Research article

Change point detection for a skew normal distribution based on the Q-function

  • Received: 16 July 2024 Revised: 17 September 2024 Accepted: 26 September 2024 Published: 10 October 2024
  • MSC : 62F03, 62P20

  • In this paper, we enhanced change point detection in skew normal distribution models by integrating the EM algorithm's Q-function with the modified information criterion (MIC). The new QMIC framework improves sensitivity and accuracy in detecting changes, outperforming the modified information criterion (MIC) and the traditional Bayesian information criterion (BIC). Due to the complexity of deriving analytic asymptotic distributions, bootstrap simulations were used to determine critical values at various significance levels. Extensive simulations demonstrate that QMIC offers superior detection capabilities. We applied the QMIC method to two stock market datasets, successfully identifying multiple change points, and highlighting its effectiveness for real-world financial data analysis.

    Citation: Yang Du, Weihu Cheng. Change point detection for a skew normal distribution based on the Q-function[J]. AIMS Mathematics, 2024, 9(10): 28698-28721. doi: 10.3934/math.20241392

    Related Papers:

  • In this paper, we enhanced change point detection in skew normal distribution models by integrating the EM algorithm's Q-function with the modified information criterion (MIC). The new QMIC framework improves sensitivity and accuracy in detecting changes, outperforming the modified information criterion (MIC) and the traditional Bayesian information criterion (BIC). Due to the complexity of deriving analytic asymptotic distributions, bootstrap simulations were used to determine critical values at various significance levels. Extensive simulations demonstrate that QMIC offers superior detection capabilities. We applied the QMIC method to two stock market datasets, successfully identifying multiple change points, and highlighting its effectiveness for real-world financial data analysis.



    加载中


    [1] E. Page, Continuous inspection schemes, Biometrika, 41 (1954), 100–115. https://doi.org/10.2307/2333009 doi: 10.2307/2333009
    [2] R. Arellano-Valle, L. Castro, R. Loschi, Change point detection in the skew-normal model parameters, Commun. Stat.-Theory M., 42 (2013), 603–618. https://doi.org/10.1080/03610926.2011.611321 doi: 10.1080/03610926.2011.611321
    [3] H. Chernoff, S. Zacks, Estimating the current mean of a normal distribution which is subjected to changes in time, Ann. Math. Stat., 35 (1964), 999–1018. https://doi.org/10.1214/aoms/1177700517 doi: 10.1214/aoms/1177700517
    [4] D. Hsu, Tests for variance shift at an unknown time point, J. R. Stat. Soc. C-Appl., 26 (1977), 279–284. https://doi.org/10.2307/2346968 doi: 10.2307/2346968
    [5] D. Hinkley, E. Hinkley, Inference about the change-point in a sequence of binomial variables, Biometrika, 57 (1970), 477–488. https://doi.org/10.1093/biomet/57.3.477 doi: 10.1093/biomet/57.3.477
    [6] K. Worsley, On the likelihood ratio test for a shift in location of normal populations, J. Am. Stat. Assoc., 74 (1979), 365–367. https://doi.org/10.1080/01621459.1979.10482519 doi: 10.1080/01621459.1979.10482519
    [7] K. Worsley, Confidence regions and tests for a change-point in a sequence of exponential family random variables, Biometrika, 73 (1986), 91–104. https://doi.org/10.1093/biomet/73.1.91 doi: 10.1093/biomet/73.1.91
    [8] B. Darkhovski, Nonparametric methods in change-point problems: a general approach and some concrete algorithms, IMS Lecture Notes Monogr. Ser., 23 (1994), 99–107. https://doi.org/10.1214/lnms/1215463117 doi: 10.1214/lnms/1215463117
    [9] E. Gombay, L. Horvath, An application of U-statistics to change-point analysis, Acta Sci. Math., 60 (1995), 345–357.
    [10] E. Gombay, M. Hušková, Rank based estimators of the change-point, J. Stat. Plan. Infer., 67 (1998), 137–154. https://doi.org/10.1016/S0378-3758(97)00099-2 doi: 10.1016/S0378-3758(97)00099-2
    [11] X. Cai, K. Said, W. Ning, Change-point analysis with bathtub shape for the exponential distribution, J. Appl. Stat., 43 (2016), 2740–2750. https://doi.org/10.1080/02664763.2016.1143455 doi: 10.1080/02664763.2016.1143455
    [12] T. Wang, W. Tian, W. Ning, Likelihood ratio test change-point detection in the skew slash distribution, Commun. Stat.-Simul. C., 51 (2022), 5068–5080. https://doi.org/10.1080/03610918.2020.1755869 doi: 10.1080/03610918.2020.1755869
    [13] C. Ferreira, T. Mattos, N. Balakrishnan, Mean-shift outliers model in skew scale-mixtures of normal distributions, J. Stat. Comput. Sim., 86 (2016), 2346–2361. https://doi.org/10.1080/00949655.2015.1110819 doi: 10.1080/00949655.2015.1110819
    [14] J. Chen, A. Gupta, Testing and locating variance changepoints with application to stock prices, J. Am. Stat. Assoc., 92 (1997), 739–747. https://doi.org/10.1080/01621459.1997.10474026
    [15] G. Ngunkeng, W. Ning, Information approach for the change-point detection in the skew normal distribution and its applications, Sequential Anal., 33 (2014), 475–490. https://doi.org/10.1080/07474946.2014.961845 doi: 10.1080/07474946.2014.961845
    [16] J. Chen, A. Gupta, J. Pan, Information criterion and change point problem for regular models, Sankhyā: The Indian Journal of Statistics, 68 (2006), 252–282.
    [17] J. Pan, J. Chen, Application of modified information criterion to multiple change point problems, J. Multivariate Anal., 97 (2006), 2221–2241. https://doi.org/10.1016/j.jmva.2006.05.009
    [18] K. Said, W. Ning, Y. Tian, Modified information criterion for testing changes in skew normal model, Braz. J. Probab. Stat., 33 (2019), 280–300. https://doi.org/10.1214/17-BJPS388 doi: 10.1214/17-BJPS388
    [19] M. Kilai, G. Waititu, W. Kibira, R. Aldallal, M. Bakr, Y. Tashkandy, et al., Information approach for change point analysis of EGGAPE distribution and application to COVID-19 data, Math. Probl. Eng., 2022 (2022), 9924902. https://doi.org/10.1155/2022/9924902
    [20] A. Dempster, N. Laird, D. Rubin, Maximum likelihood from incomplete data via EM algorithm, J. R. Stat. Soc. B-Methol., 39 (1977), 1–22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x doi: 10.1111/j.2517-6161.1977.tb01600.x
    [21] R. Boyles, On the convergence of the EM algorithm, J. R. Stat. Soc. B, 45 (1983), 47–50. https://doi.org/10.1111/j.2517-6161.1983.tb01229.x doi: 10.1111/j.2517-6161.1983.tb01229.x
    [22] R. Redner, H. Walker, Mixture densities, maximum-likelihood and the EM algorithm, SIAM Rev., 26 (1984), 195–237. https://doi.org/10.1137/1026034 doi: 10.1137/1026034
    [23] X. Meng, D. Rubin, Maximum likelihood estimation via the ecm algorithm: a general framework, Biometrika, 80 (1993), 267–278. https://doi.org/10.2307/2337198 doi: 10.2307/2337198
    [24] C. Wu, On the convergence properties of the EM algorithm, Ann. Statist., 11 (1983), 95–103. https://doi.org/10.1214/aos/1176346060 doi: 10.1214/aos/1176346060
    [25] T. Lin, J. Lee, S. Yen, Finite mixture modelling using the skew normal distribution, Stat. Sinica, 17 (2007), 909–927.
    [26] T. Lin, Maximum likelihood estimation for multivariate skew normal mixture models, J. Multivariate Anal., 100 (2009), 257–265. https://doi.org/10.1016/j.jmva.2008.04.010 doi: 10.1016/j.jmva.2008.04.010
    [27] V. Lachos, P. Ghosh, R. Arellano-Valle, Likelihood based inference for skew-normal independent linear mixed models, Stat. Sinica, 20 (2010), 303–322.
    [28] T. Abe, H. Fujisawa, T. Kawashima, C. Ley, EM algorithm using overparameterization for multivariate skew-normal distribution, Economet. Stat., 19 (2021), 151–168. https://doi.org/10.1016/j.ecosta.2021.03.003 doi: 10.1016/j.ecosta.2021.03.003
    [29] H. Zhu, S. Lee, Local influence for incomplete-data models, J. R. Stat. Soc. B, 63 (2001), 111–126. https://doi.org/10.1111/1467-9868.00279 doi: 10.1111/1467-9868.00279
    [30] P. Perron, T. Vogelsang, Testing for a unit root in a time series with a changing mean: corrections and extensions, J. Bus. Econ. Stat., 10 (1992), 467–470. https://doi.org/10.1080/07350015.1992.10509923 doi: 10.1080/07350015.1992.10509923
    [31] L. Vostrikova, Detecting "disorder" in multidimensional random processes, Dokl. Akad. Nauk SSSR, 259 (1981), 270–274.
    [32] R. Basso, V. Lachos, C. Cabral, P. Ghosh, Robust mixture modeling based on scale mixtures of skew-normal distributions, Comput. Stat. Data Anal., 54 (2010), 2926–2941. https://doi.org/10.1016/j.csda.2009.09.031 doi: 10.1016/j.csda.2009.09.031
    [33] C. Zeller, C. Barbosa Cabral, V. Lachos, L. Benites, Finite mixture of regression models for censored data based on scale mixtures of normal distributions, Adv. Data Anal. Classif., 13 (2019), 89–116. https://doi.org/10.1007/s11634-018-0337-y doi: 10.1007/s11634-018-0337-y
    [34] T. Mattos, A. Garay, V. Lachos, Likelihood-based inference for censored linear regression models with scale mixtures of skew-normal distributions, J. Appl. Stat., 45 (2018), 2039–2066. https://doi.org/10.1080/02664763.2017.1408788 doi: 10.1080/02664763.2017.1408788
    [35] D. Hsu, Detecting shifts of parameter in gamma sequences with applications to stock-price and air-traffic flow analysis, J. Am. Stat. Assoc., 74 (1979), 31–40. https://doi.org/10.2307/2286717 doi: 10.2307/2286717
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(430) PDF downloads(41) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog