right] \\ & \quad+\frac{\Gamma({{\theta_2}}+1) \sigma^{{\theta_2}}}{2\left[{\omega_4}^\sigma-{\omega_3}^\sigma\right]^{{\theta_2}}}\left[{}^\sigma \mathsf{I}_{\omega_3+}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right)+{}^\sigma \mathsf{I}_{\omega_4-}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1) \eta^{{\theta_1}} \sigma^{{\theta_2}}}{4\left[{\omega_2}^\eta-{\omega_1}^\eta\right]^{{\theta_1}}\left[{\omega_4}^\sigma-{\omega_3}^\sigma\right]^{{\theta_2}}}\\ &\quad \left[{}^{\eta, \sigma} \mathsf{I}_{{\omega_1}+, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+{}^{\eta, \sigma} \mathsf{I}_{{\omega_1}+, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)\right.\left.+{}^{\eta, \sigma} \mathsf{I}_{{\omega_2}-, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+{}^{\eta, \sigma} \mathsf{I}_{{\omega_2}-, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \eta^{{\theta_1}} \sigma^{{\theta_2}}}{4\left[b^\eta-a^\eta\right]^{{\theta_1}}}\left[{}^\eta \mathsf{I}_{\omega_1+}^{{\theta_1}} \mathcal{H}(\omega_2, \omega_3)+{}^\eta \mathsf{I}_{\omega_1+}^{{\theta_1}} \mathcal{H}(\omega_2.\omega_4)+{}^\eta \mathsf{I}_{\omega_2-}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_3)+{}^\eta \mathsf{I}_{\omega_2-}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_4)\right] \\ &\quad +\frac{\Gamma({{\theta_2}}+1) \sigma^{{\theta_2}}}{4\left[{\omega_4}^\sigma-{\omega_3}^\sigma\right]^{{\theta_2}}}\left[{}^\sigma \mathsf{I}_{\omega_3+}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_4)+{}^\sigma \mathsf{I}_{\omega_3+}^{{\theta_2}} \mathcal{G}(\omega_2.\omega_4)+{}^\sigma \mathsf{I}_{\omega_4-}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_3)+{}^\sigma \mathsf{I}_{\omega_4-}^{{\theta_2}} \mathcal{G}(\omega_2, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} {\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)} . \end{align*}

    Coordinated convex functions apply the concept of convexity to functions defined as a product of intervals, allowing for more detailed analysis in multivariable settings. The conclusion of these functions focuses on their integral inequalities and applications in mathematical analysis. These functions enable the application of mathematical inequalities that are essential for analyzing and ensuring the stability, optimality, and control of complex systems. In this paper, we develop various novel bounds and refinements for weighted Hermite-Hadamard inequalities as well as their product form by employing new types of fractional integral operators under a cr-order relation. Additionally, we demonstrate that by means of coordinated center-radius order relations for these integral operators, various new findings can be obtained for Katugampola and Hadamard integrals operators. Furthermore, we show that this type of order relation preserves the integral structure. In addition, as a distinct characteristic from pictorial view, we show that this order is convex in nature, whereas inclusion order is non-convex. A number of interesting examples are presented in support of the major findings. It will be interesting in the future if readers take motivation from these findings and construct results using Itô's lemma as well as quantum calculas, multiplicative calculas, fuzzy order relations, and various other fractional integrals.

    Additionally, in a very recent study, Afzal et al. [56,57] developed results using a new approach; more specifically, they used tensor Hilbert spaces and variable exponent spaces, which is an extremely new approach to Hermite-Hadamard inequality and its related results. We also suggest readers extend these results in the sense of these spaces that utilize a variety of convex mappings under norm structures and modular function spaces that have not been initiated yet for coordinated convexity of any kind.

    W. Afzal: Conceptualization, Data curation, Writing-original draft, Funding acquisition, Investigation, Visualization; M. Abbas: Conceptualization, Formal analysis, Writing-original draft, Supervision, Validation, Writing-review & editing; J. Ro: Investigation, Project administration, Visualization; K. H. Hakami: Data curation, Formal analysis, Methodology; H. Zogan: Methodology, Project administration, Software. All authors have read and approved the final version of the manuscript for publication.

    This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2022R1A2C2004874), and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20214000000280).

    The authors declare that they have no competing interests.



    [1] C. Truong, L. Oudre, N. Vayatis, Selective review of offline change point detection methods, Signal Process., 167 (2020), 107299. https://doi.org/10.1016/j.sigpro.2019.107299 doi: 10.1016/j.sigpro.2019.107299
    [2] K. A. Blount, L. Rush, Chaos theory, Entangled Crush, 2021.
    [3] B. Davies, Exploring chaos: theory and experiment, Studies in Nonlinearity, CRC Press, 2018. https://doi.org/10.1201/9780429502866
    [4] D. Feldman, Chaos and dynamical systems, Princeton University Press, 2019. https://doi.org/10.1515/9780691189390
    [5] A. Musaev, D. Grigoriev, Analyzing, modeling, and utilizing observation series correlation in capital markets, Computation, 9 (2021), 88. https://doi.org/10.3390/computation9080088 doi: 10.3390/computation9080088
    [6] H. Wold, A study in the analysis of stationary time series, 2 Eds., Almqvist & Wiksell, 1954.
    [7] S. Aminikhanghahi, D. J. Cook, A survey of methods for time series change point detection, Knowl. Inf. Syst., 51 (2017), 339–367. https://doi.org/10.1007/s10115-016-0987-z doi: 10.1007/s10115-016-0987-z
    [8] B. Namoano, A. Starr, C. Emmanouilidis, R. C. Cristobal, Online change detection techniques in time series: an overview, 2019 IEEE International Conference on Prognostics and Health Management (ICPHM), 2019. https://doi.org/10.1109/ICPHM.2019.8819394
    [9] Mario Krause, Unsupervised Change Point Detection for heterogeneous sensor signals, arXiv Press, 2023. https://doi.org/10.48550/arXiv.2305.11976
    [10] F. Li, G. C. Runger, E. Tuv, Supervised learning for change-point detection, Int. J. Prod. Res., 44 (2006), 2853–2868. https://doi.org/10.1080/00207540600669846 doi: 10.1080/00207540600669846
    [11] A. Musaev, A. Makshanov, D. Grigoriev, The genesis of uncertainty: structural analysis of stochastic chaos in finance markets, Complexity, 2023 (2023), 1–16. https://doi.org/10.1155/2023/1302220 doi: 10.1155/2023/1302220
    [12] R. M. Yusupov, A. A. Musaev, D. A. Grigoriev, Evaluation of statistical forecast method efficiency in the conditions of dynamic chaos, 2021 IV International Conference on Control in Technical Systems (CTS), 2021,178–180. https://doi.org/10.1109/CTS53513.2021.9562780
    [13] A. Musaev, D. Grigoriev, Numerical studies of statistical management decisions in conditions of stochastic chaos, Mathematics, 10 (2022), 226. https://doi.org/10.3390/math10020226 doi: 10.3390/math10020226
    [14] S. C. Huang, P. J. Chuang, C. F. Wu, H. J. Lai, Chaos-based support vector regressions for exchange rate forecasting, Expert Syst. Appl., 37 (2010), 8590–8598. https://doi.org/10.1016/j.eswa.2010.06.001 doi: 10.1016/j.eswa.2010.06.001
    [15] A. Özkaya, Chaotic dynamics in Turkish foreign exchange markets, Bus. Manag. Stud. Int. J., 10 (2022), 787–795.
    [16] A. Das, P. Das, Chaotic analysis of the foreign exchange rates, Appl. Math. Comput., 185 (2007), 388–396. https://doi.org/10.1016/j.amc.2006.06.106 doi: 10.1016/j.amc.2006.06.106
    [17] E. E. Peters, Fractal market analysis: applying chaos theory to investment and economics, Wiley, 1994.
    [18] E. E. Peters, Chaos and order in the capital markets: a new view of cycles, prices, and market volatility, 2 Eds., John Wiley & Sons, 1996.
    [19] M. Basseville, I. V. Nikiforov, Detection of abrupt changes: theory and applications (Translated from English), Prentice-Hall, Inc., 1993.
    [20] A. Aue, L. Horváth, Structural breaks in time series, J. Time Ser. Anal., 34 (2013), 1–16. https://doi.org/10.1111/j.1467-9892.2012.00819.x doi: 10.1111/j.1467-9892.2012.00819.x
    [21] A. N. Shiryaev, Stochastic disorder problems, Moscow Center for Continuous Mathematical Education (MCNMO), 2019.
    [22] Y. G. Sinai, Probability theory: an introductory course, Springer Berlin, Heidelberg, 1992. https://doi.org/10.1007/978-3-662-02845-2
    [23] M. C. Meyer, Probability and mathematical statistics: theory, applications, and practice in R, SIAM, 2019. https://doi.org/10.1137/1.9781611975789
    [24] M. Aloud, E. Tsang, R. Olsen, A. Dupuis, A directional-change event approach for studying financial time series, Economics, 6 (2012), 1–17, https://doi.org/10.5018/economics-ejournal.ja.2012-36 doi: 10.5018/economics-ejournal.ja.2012-36
    [25] A. Musaev, A. Makshanov, D. Grigoriev, Algorithms of sequential identification of system components in chaotic processes, Int. J. Dyn. Control, 11 (2023), 2566–2579. https://doi.org/10.1007/s40435-023-01121-9 doi: 10.1007/s40435-023-01121-9
    [26] T. G. Kang, P. D. Anderson, The effect of inertia on the flow and mixing characteristics of a chaotic serpentine mixer, Micromachines, 5 (2014), 1270–1286. https://doi.org/10.3390/mi5041270 doi: 10.3390/mi5041270
    [27] A. Musaev, A. Makshanov, D. Grigoriev, Exploring the quotation inertia in international currency markets, Computation, 11 (2023), 209. https://doi.org/10.3390/computation11110209 doi: 10.3390/computation11110209
    [28] A. Musaev, D. Grigoriev, Multi-expert systems: Fundamental concepts and application examples, J. Theor. Appl. Inf. Technol., 100 (2022), 336–348.
    [29] Z. Ivanovski, N. Ivanovska, Z. Narasanov, The regression analysis of stock returns at MSE, J. Mod. Account. Audit., 12 (2016), 217–224. https://doi.org/10.17265/1548-6583/2016.04.003 doi: 10.17265/1548-6583/2016.04.003
    [30] J. Fang, Why logistic regression analyses are more reliable than multiple regression analyses, J. Bus. Econ., 4 (2013), 620–633.
    [31] A. Musaev, A. Makshanov, D. Grigoriev, Statistical analysis of current financial instrument quotes in the conditions of market chaos, Mathematics, 10 (2022), 587. https://doi.org/10.3390/math10040587 doi: 10.3390/math10040587
    [32] R. F. Engle, C. W. J. Granger, Co-integration and error correction: Representation, estimation, and testing, Econometrica, 55 (1987), 251–276. https://doi.org/10.2307/1913236 doi: 10.2307/1913236
    [33] C. W. J. Granger, Some properties of time series data and their use in econometric model specification, J. Econometrics, 16 (1981), 121–130. https://doi.org/10.1016/0304-4076(81)90079-8 doi: 10.1016/0304-4076(81)90079-8
    [34] L. J. Fogel, A. J. Owens, M. J. Walsh, Artificial intelligence through simulated evolution, John Wiley & Sons, 1966.
    [35] A. Musaev, A. Makshanov, D. Grigoriev, Evolutionary optimization of control strategies for non-stationary immersion environments, Mathematics, 10 (2022), 1797. https://doi.org/10.3390/math10111797 doi: 10.3390/math10111797
    [36] M. A. Junior, P. Appiahene, O. Appiah, C. N. Bombie, Forex market forecasting using machine learning: Systematic literature review and meta-analysis, J. Big Data, 10 (2023), 9. https://doi.org/10.1186/s40537-022-00676-2 doi: 10.1186/s40537-022-00676-2
    [37] A. A. Baasher, M. W. Fakhr, Forex trend classification using machine learning techniques, Proceedings of the 11th WSEAS international conference on Applied computer science, Stevens Point, WI, USA: World Scientific and Engineering Academy and Society (WSEAS), 1 (2011), 41–47.
    [38] A. Musaev, E. Borovinskaya, Prediction in chaotic environments based on weak Musaev quadratic classifiers, Symmetry, 12 (2020), 1630. https://doi.org/10.3390/sym12101630 doi: 10.3390/sym12101630
    [39] A. Musaev, A. Makshanov, D. Grigoriev, Forecasting multivariate chaotic processes with precedent analysis, Computation, 9 (2021), 110. https://doi.org/10.3390/computation9100110 doi: 10.3390/computation9100110
    [40] V. Niederhoffer, L. Kenner, Practical speculation, Wiley, 2005.
    [41] J. Chen, Essentials of technical analysis for financial markets, John Wiley & Sons, 2010. https://doi.org/10.1002/9781119204213
    [42] R. Di Lorenzo, Basic technical analysis of financial markets, Springer, 2013. https://doi.org/10.1007/978-88-470-5421-9
    [43] I. K. Nti, A. F. Adekoya, B. A. Weyori, A systematic review of fundamental and technical analysis of stock market predictions, Artif. Intell. Rev., 53 (2020), 3007–3057. https://doi.org/10.1007/s10462-019-09754-z doi: 10.1007/s10462-019-09754-z
    [44] B. Donnely, The art of currency trading: a professional's guide to the foreign exchange market, Wiley, 2019.
    [45] F. Escher, Elements of foreign exchange: a foreign exchange primer, Wentworth Press, 1917.
    [46] S. K. Parameswaran, Fundamentals of financial instruments: an introduction to stocks, bonds, foreign exchange, and derivatives, 2 Eds., Wiley, 2022.
    [47] K. Fukunaga, Introduction to statistical pattern recognition, 2Eds., Academic Press, 2013.
    [48] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning, 2 Eds., Springer, 2009. https://doi.org/10.1007/978-0-387-84858-7
    [49] D. Thakore, Conflict and conflict management, IOSR J. Bus. Manag., 8 (2013), 7–16. https://doi.org/10.9790/487X-0860716 doi: 10.9790/487X-0860716
    [50] A. J. Jones, Game theory: mathematical models of conflict, Elsevier, 2000.
    [51] A. Skowron, S. Ramanna, J. F. Peters, Conflict analysis and information systems: a rough set approach, In: G. Y. Wang, J. F. Peters, A. Skowron, Y. Yao, Rough Sets Knowl. Technol., Springer, 2006. https://doi.org/10.1007/11795131_34
    [52] G. Kunapuli, Ensemble methods for machine learning, Manning Publications, 2023.
    [53] R. Fonseca, P. Gomez, Automatic model selection in ensembles for time series forecasting, IEEE Latin Am. Trans., 14 (2016), 3811–3819. https://doi.org/10.1109/TLA.2016.7786368 doi: 10.1109/TLA.2016.7786368
    [54] M. P. Deisenroth, A. A. Faisal, Mathematics for machine learning, Cambridge University Press, 2020. https://doi.org/10.1017/9781108679930
  • This article has been cited by:

    1. Ya Qin, Siti Rahayu Mohd. Hashim, Jumat Sulaiman, A new distance measure and corresponding TOPSIS method for interval-valued intuitionistic fuzzy sets in multi-attribute decision-making, 2023, 8, 2473-6988, 26459, 10.3934/math.20231351
    2. Ghous Ali, Kholood Alsager, Asad Ali, Novel linguistic q -rung orthopair fuzzy Aczel-Alsina aggregation operators for group decision-making with applications, 2024, 9, 2473-6988, 32328, 10.3934/math.20241551
    3. Adeel Farooq, Muhammad Nabeel, Ghous Ali, New MCDM applications using cubic bipolar fuzzy model in medicine and engineering, 2023, 1432-7643, 10.1007/s00500-023-09256-9
    4. Ghous Ali, Muhammad Nabeel, Adeel Farooq, Extended ELECTRE method for multi-criteria group decision-making with spherical cubic fuzzy sets, 2024, 66, 0219-1377, 6269, 10.1007/s10115-024-02132-4
    5. Ghous Ali, Kholood Alsager, Novel Heronian mean based m -polar fuzzy power geometric aggregation operators and their application to urban transportation management, 2024, 9, 2473-6988, 34109, 10.3934/math.20241626
    6. Ghous Ali, Muhammad Anwar, Bander Almutairi, Muhammad Faheem, Sabeeha Kanwal, Novel Wind Power Station Site Selection Framework Based on Multipolar Fuzzy Schweizer-Sklar Aggregation Operators, 2024, 12, 2169-3536, 194030, 10.1109/ACCESS.2024.3516825
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(578) PDF downloads(63) Cited by(0)

Figures and Tables

Figures(14)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog