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Abstract: In this paper, we enhanced change point detection in skew normal distribution models
by integrating the EM algorithm’s Q-function with the modified information criterion (MIC). The
new QMIC framework improves sensitivity and accuracy in detecting changes, outperforming the
modified information criterion (MIC) and the traditional Bayesian information criterion (BIC). Due
to the complexity of deriving analytic asymptotic distributions, bootstrap simulations were used
to determine critical values at various significance levels. Extensive simulations demonstrate that
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datasets, successfully identifying multiple change points, and highlighting its effectiveness for real-
world financial data analysis.
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1. Introduction

In statistical analysis, the change point problem pertains to the phenomenon wherein observations
demonstrate distinct distributions before and after an unspecified temporal threshold. This issue is
crucial across various fields, including financial analysis, economics, and medical research. Tracing
back to 1954, Page first introduced the concept of a change point and identified the presence of a
singular change point using the well-established cumulative sum procedure [1]. Over subsequent
decades, a plethora of methods for detecting change points has been developed, yielding substantial
advancements in research, particularly within parametric methodologies. Arellano-Valle discussed
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the identification of change points in parameters of the location-scale skew normal distribution via
Bayesian inference [2]. Moreover, Chernoff and Zacks explored the occurrence of mean shifts in
normal distributions from a Bayesian viewpoint [3]. Hsu conducted tests for variance shifts in
sequences of independent normal random variables, addressing scenarios where the initial variance
level is unknown, employing two test statistics: one locally most powerful and the other based on the
cumulative sum of chi-square values [4]. Hinkley inferred the change points of binomial parameter
shifts in sequences of zero-one variables through maximum likelihood estimation [5]. Further details
on the parametric approach are discussed in [6,7], while studies on non-parametric methods for change
point detection are detailed in [8–10].

The likelihood ratio test is a method extensively employed for addressing the problem of detecting
change points. Cai [11] introduced a test statistic of the likelihood ratio type to detect potential bathtub-
shaped changes in the scale parameter of independent exponential distributions. Wang [12] utilized
the likelihood ratio test statistic to identify changes in the parameters of a skew slash distribution.
Ferreira [13] enhanced the use of the likelihood ratio test in their development of the mean-shift
method for detecting outliers in regression models under skew scale-mixtures of normal distributions.
Simulation studies have demonstrated the efficiency of the proposed method in detecting outliers.
From a model selection perspective, determining whether a process has undergone change involves
choosing between a model with a single set of parameters and one with multiple sets of parameters
and change points. In this regard, information criteria serve as useful tools for change point detection.
Chen [14] applied the Schwarz information criterion (SIC) to identify and locate all possible variance
change points in sequences of independent Gaussian random variables. Ngunkeng [15] proposed a
test statistic based on SIC to detect parameter changes in a skew normal distribution. Chen [16]
developed a modified information criterion (MIC) by refining the measure of model complexity, which
consistently selects the correct model and effectively detects changes at both early and late observation
stages. Pan [17] applied the modified information criterion to detect and locate multiple change
points in sequences of independent random variables. Said [18] proposed a change point detection
procedure based on MIC for skew normal distributions. Kilai [19] conducted change point detection
on the exponentiated generalized Gull alpha power exponential distribution using MIC and applied
this method to COVID-19 data. It is noteworthy that both the likelihood ratio test and information
criterion methods rely on the log-likelihood function. However, for complex models associated with
intractable densities, deriving the log-likelihood function can be highly intricate, resulting in substantial
computational burdens.

The expectation-maximization (EM) algorithm, introduced by Dempster [20], is a versatile
technique for iteratively computing maximum likelihood estimates in models with incomplete data.
This approach efficiently handles complex statistical models by treating latent variables as hypothetical
missing data and utilizing EM algorithms. Numerous studies have discussed the convergence of
parameter estimate sequences obtained through the EM algorithm [21–24]. The EM algorithm finds
extensive applications in complex linear mixed models and finite mixed models, notably illustrated
in [25–27]. Abe [28] introduced an overparameterized stochastic representation for the skew normal
distribution, enhancing the EM algorithm’s efficiency. This methodology has been extended to
multivariate and mixture models, significantly improving computational performance. Moreover,
Zhu developed a novel approach for assessing the local influence of incomplete data using the EM
algorithm, employing a procedure similar to Cook’s to replace the traditional observed data log-
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likelihood function with the conditional expectation of the complete data log-likelihood function [29].
Zhu’s innovative work has significantly inspired our proposed method for detecting change points in
complex models.

The rest of the paper is organized as follows: In Section 2, we introduce the Q-function modified
information criterion (QMIC) method for change point detection and discuss the nice properties
and motivations of the procedure. In Section 3, we adopt the QMIC method to detect the changes
in parameters for the skew normal distribution and propose a procedure to detect change points.
Simulations are performed in Section 4 to investigate the performance of the proposed method and to
compare it with methods based on MIC and SIC statistics. In Section 5, we apply the QMIC procedure
to three significant Latin American stock return markets to detect change points. Finally, conclusions
are noted in Section 6.

2. Q-function modified information criterion

In this section, we introduce a novel method for change point detection in complex models,
discussing its advantageous properties and underlying motivations.

2.1. A brief description of the EM algorithm

To elucidate our approach, we provide a concise overview of the expectation-maximization (EM)
algorithm.

Let Yc = (Yo,Ym) be the complete dataset with a probability density function (PDF) f (Yc|θ), where
θ is an r-dimensional parameter vector, and Yo and Ym denote the observed data and missing data,
respectively. In this setting, the complete data log-likelihood function can be given by

Lc(θ|Yc) = log f (Yc|θ),

whereas the observed data log-likelihood function is given by

Lo(θ|Yo) = log f (Yo|θ).

The complete data log-likelihood function is generally straightforward, in contrast to the observed
data log-likelihood function, which is often complex in many statistical applications. This complexity
forms the central focus of our study. The EM algorithm provides an alternative method for managing
the observed data log-likelihood function, effectively simplifying the computational challenges
associated with incomplete datasets.

The standard EM algorithm primarily comprises two steps: the expectation step (E-step) and the
maximization step (M-step).

E-step: Given the complete dataset Yc and parameter estimates θ̂
(h)

of the h-th iteration, take the
expectation with respect to the conditional distribution f (Ym|Yo, θ̂

(h)
), and then the Q-function is given

by
Q(θ|θ̂

(h)
) = E{Lc(θ|Yc)|Yo, θ̂

(h)
}.

M-step: Determine θ̂
(h+1)

by
θ̂

(h+1)
= argmax

θ

Q(θ|θ̂
(h)

).
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Wu [24] illustrated that the sequence {θ̂
(h)
} obtained by the EM algorithm converges to the maximum

likelihood estimates θ̂ under some mild conditions.

2.2. Method of QMIC

Let Y1,Y2, · · · ,Yn be a sequence of independent random variables and assume that Yi with the PDF
f (y; θi). We assume that all f (y; θi) come from the same parametric distribution family { f (y; θ) : θ ∈
Rd}, for i = 1, 2, · · · , n. Our primary inquiry is whether a change point exists in this sequence and, if
so, to identify its location. Consequently, we are interested in testing the null hypothesis

H0 : θ1 = θ2 = · · · = θn = θ (2.1)

versus

H1 : θ1 = θ2 = · · · = θk︸                 ︷︷                 ︸
θ1k

, θk+1 = θk+2 = · · · = θn︸                       ︷︷                       ︸
θ2k

. (2.2)

The log-likelihood function under the null hypothesis can be expressed as

L(θ|Y) =

n∑
i=1

log f (yi; θ),

whereas under the alternative hypothesis, it has the form

L(θ1k, θ2k|Y) =

k∑
i=1

log f (yi; θ1k) +

n∑
i=k+1

log f (yi; θ2k).

Chen, Gupta, and Pank [16] considered the effect of change point location on model selection and
proposed the modified information criterion. Under the null hypothesis, we define

MIC(n) = −2L(θ̂|Y) + dim(θ̂) log n.

The modified information criterion for the change point problem given by

MIC(k) = −2L(θ̂1k, θ̂2k|Y) +

2dim(θ̂) +

(
2k
n
− 1

)2 log n, f or 1 ≤ k < n,

where θ̂ is the maximum likelihood estimator of θ, and θ̂1k and θ̂2k maximize L(θ1k, θ2k|Y) for the given
k.

Let
S n = MIC(n) − min

1≤k<n
MIC(k) + dim(θ̂) log n.

The addition of the term dim(θ̂) log n eliminates the constant term in the difference between MIC(k)
and MIC(n). Chen, Gupta, and Pank [16] used the statistic S n to test whether the null hypothesis (2.1)
holds, and whether the null hypothesis is rejected when S n takes a sufficiently large number.

Despite the utility of the MIC test, substantial challenges persist with complex models due to
the intractability of the log-likelihood function. Consequently, it is imperative to explore alternative
approaches to the log-likelihood function to address these difficulties effectively.
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Motivated by the EM algorithm, we propose the following Q-function modified information
criterion (QMIC) for change point detection. The idea is to apply the same procedure as MIC to
the Q-function instead of the log-likelihood function. Under the null hypothesis, we define

QMIC(n) = −2Q(θ̂|θ̂) + dim(θ̂) log n. (2.3)

For 1 ≤ k < n, the QMIC in the presence of change points is

QMIC(k) = −2Q(θ̂1k, θ̂2k|θ̂) +

2dim(θ̂) +

(
2k
n
− 1

)2 log n, (2.4)

where θ̂ is the maximum likelihood estimate of θ obtained by the EM algorithm under the null
hypothesis, and θ̂1k, θ̂2k are the estimates of θ1k, θ2k which satisfy

θ̂1k, θ̂2k = argmax
θ1k,θ2k

Q(θ̂1k, θ̂2k|θ̂) = argmax
θ1k,θ2k

E{Lc(θ1k, θ2k|Yc)|Yo, θ̂}.

The difference between QMIC(n) and min1≤k<n QMIC(k) plays a key role in the model selection.
Based on this, we define a test statistic Wn to test whether the null hypothesis of no change holds.

Let

Wn = QMIC(n) − min
1≤k<n

QMIC(k) + dim(θ) log n. (2.5)

The statistic Wn can be considered as a measure of the difference between θ and θ̂1k, θ̂2k. The null
hypothesis is rejected with a sufficiently large value of Wn, and then we suggest that there are change
points in this sample and the location of the change point can be estimated by

k̂ = argmin
1≤k<n

QMIC(k). (2.6)

Owing to the promising outcomes derived from the EM algorithm, the solutions θ̂1k and θ̂2k achieved
in maximizing the Q-function lead to the formulation of the following lemma:

Lemma 2.1. Suppose that Lo(θ|Yo) is unimodal in Ω with only a stationary point, where Ω is a subset
in the d-dimensional space, and the first-order partial derivatives of Q(ψ|θ) are continuous in ψ and θ.
Then we obtain, under Wald conditions W1–W7 [16] and the null hypothesis,

(θ̂1k, θ̂2k)→ θ

consistently in probability for all k, as n→ ∞.
Under Wald conditions W1–W7 and the alternative hypothesis with a change point at k satisfying

the limit of k/n at (0, 1) as n→ ∞, then

(θ̂1k, θ̂2k)→ (θ1k, θ2k)

consistently in probability for all k, as n→ ∞.
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The above lemma is derived from the global convergence theorem [24] and the consistency
lemma [16]; therefore, details of the proof are omitted here. Another motivation for our approach
is its set of desirable properties, which are analogous to those of the MIC criterion.

Note that a sufficient number of sample observations are required to obtain the maximum likelihood
estimates of the parameters. Perron and Vogelsang [30] considered a trimmed procedure for the
method; the key idea is to trim k0 samples at the beginning and k1 samples at the end, which means
detecting the change point in the location interval [k0 + 1, n − k1]. They pointed out that k0 and k1 can
be arbitrarily selected according to individual needs.

Attention should be paid to multiple changes in the data. Vostrikova [31] proposed a binary
segmentation method that assumes at most one change within each segmentation and repeats several
consecutive steps to detect multiple changes. Based on the binary segmentation method, it is always
possible to split the problem of multiple changes into several single change problems to deal with.
Consequently, this paper focuses on developing a testing procedure for detecting a single change point.

3. QMIC for change point detection in skew normal distribution

In this section, we use the proposed QMIC approach to detect the change points in the skew normal
distribution.

Let Y = (Y1,Y2, . . . ,Yn) be a random sample of size n from skew normal distribution S N(µ, σ2, λ).
We use the QMIC procedure to examine the possibility of changes in location parameter µ, scale
parameter σ2, and shape parameter λ. Here, the null hypothesis is interested in

H0 : µ1 = µ2 = · · · = µn = µ, σ1
2 = σ2

2 = · · · = σn
2 = σ2, λ1 = λ2 = · · · = λn = λ (3.1)

versus the alternative hypothesis

H1 : µ1 = µ2 = · · · = µk︸                 ︷︷                 ︸
µ1k

, µk+1 = µk+2 = · · · = µn︸                      ︷︷                      ︸
µ2k

,

σ2
1 = σ2

2 = · · · = σ2
k︸                   ︷︷                   ︸

σ2
1k

, σ2
k+1 = σ2

k+2 = · · · = σ2
n︸                        ︷︷                        ︸

σ2
1k

,

λ1 = λ2 = · · · = λk︸                 ︷︷                 ︸
λ1k

, λk+1 = λk+2 = · · · = λn︸                      ︷︷                      ︸
λ2k

.

(3.2)

Before proceeding to the change point detection, we discuss the following lemma, which is
indispensable for obtaining the Q-function.

Theorem 3.1. A random variable Y ∼ S N(µ, σ2, λ) has a stochastic representation given by

Y = µ + σδT + σ(1 − δ2)1/2T1,

where δ = λ/
√

(1 + λ2),T = |T0|, | · | denotes the absolute value, and T0 and T1 are independent
standard normal random variables.

To develop an effective EM algorithm for skew normal distribution, identical to [32], we consider
the following hierarchical representation for the SN model based on Lemma 3.1:

Yi|Ti = ti ∼ N(µ + ∆ · ti, Γ),
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Ti ∼ HN(0, 1),

where ∆ = σδ, Γ = (1− δ2)σ2, and HN(0, 1) is the half-normal distribution. We consider an important
result that Ti given Yi follows a truncated normal distribution on (0,∞) with parameters µTi and M2

T
before truncation, denoted by Ti|Yi ∼ N(µTi ,M

2
T )I(0,∞), where

M2
T =

Γ

Γ + ∆2 , µTi =
∆

Γ + ∆2 (yi − µ). (3.3)

Let Y = (y1, · · · , yn)T be the observed data, T = (t1, · · · , tn)T on behalf of the corresponding missing
variables, and the complete data is the combination of Y and T , denoted by W = (YT ,T T )T . To facilitate
the implementation, let θ = (µ,4, Γ) be the vector of parameters in focus.

Invoking the hierarchical representation of yi, under the null hypothesis, the complete data log-
likelihood function can be expressed as follows:

LH0(θ|W) = −n log π −
n
2

logΓ −
1

2Γ

n∑
i=1

(yi − µ − ∆ti)2 −
1
2

n∑
i=1

t2
i . (3.4)

It is well known that the EM algorithm consists of two steps; namely, the expectation step (E-step)
and the maximization step (M-step).

E-step: Given the observed dataset Y = (y1, · · · , yn) and current parameter estimates θ̂
(h)

of the h-th
iteration, take the expectation of the log-likelihood function for the condition distribution f (T |Y, θ̂

(h)
),

and then the Q-function can be obtained:

Q(θ|θ̂
(h)

) = E[LH0(θ|W)|Y, θ̂
(h)

]

= −n log π −
n
2

logΓ −
1

2Γ

n∑
i=1

[(yi − µ)2 − 2∆(yi − µ)ŝ(h)
1i + ∆2 ŝ(h)

2i ] −
1
2

n∑
i=1

ŝ(h)
2i ,

where

ŝ(h)
1i = E[Ti|yi, θ̂

(h)
] = µ̂(h)

Ti
+ M̂(h)

T

φ(µ(h)
Ti
/M(h)

T )

Φ(µ(h)
Ti
/M(h)

T )
, (3.5)

ŝ(h)
2i = E[T 2

i |yi, θ̂
(h)

] = µ̂2(h)
Ti

+ M̂2(h)
T + M̂(h)

T µ(h)
Ti

φ(µ(h)
Ti
/M(h)

T )

Φ(µ(h)
Ti
/M(h)

T )
, i = 1, · · · , n, (3.6)

where µ(h)
Ti

, M2(h)
T are defined as (3.3), φ(·) denotes the PDF of standard normal distribution, and Φ(·) is

the cumulative density function (CDF) of standard normal distribution.
In certain cases, the complexity of the Q-function derived from the E-step can make the M-step

analytically challenging. For skew normal distribution, this challenge is efficiently addressed by
employing a series of conditional maximization (CM) steps.

CM-steps: Update θ̂
(h)

by maximizing Q(θ̂|θ̂
(h)

) over θ̂, which leads to the following results:

µ̂(h+1) =

n∑
i=1

(yi − ∆(h) ŝ(h)
1i )/n ,
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∆̂(h+1) =

n∑
i=1

(yi − µ̂
(h+1))ŝ(h)

1i /

n∑
i=0

ŝ(h)
2i ,

Γ̂(h+1) =
1
n

n∑
i=1

[(yi − µ̂
(h+1))2 − 2(yi − µ̂

(h+1))∆̂(h+1) ŝ(h)
1i + (∆̂(h+1))2 ŝ(h)

2i ].

For a prescribed value ε > 0, if the value of the log-likelihood function of two consecutive iterations
satisfies |LH0(Y |θ̂

(h+1)
)/LH0(Y |θ̂

(h)
) − 1| < ε, the iterative process is broken up. In our study, we set

ε = 10−5, as recommended by Zeller et al. [33]. More details on the maximum likelihood estimates of
the SN distribution can be found in [34].

The maximum likelihood estimates of the parameters can be obtained using the EM algorithm,
denoted as θ̂ = (µ̂, ∆̂, Γ̂). Therefore, the expression of the Q(θ̂|θ̂) under the null hypothesis is

Q(θ̂|θ̂) = −n log π −
n
2

log Γ̂ −
1

2Γ̂

n∑
i=1

[(yi − µ̂)2 − 2∆̂(yi − µ̂)ŝ1i + ∆̂2 ŝ2i] −
1
2

n∑
i=1

ŝ2i, (3.7)

where ŝ1i and ŝ2i can be obtained from (3.5) and (3.6), respectively, by replacing θ̂
(h)

in them with θ̂.
Under the alternative hypothesis, the complete data log-likelihood function is

LH1(θ|W) = − n log π −
k
2

logΓ1k −
1

2Γ1k

k∑
i=1

(yi − µ1k − ∆1kti)2 −
1
2

k∑
i=1

t2
i

−
n − k

2
logΓ2k −

1
2Γ2k

n∑
i=k+1

(yi − µ2k − ∆2kti)2 −
1
2

n∑
i=k+1

t2
i ,

(3.8)

where ∆ik = σikλik/
√

(1 + λik
2), Γik = σ2

ik/(1 + λik
2), i = 1, 2.

We consider the alternative hypothesis of the existence of a single change point as a combination
of two skew normal distributed variables, one with sample size k and the other with n − k, such
that maximizing the overall Q-function is equivalent to making these two components maximum.
Therefore, with the current estimate of θ̂, the EM algorithm is applied to each of these two components
to obtain the maximum likelihood estimates of the parameters θ̂1k = (µ̂1k, ∆̂

2
1k, Γ̂1k) and θ̂2k =

(µ̂2k, ∆̂
2
2k, Γ̂2k), respectively. Then we can obtain

Q(θ̂1k, θ̂2k|θ̂) = − n log π −
k
2

log Γ̂1k −
1

2Γ̂1k

k∑
i=1

[(yi − µ̂1k)2 − 2∆̂1k(yi − µ̂1k)ŝ1i + ∆̂2
1k ŝ2i] −

1
2

k∑
i=1

ŝ2i

−
n − k

2
log Γ̂2k −

1
2Γ̂2k

n∑
i=k+1

[(yi − µ̂2k)2 − 2∆̂2k(yi − µ̂2k)ŝ2i + ∆̂2
2k ŝ1i] −

1
2

n∑
i=k+1

ŝ2i.

(3.9)
By substituting (3.7) and (3.9) into (2.5), we can obtain the Wn statistic under the null

hypothesis (3.1) of the skew normal distribution
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Wn =n log Γ̂ +
1
Γ̂

n∑
i=1

[(yi − µ̂)2 − 2∆̂(yi − µ̂)ŝ1i + ∆̂2 ŝ2i] − min
1≤k<n

{
k log Γ̂1k

+
1
Γ̂1k

k∑
i=1

[(yi − µ̂1k)2 − 2∆̂1k(yi − µ̂1k)ŝ1i + ∆̂2
1k ŝ2i] + (n − k) log Γ̂2k

+
1
Γ̂2k

n∑
i=k+1

[(yi − µ̂2k)2 − 2∆̂2k(yi − µ̂2k)ŝ2i + ∆̂2
2k ŝ2i] + (

2k
n
− 1)2 log n

}
.

(3.10)

The null hypothesis (3.1) is rejected for a sufficiently large number of Wn. Here, we use the bootstrap
method to simulate the distribution of the statistic Wn, and a suggested framework to obtain the critical
value cα of the Wn statistic for a given significance level α and the P-value is shown in Algorithm 1.
Algorithm 1. Bootstrap procedure for the Wn statistic and critical value cα.
Input: Data: Y1,Y2, . . . ,Yn, Significance level: α, Trimming parameters: k0, k1, Number of bootstrap
samples: B.
Output: Critical value cα, P-value.

(1) Estimate θ̂ = (µ̂, ∆̂, Γ̂) under H0 using the EM algorithm.
(2) Compute the following parameter estimates:

σ̂2 = ∆̂2 + Γ̂, λ̂ =
∆̂
√
Γ̂
.

(3) For each k ∈ [k0 + 1, n − k0], re-estimate θ̂1k and θ̂2k using the EM algorithm based on the current
θ̂.

(4) Calculate the test statistic W∗
n using Eq (3.10).

(5) Perform B bootstrap iterations:

(a) Generate a bootstrap sample Y∗1 ,Y
∗
2 , . . . ,Y

∗
n from the fitted distribution S N(µ̂, σ̂2, λ̂).

(b) Recalculate W (b)(i)
n for each bootstrap sample by repeating Steps 1−4, i = 1, 2, . . . , B.

(6) Calculate the critical value cα as the 100(1 − α)% quantile of the W (b)
n values.

(7) Compute the P-value as:

P-value =
1
B

B∑
i=1

I(W (b)(i)
n ≥ W∗

n).

(8) Decision rule:

(a) Reject H0 if W∗
n > cα or P-value < α.

(b) If rejected, estimate the location of the change point k using Eq (2.6).

The QMIC method combined with the binary segmentation method can be utilized to address the
detection of multiple change points of skew normal distribution.

4. Simulation results

In this section, we investigate the critical values of Wn and use simulations to compare the
performance of several test methods in terms of powers. In addition to our proposed QMIC information
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criterion, we also consider the modified information criterion [18] and the Bayesian information
criterion [15].

4.1. Critical values

We performed simulations of critical values under different combinations of parameters and sample
sizes using Algorithm 1 in Section 3. The critical values were estimated with B = 5000 bootstrap
samples of n = 50, 100, 200, 300, 400 at nominal test sizes α = 0.1, 0.05, 0.01, respectively. The
results, summarized in Table 1, indicate that the empirical critical values exhibit noticeable variation
with the sample size at each significance level.

Table 1. Critical values under different significance levels α for the Wn statistic obtained by
bootstrap simulation with B = 5000 samples of size n.

α α

Parameters
of SN

n 0.1 0.05 0.01 Parameters
of SN

n 0.1 0.05 0.01

(2, 1, 2) 50 0.7445 1.7259 4.6582 (3, 3, 2) 50 0.6299 1.6657 5.0009
100 0.5875 1.4271 4.1944 100 0.6831 1.6151 4.3323
200 0.3580 0.8400 2.2657 200 0.8815 1.6615 3.5394
300 0.7588 1.3115 3.0247 300 0.7653 1.3798 2.7957
400 1.6036 2.3545 4.2669 400 1.0052 1.9998 2.7865

(1.5, 1.5, 2) 50 -0.1034 0.6576 3.9767 (2, 2, 1) 50 1.4553 2.6029 5.0203
100 2.1997 3.4963 4.8935 100 3.1374 4.5598 8.0089
200 3.2705 4.4386 7.5911 200 1.8309 2.9691 5.9207
300 1.7664 2.6250 3.4809 300 3.5893 4.9501 7.6586
400 2.2664 3.2613 5.8549 400 4.1812 5.6056 5.0678

(4, 4, 0) 50 0.5744 1.4334 4.0106 (3, 4, −2) 50 -0.3062 0.0981 1.5738
100 3.3062 4.7456 8.3763 100 -0.1741 0.0698 1.4783
200 5.1096 6.4657 10.3637 200 2.4018 3.5573 6.5670
300 5.4263 7.0787 12.5718 300 1.4431 2.3089 4.0675
400 5.4516 6.8953 11.0537 400 2.5494 3.4353 6.3534

(1.5, 1.5, 2) 50 -0.1034 0.6577 3.9768 (3, 1, 1) 50 1.0202 2.2220 5.6560
100 2.1997 3.4963 7.2404 100 2.1467 3.5923 7.4245
200 3.2704 4.4386 4.4915 200 1.8109 2.8508 5.8633
300 1.7664 2.6250 3.4809 300 4.5889 5.9613 9.6741
400 2.2664 3.2613 5.8549 400 5.2007 6.6797 11.0312

4.2. Power comparison

In this section, we conducted simulations under different scenarios to investigate the performance
of the test procedures in terms of power. Additionally, we constructed the test statistic Tn based on the
classical Bayesian information criterion (BIC), defined as follows, to facilitate comparison.
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Tn = BIC(n) − min
1≤k<n

BIC(k) + 3 log n,

where BIC(n) under H0 and BIC(k) under H1 are defined as follows:

BIC(n) = −2 log LH0(µ̂, σ̂, λ̂) + 3 log(n),
BIC(k) = −2 log LH1(µ̂1, σ̂1, λ̂1, µ̂n, σ̂n, λ̂n) + 6 log n.

The pre-change distribution was set to follow S N(µ1, σ1, λ1) with parameters (µ1, σ1, λ1) = (2, 2, 1).
Post-change, the distribution was set to S N(µn, σn, λn) with parameters θn = (µn, σn, λn) taking
values (3, 3, 0), (2.5, 2.5, 2), (3, 3, 2), and (1.5, 1.5, 1.5). The sample sizes considered were n = 50, 100,
and 150. Changes were introduced approximately at the beginning (1

4 ), at the center ( 1
2 ), and at the

end ( 3
4 ) of the sample size n. The results are listed in Tables 2 and 3.

Table 2. Power comparison between QMIC, MIC, and BIC for α = 0.1.

n k (µ1, σ1, λ1) Model
(µn, σn, λn)

(3,3,0) (2.5,2.5,2) (3,3,2) (1.5,1.5,1.5) (0,2,1) (1,2,1.5)
50 10 (2,2,1) QMIC 0.218 0.190 0.562 0.278 0.683 0.385

MIC 0.206 0.176 0.503 0.208 0.660 0.382
BIC 0.182 0.097 0.247 0.276 0.695 0.364

25 (2,2,1) QMIC 0.437 0.443 0.814 0.463 0.805 0.526
MIC 0.428 0.353 0.692 0.382 0.761 0.487
BIC 0.277 0.296 0.660 0.352 0.752 0.496

40 (2,2,1) QMIC 0.328 0.237 0.416 0.138 0.776 0.355
MIC 0.322 0.215 0.300 0.090 0.724 0.327
BIC 0.245 0.152 0.412 0.063 0.718 0.319

100 25 (2,2,1) QMIC 0.685 0.523 0.884 0.428 0.912 0.618
MIC 0.697 0.501 0.880 0.411 0.897 0.602
BIC 0.612 0.488 0.873 0.302 0.865 0.585

50 (2,2,1) QMIC 0.851 0.532 0.970 0.633 0.981 0.833
MIC 0.871 0.530 0.992 0.656 0.975 0.756
BIC 0.701 0.424 0.980 0.562 0.956 0.760

75 (2,2,1) QMIC 0.688 0.403 0.911 0.479 0.924 0.678
MIC 0.665 0.379 0.903 0.513 0.917 0.650
BIC 0.505 0.368 0.907 0.408 0.899 0.631

150 35 (2,2,1) QMIC 0.812 0.690 0.989 0.663 0.986 0.841
MIC 0.800 0.722 0.989 0.652 0.972 0.763
BIC 0.798 0.604 0.977 0.607 0.983 0.788

75 (2,2,1) QMIC 0.975 0.880 0.970 0.883 0.984 0.867
MIC 0.983 0.905 0.998 0.889 0.989 0.863
BIC 0.919 0.876 0.999 0.849 0.956 0.842

110 (2,2,1) QMIC 0.940 0.756 0.998 0.702 0.998 0.868
MIC 0.915 0.747 0.997 0.685 0.997 0.855
BIC 0.923 0.720 0.992 0.658 0.995 0.847
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Table 3. Power comparison between QMIC, MIC, and BIC for α = 0.05.

n k (µ1, σ1, λ1) Model
(µn, σn, λn)

(3,3,0) (2.5,2.5,2) (3,3,2) (1.5,1.5,1.5) (0,2,1) (1,2,1.5)
50 10 (2,2,1) QMIC 0.156 0.121 0.402 0.185 0.580 0.292

MIC 0.133 0.092 0.315 0.185 0.560 0.285
BIC 0.096 0.045 0.191 0.178 0.552 0.280

25 (2,2,1) QMIC 0.328 0.237 0.634 0.235 0.668 0.323
MIC 0.315 0.220 0.610 0.202 0.631 0.304
BIC 0.165 0.163 0.498 0.197 0.609 0.315

40 (2,2,1) QMIC 0.227 0.115 0.325 0.043 0.697 0.237
MIC 0.190 0.081 0.124 0.035 0.705 0.287
BIC 0.180 0.084 0.309 0.020 0.708 0.260

100 25 (2,2,1) QMIC 0.526 0.402 0.812 0.308 0.835 0.534
MIC 0.531 0.373 0.760 0.287 0.824 0.526
BIC 0.411 0.356 0.805 0.189 0.806 0.524

50 (2,2,1) QMIC 0.778 0.523 0.932 0.515 0.965 0.681
MIC 0.760 0.396 0.913 0.501 0.933 0.692
BIC 0.594 0.518 0.933 0.417 0.859 0.650

75 (2,2,1) QMIC 0.518 0.332 0.864 0.384 0.814 0.565
MIC 0.523 0.290 0.831 0.382 0.808 0.453
BIC 0.389 0.258 0.862 0.257 0.827 0.502

150 35 (2,2,1) QMIC 0.738 0.639 0.950 0.587 0.965 0.764
MIC 0.695 0.633 0.980 0.561 0.983 0.758
BIC 0.702 0.504 0.969 0.575 0.942 0.699

75 (2,2,1) QMIC 0.927 0.852 0.997 0.780 0.976 0.821
MIC 0.938 0.840 0.999 0.787 0.958 0.805
BIC 0.886 0.755 0.995 0.769 0.925 0.800

110 (2,2,1) QMIC 0.907 0.595 0.998 0.563 0.917 0.811
MIC 0.867 0.589 0.990 0.558 0.889 0.823
BIC 0.870 0.545 0.979 0.533 0.903 0.762

From the simulation results, it is evident that the power of the proposed test increases with both
the sample size and the magnitude of parameter changes. Notably, the power tends to be higher when
the change occurs toward the middle of the data sequence, compared to changes occurring near the
beginning or end.

Furthermore, our comparative analysis indicates that the proposed QMIC procedure is highly
competitive relative to the MIC and BIC methods. In general, the QMIC procedure outperforms the
BIC and MIC methods across a range of sample sizes and change locations. The power of all three tests
increases with sample size, further underscoring the robustness of the QMIC procedure in detecting
changes under various sample sizes and parameter shifts. Additionally, the QMIC procedure maintains
strong performance even in scenarios involving changes in one or two parameters, further highlighting
its effectiveness in a broader range of conditions.
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5. Application

In this section, we draw a conclusion that the method proposed in this paper presents analytical
results that are similar to those obtained from the modified information criterion [18] based on the
classical log-likelihood function. To illustrate this result, we focus our attention on three significant
Latin American stock return markets: the Chilean, Brazilian, and Mexican markets. The stock returns
for each of the three countries were recorded weekly from October 31, 1995, to October 31, 2000,
resulting in two time series, each with 261 data points. Arellano-Valle [2] used different models to fit
the three datasets, and almost all the criterion suggest that the skew normal distribution is a good fitting
model for the stock returns of these three markets, compared with the normal distribution. The data
sources and further details regarding these datasets can be found in Ngunkeng and Wei [15] and Said,
Wei, and Tian [18].

Let S t be the stock return value at week t. In order to ensure the independence in the times series
data and study the change in stock returns, in general, we study the stock return rates instead of the
stock returns directly, which is defined as

Rt =
S t+1 − S t

S t
, t = 1, 2, · · · , n − 1.

Before proceeding with the actual analysis, we need to test the independence of the transformed
data Rt. Hsu [35] proposed several methods that can be used for testing the independence of such a
transformed dataset. Here, we choose the Portmanteau test defined as

Qk = n
k∑

i=1

r2
i , (5.1)

where ri is the auto-correlation coefficient (ACF) at lag i, and k is the lag up to which the auto-
correlation coefficient function is considered. Under the condition that the null hypothesis of
independence holds, Qk has an asymptotic χ2 distribution with the degree of freedom k, denoted as
Qk ∼ χ

2(k).

5.1. Chilean stock market

We consider the stock return rate series Rt of the Chilean market. The ACF plot and the normal Q-Q
plot of Rt are depicted in Figure 1. The left graph in Figure 1 presents the auto-correlation coefficient
of Rt, from which it is clear that Rt is not severely auto-correlated. Furthermore, the test statistic Qk of
Rt for the Chilean market is obtained as follows:

Q24 = 261 ×
24∑
i=1

r2
i = 261 × 0.1210905 = 31.25 < χ2

0.95(24) = 36.415,

which indicates that the null hypothesis of independence of the transformed data failed to be rejected.
The right graph in Figure 1 illustrates that the Rt data deviates from the normal distribution, which

indicates that the normality assumption fails. Therefore, as suggested by Arellano-Valle [2], we treat
the skew normal distribution as a plausible candidate for fitting the Rt series for Chile. The estimated
parameters for the fitted skew normal distribution are as follows:

µ̂ = 0.0207 (SE = 0.0076), σ̂ = 0.0398 (SE = 0.0045), λ̂ = −0.9286 (SE = 0.3841).
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Here, “SE” denotes the standard error of the estimated parameters.
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(b) The normal Q-Q plot of Rt.

Figure 1. The behavior of the stock return rate Rt series of the Chilean market.

We apply the proposed QMIC procedure with the bootstrap method to test the hypothesis in
Section 2, and implement the binary segmentation method to detect all possible change points in the
Rt data. To enhance the robustness of our analysis, consistent with the approach described by Perron
and Vogelsang [30], we trimmed 20 data points from both the beginning and the end of each series.
Figure 2 shows the corresponding values of the Wn test statistics for each series of Rt, as well as the
possible locations of the change points detected by the proposed method.

• Consider the sequence Rt for the Chilean stock market, t = 1, 2, · · · , 261. Under the null
hypothesis, QMIC(261) = −707.3299, min1≤k≤261QMIC(k) = QMIC(112) = −723.3759, and the
test statistic Wn = 32.7396. With the discussion in Section 2, we use the bootstrap method to
simulate the distribution of the test statistic Wn and obtain the approximate P-value = 0.000 < 0.05
with B = 2000. Therefore, we reject the null hypothesis and conclude that there is a change in
the Rt series and the first change is located in the 112th position. Moreover, it corresponds to the
change point located at the 113th position (December 26, 1997) of the stock return data S t with
the associated stock return value of 736.133. The reason for the change point may be due to the
Asian financial crisis of 1997, which reached its climax by a mini crash on October 27, 1997.
• With the binary segmentation method, we consider the series Rt for t from 1 to 112. Under the null

hypothesis, we obtain QMIC(112) = −500.0035, min1≤k≤112QMIC(k) = QMIC(24) = −467.5512,
and the test statistic Wn = −18.2969. This indicates that the QMIC value under the original
hypothesis is smaller than the QMIC value under the alternative hypothesis, and thus we accept
the null hypothesis that there is no change point in this sequence.
• Then we consider the sequence Rt for t from 113 to 261, and we compute the QMIC value when

the null hypothesis holds. QMIC(149) = −362.0137, min1≤k≤149 QMIC(k) = QMIC(114) =

−356.9705, the test statistic Wn = 9.9687, and the approximated P-value=0.007, which leads us
to accept there is another change point in Rt, and the change occurs at the 112 + 114 = 226th
position in Rt, corresponding to the 227th position (March 3, 2000) of S t with the stock return
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value 764.411. This change point may have been triggered by the Russian financial crisis of 1998,
which devalued the ruble and suspended payments from its government to foreign creditors.
• In the following, we consider the sequence Rt for t from 113 to 226, and we have QMIC(114) =

−269.8757, min1≤k≤114 QMIC(k) = QMIC(57) = −262.1506, and the test statistic Wn = 6.4836
with the approximated P-value = 0.0145, and thus, we conclude that there is still a change point
occurring at the 113 + 57 = 170th position in Rt corresponding to the 171st position (February 5,
1999) in S t with the associated stock return 524.462. Argentina’s financial crisis that emerged in
December 1999 may have been responsible for this change point.
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(d) Values of Wn for Rt, t from 113 to 226.

Figure 2. The corresponding values of the Wn test statistic for each sequence of Chilean Rt

with the possible locations of the change points.

The graphs of the Chilean stock return S t and return rate Rt with the locations of the corresponding
change points are presented in Figure 3.

In our analysis, we identified three significant change points in the Chilean stock returns, each
corresponding to major global financial events. As shown in Table 4, the first change point on
December 26, 1997, aligns with the Asian financial crisis, reflecting its global impact on markets
like Chile. The second, on February 5, 1999, corresponds with the Russian financial crisis, leading to
a notable dip in returns due to global investor uncertainty. The final change point on March 3, 2000, is
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linked to the Argentine crisis, which also affected Chile through regional economic ties. These change
points illustrate the sensitivity of the Chilean market to external financial shocks.

(a) Detected change points in Rt. (b) Detected change points in stock return S t.

Figure 3. Detected change points in stock return rate Rt and stock return S t.

Table 4. Change points of the Chilean stock return data.

Location Date Value Possible reason
113th December 26, 1997 736.133 The Asian financial crisis in 1997
171st February 5, 1999 524.462 The Russian financial crisis in 1999
227th March 3, 2000 764.411 The Argentina’s crisis in 2000

Many results have been obtained for the variation point test of the Chilean return data. Arellano-
Valle, Castro, and Loschi [2] detected only one change point in this dataset utilizing the Bayesian
method and located the change point in the first week of February 1998. Ngunkeng and Wei [15]
detected two change points in this dataset based on the Schwarz information criterion, which was
at positions 113 and 170. The same result is also obtained by Said, Wei, and Tian [18] based on
the modified information criterion. Using the method proposed in this paper, while detecting an
approximate agreement with the change points mentioned in the latter two methods, we also detect
another change point located at the 227th position. From Figure 3, we can see that the additional
change point is also reasonable.

5.2. The Brazilian stock market

Subsequently, the Brazilian stock return data are examined using the identical analytical procedure
employed for the Chilean stock returns. To test the independence in the Brazilian stock return data, we
plot the ACF for the Brazilian stock return rate Rt, as shown in the left panel of Figure 4. The ACF
plot exhibits no strong auto-correlation for the Rt data, and to be more convincing, we calculate the
Portmanteau test statistic Qk of Rt for the Brazilian market, and the result is given by

Q24 = 261 ×
24∑
i=1

r2
i = 261 × 0.0910859 = 23.77342 < χ2

0.95(24) = 36.415.
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Therefore, we fail to reject the null hypothesis of independence of Rt data for the Brazilian stock
market. The right panel in Figure 4 shows that the normality of the Rt data is violated, so we use the
skew normal distribution as a replacement for change point detectiion. The estimated parameters for
the fitted skew normal distribution are as follows:

µ̂ = 0.0406 (SE = 0.0092), σ̂ = 0.0650 (SE = 0.0057), λ̂ = −1.0803 (SE = 0.3474).

(a) ACF values of Rt. (b) The normal Q-Q plot of Rt.

Figure 4. The behavior of the stock return rate Rt series of the Brazilian market.

In the following, the suggested QMIC method and the binary segmentation procedure are applied to
the Rt dataset to detect the potential change points in it. As with the previous analysis, we applied the
same data trimming method. Figure 5 shows the corresponding values of the Wn test statistics across
k for each sub-sequence of Rt and the possible locations of the change points. The procedures and
findings of the change point detection for the Rt dataset of the Brazilian stock market are listed below.

• We first screen the whole Rt series from 1 to 261 for possible changes. Under the null hypothesis,
we obtain that QMIC(261) = −491.5966, min1≤k≤261 QMIC(k) = QMIC(88) = −518.8437, the
test statistic Wn = 43.9407, and the approximated P-value = 0.000 < 0.05 with B = 2000 bootstrap
sampling. Therefore, we reject the null hypothesis and conclude that there exists a change point
in the Rt series and that the change occurs at the 88th position. This change point corresponds to
the 89th position of the original series with a stock return value of 1278.702 on July 11, 1997,
which may have been caused by the Asian financial crisis of 1997.
• Then we consider the sub-sequence Rt for t from 89 to 261, and the results are QMIC(173) =

−250.2238, min1≤k≤173 QMIC(k) = QMIC(103) = −244.9595, and Wn = 10.1956. Through B
= 2000 bootstrap sampling, the P-value is approximately equal to 0.006, and hence, there is a
change point in the sub-sequence of Rt. The change point occurs at position 103 of the sub-
sequence, corresponding to the 103 + 88 = 191st position of the whole Rt, which is at the 192nd
position of the original data with a stock return 675.134 on July 2, 1999. We believe that the
Russian financial crisis of 1998 may have contributed to this change point.
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• Next, we consider the sub-sequence Rt for t from 89 to 191, and we observe that QMIC(103) =

−90.7087, min1≤k≤103 QMIC(k) = QMIC(80) = −80.0023, Wn = 3.1978, and the approximated
P-value = 0.1065 > 0.05. Therefore, there is no sufficient reason to assume that there is a change
point in this sub-sequence.
• Furthermore, the Rt sequence for t from 1 to 88 is considered. The QMIC(88) = −261.4871,

Wn = 7.39759, and min1≤k≤88 QMIC(k) = QMIC(40) = −255.4527. The P-value obtained
from B = 2000 bootstrap samples is 0.018, and thus there is a change point at position 40,
which is equivalent to the 41st position in the Brazilian S t series with a stock return of 728
on August 9, 1996. This change point may be due to the financial crisis of Mexico in 1995.

(a) Values of Wn for Rt, t from 1 to 261. (b) Values of Wn for Rt, t from 89 to 261.

(c) Values of Wn for Rt, t from 89 to 191. (d) Values of Wn for Rt, t from 1 to 88.

Figure 5. The corresponding values of the Wn test statistic for each sequence of Brazilian Rt

with the possible locations of the change points.

The graphs of the Brazilian stock return S t and return rate Rt with the locations of the corresponding
change points are presented in Figure 6.

In summary, we can see that there are three change points in the Brazilian stock return, and the
corresponding results can be found in Table 5. The first change point on August 9, 1996, coincides
with the aftermath of the 1995 Mexican financial crisis, reflecting the broader regional economic
instability. The second change point on July 11, 1997, corresponds to the onset of the 1997 Asian
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financial crisis, highlighting the global impact on emerging markets, including Brazil. The third change
point on July 2, 1999, aligns with the aftermath of the 1998 Russian financial crisis, demonstrating the
sensitivity of the Brazilian market to global financial disturbances.

(a) Detected change points in Rt. (b) Detected change points in stock return S t.

Figure 6. Detected change points in stock return rate Rt and stock return S t.

Table 5. Change points of the Brazilian stock return data.

Location Date Value Possible reason
41st August 9, 1996 728.000 The Mexican financial crisis in 1995
89th July 11, 1997 1278.702 The Asian financial crisis in 1997
192nd July 2, 1999 675.134 The Russian financial crisis in 1998

Arellano-Valle, Castro, and Loschi [2] showed that there was one change point in Brazilian stock
returns and that the change point occurred in the first week of August 1997, while Ngunkeng and
Wei [15] suggested that there were four change points in the data, occurring on July 11, 1997,
March 8, 1996, July 31, 1998, and June 2, 2000, respectively. In this paper, using our proposed method,
a total of three variation points are detected, including the most probable one (July 11, 1997), and the
other two change points occur where there are significant changes in Brazilian stock return data. Our
method ensures that the change points do not occur at the beginning or the end of the process, compared
to Ngunkeng’s results.

5.3. The Mexican stock market

Additionally, the Mexican stock return data are subjected to a similar analytical scrutiny,
maintaining methodological consistency across all datasets.

To examine the independence of the Mexican stock market data, we calculated the statistic
Q24 =261×

∑24
i=1 r2

i = 23.77342, which is less than the critical value χ2
0.95(24) = 36.415. This leads us to

not reject the null hypothesis, suggesting that the Rt series for the Mexican market are independent. The
left graph in Figure 7 depicts the ACF values of the Rt series, and the right graph presents the normal
Q-Q plot, which indicates a deviation from normality. Furthermore, the application of normality tests,
such as the Shapiro-Wilk test, substantiates the nonconformance with the normality assumption. The
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estimated parameters for the fitted skew normal distribution are as follows:

µ̂ = −0.0302 (SE = 0.0091), σ̂ = 0.0598 (SE = 0.0055), λ̂ = 1.0368 (SE = 0.3554).

(a) ACF values of Rt. (b) The normal Q-Q plot of Rt.

Figure 7. The behavior of the stock return rate Rt series of the Mexican market.

The procedures and results of change point detection in the Rt dataset of the Mexican stock market
are presented below:

• We first screen the whole Rt series from 1 to 261 for possible changes. Under the null hypothesis,
we obtain that QMIC(261) = −522.5629, min1≤k≤261 QMIC(k) = QMIC(103) = −528.2583, the
test statistic Wn = 22.3890, and the approximated P-value = 0.000 < 0.05 with B = 2000 bootstrap
sampling. Therefore, we reject the null hypothesis and conclude that there exists a change point
in the Rt series and that the change occurs at the 103rd position. This change point corresponds to
the 104th position of the original series with a stock return value of 1242.851 on October 24, 1997.
• Similarly, we examine all possible subsequences using the binary segmentation method. We

identified another change at the 152nd position in the Rt series, corresponding to a stock return
value of 791.198. This change occurred on September 25, 1998.

In summary, we have identified changes at the 104th and 152nd positions, corresponding to
October 24, 1997, and September 25, 1998, respectively. These changes may have been influenced
by the Asian financial crisis of 1997 and the Russian financial crisis of 1998. Figure 8 displays the
monthly stock return rate and the monthly stock return index for Mexico, including identified change
points.

Arellano-Valle, Castro, and Loschi [2] showed that there was one change point in Mexican stock
returns and that the change point occurred in the 1st week of September 1997. In contrast, the proposed
QMIC approach identifies two distinct changes at the 104th and the 152nd positions, respectively,
whereas another analytical method detects only a single change.
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(a) Detected change points in Rt. (b) Detected change points in stock return S t.

Figure 8. Detected change points in stock return rate Rt and stock return S t.

By analyzing these three examples, it can be seen that our approach not only produces analytic
results that are very similar to those obtained from a classical method based on the log-likelihood
function but also provides programs for complex models with intractable likelihood functions.

6. Conclusions

In this study, we propose an enhancement to the modified information criterion (MIC) for detecting
change points in skew normal distribution models by integrating the expectation-maximization
(EM) algorithm’s Q-function. This novel QMIC framework establishes a procedure for detecting
simultaneous changes in all three parameters of a skew normal distribution, thereby improving the
precision and robustness of change point detection across various data sequences. The complexity
of deriving an analytic asymptotic distribution for the test statistic under QMIC is addressed through
bootstrap simulations, allowing for flexible and accurate determination of critical values at different
significance levels. Extensive simulations demonstrate that QMIC outperforms traditional methods,
such as the MIC and the Bayesian information criterion (BIC), by more effectively capturing the
nuances of skew normal distributions, particularly in datasets with non-normal characteristics.

The application of QMIC to stock market datasets highlights its practical utility, successfully
identifying multiple change points that may be overlooked by conventional methods. This capability
is especially valuable in financial data analysis, where detecting subtle shifts can significantly impact
decision-making processes. The method’s ability to uncover intricate structural changes underscores
its potential for broader applications across various domains. In summary, the QMIC framework
presents a valuable contribution to change point detection methodologies, offering a robust, sensitive,
and versatile tool that complements existing state-of-the-art techniques, enhancing both the theoretical
understanding and practical analysis of complex data.
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