This paper introduces a novel bivariate distribution derived from the univariate exponentiated generalized inverted exponential (EGIE) distribution, which we term the bivariate exponentiated generalized inverted exponential (BEGIE) distribution. The newly proposed distribution belongs to the Marshall-Olkin class. Several statistical attributes of the BEGIE distribution are explored. The utility of this distribution is examined through applications on both bivariate data and dependent competing risks data. Estimation processes for the model's parameters, using maximum likelihood and Bayesian methods, are outlined for scenarios involving both bivariate and dependent competing risks data. Due to the absence of closed-form solutions for these estimators, numerical optimization techniques are employed. Furthermore, the proposed distribution is illustrated and evaluated through the analysis of three real datasets: two involving bivariate data, and the other involving dependent competing risks data.
Citation: Ammar M. Sarhan, Rabab S. Gomaa, Alia M. Magar, Najwan Alsadat. Bivariate exponentiated generalized inverted exponential distribution with applications on dependent competing risks data[J]. AIMS Mathematics, 2024, 9(10): 29439-29473. doi: 10.3934/math.20241427
This paper introduces a novel bivariate distribution derived from the univariate exponentiated generalized inverted exponential (EGIE) distribution, which we term the bivariate exponentiated generalized inverted exponential (BEGIE) distribution. The newly proposed distribution belongs to the Marshall-Olkin class. Several statistical attributes of the BEGIE distribution are explored. The utility of this distribution is examined through applications on both bivariate data and dependent competing risks data. Estimation processes for the model's parameters, using maximum likelihood and Bayesian methods, are outlined for scenarios involving both bivariate and dependent competing risks data. Due to the absence of closed-form solutions for these estimators, numerical optimization techniques are employed. Furthermore, the proposed distribution is illustrated and evaluated through the analysis of three real datasets: two involving bivariate data, and the other involving dependent competing risks data.
[1] | M. V. Aarset, How to identify a bathtub hazard rate, IEEE Trans. Reliab., R-36 (1987), 106–108. https://doi.org/10.1109/TR.1987.5222310 doi: 10.1109/TR.1987.5222310 |
[2] | A. M. Abouammoh, A. M. Alshingiti, Reliability estimation of generalized inverted exponential distribution, J. Stat. Comput. Simul., 79 (2009), 1301–1315. http://doi.org/10.1080/00949650802261095 doi: 10.1080/00949650802261095 |
[3] | J. Albert, Bayesian computation with R, 2 Eds., New York: Springer, 2009. https://doi.org/10.1007/978-0-387-92298-0 |
[4] | A. A. Al-Shomrani, New bivariate family of distributions based on any copula function: statistical properties, Heliyon, 9 (2023), e15160. https://doi.org/10.1016/j.heliyon.2023.e15160 doi: 10.1016/j.heliyon.2023.e15160 |
[5] | F. A. Alqallaf, D. Kundu, A bivariate inverse generalized exponential distribution and its applications in dependent competing risks model, Commun. Stat.-Simul. Comput., 51 (2022), 7019–7036. https://doi.org/10.1080/03610918.2020.1821888 doi: 10.1080/03610918.2020.1821888 |
[6] | T. M. Cover, J. A. Thomas, Elements of information theory, 2 Eds., Wiley, 2012. https://doi.org/10.1002/047174882X |
[7] | K. Chen, Z. Jin, Z. Ying, Semiparametric analysis of transformation models with censored data, Biometrika, 89 (2002), 659–668. https://doi.org/10.1093/biomet/89.3.659 doi: 10.1093/biomet/89.3.659 |
[8] | W. X. Chen, C. X. Long, R. Yang, D. S. Yao, Maximum likelihood estimator of the location parameter under moving extremes ranked set sampling design, Acta Math. Appl. Sin. Engl. Ser., 37 (2021), 101–108. https://doi.org/10.1007/s10255-021-0998-8 doi: 10.1007/s10255-021-0998-8 |
[9] | S. Dey, Inverted exponential distribution as a life distribution model from a Bayesian viewpoint, Data Science Journal, 6 (2007), 107–113. https://doi.org/10.2481/dsj.6.107 doi: 10.2481/dsj.6.107 |
[10] | A. El-Gohary, A. M. Sarhan, The Distributions of sums, products, ratios and differences for Marshall-Olkin Bivariate exponential distribution, International Journal of Applied Mathematics, 20 (2007), 351. |
[11] | C. Genest, K. Ghoudi, L.-P. Rivest, A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika, 82 (1995), 543–552. https://doi.org/10.1093/biomet/82.3.543 doi: 10.1093/biomet/82.3.543 |
[12] | F. Kawsar, S. P. Ahmad, The exponentiated inverted exponential distribution, Journal of Applied Information Science, 5 (2017), 35–41. |
[13] | S. Kotz, N. Balakrishnan, N. L. Johnson, Continuous multivariate distributions: models and applications, 2 Eds., New York: Wiley, 2000. https://doi.org/10.1002/0471722065 |
[14] | D. Kundu, A. K. Dey, Estimating the parameters of the Marshall Olkin bivariate Weibull distribution by EM algorithm, Comput. Stat. Data Anal., 53 (2009), 956–965. https://doi.org/10.1016/j.csda.2008.11.009 doi: 10.1016/j.csda.2008.11.009 |
[15] | D. Kundu, A. K. Gupta, Bayes estimation for the Marshall-Olkin bivariate Weibull distribution, Comput. Stat. Data Anal., 57 (2013), 271–281. https://doi.org/10.1016/j.csda.2012.06.002 doi: 10.1016/j.csda.2012.06.002 |
[16] | D. Kundu, A. M. Sarhan, R. D. Gupta, On Sarhan-Balakrishnan bivariate distribution, Journal of Statistics Applications & Probability, 1 (2012), 163–170. https://doi.org/10.12785/jsap/010302 doi: 10.12785/jsap/010302 |
[17] | E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist., 37 (1966), 1137–1153. https://doi.org/10.1214/aoms/1177699260 |
[18] | Y. Li, J. Sun, S. Song, Statistical analysis of bivariate failure time data with Marshall-Olkin Weibull models, Comput. Stat. Data Anal., 56 (2012), 2041–2050. https://doi.org/10.1016/j.csda.2011.12.010 doi: 10.1016/j.csda.2011.12.010 |
[19] | A. W. Marshall, I. Olkin, A multivariate exponential distribution, J. Amer. Stat. Assoc., 62 (1967), 30–44. https://doi.org/10.1080/01621459.1967.10482885 doi: 10.1080/01621459.1967.10482885 |
[20] | T. Manshi, A. M. Sarhan, B. Smith, A new bivariate distribution with applications on dependent competing risks data, International Journal of Statistics and Probability, 12 (2023), 27–39. https://doi.org/10.5539/ijsp.v12n3p27 doi: 10.5539/ijsp.v12n3p27 |
[21] | S. G. Meintanis, Test of fit for marshall-olkin distributions with applications, J. Stat. Plan. Infer., 137 (2007), 3954–3963. https://doi.org/10.1016/j.jspi.2007.04.013 doi: 10.1016/j.jspi.2007.04.013 |
[22] | R. B. Nelsen, An introduction to copulas, 2 Eds., New York: Springer, 2006. https://doi.org/10.1007/0-387-28678-0 |
[23] | National Eye Institute, Diabetic retinopathy, 2024. Available from: https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/diabetic-retinopathy. |
[24] | P. E. Oguntunde, A. O. Adejumo, O. S. Balogun, Statistical properties of the exponentiated generalized inverted exponential distribution, Applied Mathematics, 4 (2014), 47–55. https://doi.org/10.5923/j.am.20140402.02 doi: 10.5923/j.am.20140402.02 |
[25] | E. A. Pena, A. K. Gupta, Bayes estimation for the Marshall-Olkin exponential distribution, J. Roy. Stat. Soc. B, 52 (1990), 379–389. https://doi.org/10.1111/j.2517-6161.1990.tb01794.x doi: 10.1111/j.2517-6161.1990.tb01794.x |
[26] | A. M. Sarhan, The bivariate generalized Rayleigh distribution, Journal of Mathematical Sciences and Modelling, 2 (2019), 99–111. https://doi.org/10.33187/jmsm.439873 doi: 10.33187/jmsm.439873 |
[27] | A. M. Sarhan, J. Apaloo, D. Kundu, A new bivariate lifetime distribution: properties, estimations and its extension, Commun. Stat.-Simul. Comput., 53 (2024), 879–896. https://doi.org/10.1080/03610918.2022.2034866 doi: 10.1080/03610918.2022.2034866 |
[28] | A. M. Sarhan, N. Balakrishnan, A new class of bivariate distributions and its mixture, J. Multivariate Anal., 98 (2007), 1508–1527. https://doi.org/10.1016/j.jmva.2006.07.007 doi: 10.1016/j.jmva.2006.07.007 |
[29] | A. M. Sarhan, A. El-Gohary, A. H. El-Bassiouny, N. Balakrishnan, A class of bivariate linear failure rate distributions and their mixtures, International Journal of Reliability and Applications, 10 (2009), 63–79. |
[30] | A. M. Sarhan, D. C. Hamilton, B. Smith, D. Kundu, The bivariate generalized linear failure rate distribution and its multivariate extension, Comput. Stat. Data Anal., 55 (2011), 644–654. https://doi.org/10.1016/j.csda.2010.06.006 doi: 10.1016/j.csda.2010.06.006 |
[31] | A. M. Sarhan, D. Kundu, Generalized linear failure rate distribution, Commun. Stat.-Theory Meth., 38 (2009), 642–660. https://doi.org/10.1080/03610920802272414 doi: 10.1080/03610920802272414 |
[32] | S. Shoaee, On a new class of bivariate survival distributions based on the model of dependent lives and its generalization, Applications and Applied Mathematics, 15 (2020), 801–829. |
[33] | C. Y. Wada, P. K. Sen, S. E. Shimakura, A bivariate exponential model with covariates in competing risk data, Calcutta Statistical Association Bulletin, 46 (1996), 197–210. https://doi.org/10.1177/0008068319960305 doi: 10.1177/0008068319960305 |
[34] | C.-P. Wang, M. Ghosh, Bayesian analysis of bivariate competing risks models with covariates, J. Stat. Plan. Infer., 115 (2003), 441–459. https://doi.org/10.1016/S0378-3758(02)00177-5 doi: 10.1016/S0378-3758(02)00177-5 |