Research article Special Issues

Improved Kneser-type oscillation criterion for half-linear dynamic equations on time scales

  • Received: 31 August 2024 Revised: 29 September 2024 Accepted: 08 October 2024 Published: 17 October 2024
  • MSC : 39A10, 39A21, 39A99, 34C10, 34C15, 34K11, 34K42, 34N05

  • We study the Kneser-type oscillation criterion for a class of second-order half-linear functional dynamic equations on an arbitrary time scale utilizing the integral averaging approach and the Riccati transformation method. The results show an improvement in Kneser-type when compared to some known results. We provide some illustrative examples to demonstrate the significance of our main results.

    Citation: Taher S. Hassan, Amir Abdel Menaem, Hasan Nihal Zaidi, Khalid Alenzi, Bassant M. El-Matary. Improved Kneser-type oscillation criterion for half-linear dynamic equations on time scales[J]. AIMS Mathematics, 2024, 9(10): 29425-29438. doi: 10.3934/math.20241426

    Related Papers:

  • We study the Kneser-type oscillation criterion for a class of second-order half-linear functional dynamic equations on an arbitrary time scale utilizing the integral averaging approach and the Riccati transformation method. The results show an improvement in Kneser-type when compared to some known results. We provide some illustrative examples to demonstrate the significance of our main results.



    加载中


    [1] S. Hilger, Analysis on measure chains–A unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56. https://doi.org/10.1007/BF03323153 doi: 10.1007/BF03323153
    [2] M. Bohner, A. Peterson, Dynamic equations on time scales: an introduction with applications, Birkhäuser Boston, 2001. https://doi.org/10.1007/978-1-4612-0201-1
    [3] V. Kac, P. Chueng, Quantum calculus, Springer New York, 2002. https://doi.org/10.1007/978-1-4613-0071-7
    [4] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhäuser Boston, 2003. https://doi.org/10.1007/978-0-8176-8230-9
    [5] R. P. Agarwal, M. Bohner, D. O'Regan, A. Peterson, Dynamic equations on time scales: a survey, J. Comput. Appl. Math., 141 (2002), 1–26. https://doi.org/10.1016/S0377-0427(01)00432-0 doi: 10.1016/S0377-0427(01)00432-0
    [6] R. P. Agarwal, S. L. Shieh, C. Yeh, Oscillation criteria for second-order retarded differential equations, Math. Comput. Model., 26 (1997), 1–11. https://doi.org/10.1016/S0895-7177(97)00141-6 doi: 10.1016/S0895-7177(97)00141-6
    [7] B. Baculikova, Oscillation of second-order nonlinear noncanonical differential equations with deviating argument, Appl. Math. Lett., 91 (2019), 68–75. https://doi.org/10.1016/j.aml.2018.11.021 doi: 10.1016/j.aml.2018.11.021
    [8] O. Bazighifan, E. M. El-Nabulsi, Different techniques for studying oscillatory behavior of solution of differential equations, Rocky Mountain J. Math., 51 (2021), 77–86. https://doi.org/10.1216/rmj.2021.51.77 doi: 10.1216/rmj.2021.51.77
    [9] J. Džurina, I. Jadlovská, A note on oscillation of second-order delay differential equations, Appl. Math. Lett., 69 (2017), 126–132. https://doi.org/10.1016/j.aml.2017.02.003 doi: 10.1016/j.aml.2017.02.003
    [10] L. Erbe, T. S. Hassan, A. Peterson, S. H. Saker, Oscillation criteria for sublinear half-linear delay dynamic equations on time scales, Int. J. Differ. Equ., 3 (2008), 227–245.
    [11] S. R. Grace, M. Bohner, R. P. Agarwal, On the oscillation of second-order half-linear dynamic equations, J. Differ. Equ. Appl., 15 (2009), 451–460. https://doi.org/10.1080/10236190802125371 doi: 10.1080/10236190802125371
    [12] L. Erbe, T. S. Hassan, A. Peterson, S. H. Saker, Oscillation criteria for half-linear delay dynamic equations on time scales, Nonlinear Dyn. Syst. Theory, 9 (2009), 51–68.
    [13] T. S. Hassan, Oscillation criteria for half-linear dynamic equations on time scales, J. Math. Anal. Appl., 345 (2008), 176–185. https://doi.org/10.1016/j.jmaa.2008.04.019 doi: 10.1016/j.jmaa.2008.04.019
    [14] S. H. Saker, Oscillation criteria of second-order half-linear dynamic equations on time scales, J. Comput. Appl. Math., 177 (2005), 375–387. https://doi.org/10.1016/j.cam.2004.09.028 doi: 10.1016/j.cam.2004.09.028
    [15] I. Jadlovská, Iterative oscillation results for second-order differential equations with advanced argument, Electron. J. Differ. Equ., 2017 (2017), 162.
    [16] M. Bohner, K. S. Vidhyaa, E. Thandapani, Oscillation of noncanonical second-order advanced differential equations via canonical transform, Constr. Math. Anal., 5 (2022), 7–13. https://doi.org/10.33205/cma.1055356 doi: 10.33205/cma.1055356
    [17] G. E. Chatzarakis, J. Džurina, I. Jadlovská, New oscillation criteria for second-order half-linear advanced differential equations, Appl. Math. Comput., 347 (2019), 404–416. https://doi.org/10.1016/j.amc.2018.10.091 doi: 10.1016/j.amc.2018.10.091
    [18] T. S. Hassan, C. Cesarano, R. A. El-Nabulsi, W. Anukool, Improved Hille-type oscillation criteria for second-order quasilinear dynamic equations, Mathematics, 10 (2022), 3675. https://doi.org/10.3390/math10193675 doi: 10.3390/math10193675
    [19] G. E. Chatzarakis, O. Moaaz, T. Li, B. Qaraad, Some oscillation theorems for nonlinear second-order differential equations with an advanced argument, Adv. Differ. Equ., 2020 (2020), 160. https://doi.org/10.1186/s13662-020-02626-9 doi: 10.1186/s13662-020-02626-9
    [20] S. Frassu, G. Viglialoro, Boundedness in a chemotaxis system with consumed chemoattractant and produced chemorepellent, Nonlinear Anal., 213 (2021), 112505. https://doi.org/10.1016/j.na.2021.112505 doi: 10.1016/j.na.2021.112505
    [21] T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differ. Integral Equ., 34 (2021), 315–336. https://doi.org/10.57262/die034-0506-315 doi: 10.57262/die034-0506-315
    [22] C. Huang, B. Liu, H. Yang, J. Cao, Positive almost periodicity on SICNNs incorporating mixed delays and $D$ operator, Nonlinear Anal. Model. Control, 27 (2022), 719–739. https://doi.org/10.15388/namc.2022.27.27417 doi: 10.15388/namc.2022.27.27417
    [23] S. Gong, M. Han, An estimate of the number of limit cycles bifurcating from a planar integrable system, Bull. Sci. Math., 176 (2022), 103118. https://doi.org/10.1016/j.bulsci.2022.103118 doi: 10.1016/j.bulsci.2022.103118
    [24] H. Li, Y. Zhu, J. Liu, Y. Wang, Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols, Appl. Math. Comput., 326 (2018), 1–15. https://doi.org/10.1016/j.amc.2018.01.005
    [25] Z. Jiao, I. Jadlovská, T. Li, Global existence in a fully parabolic attraction-repulsion chemotaxis system with singular sensitivities and proliferation, J. Differ. Equations, 411 (2024), 227–267. https://doi.org/10.1016/j.jde.2024.07.005 doi: 10.1016/j.jde.2024.07.005
    [26] T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 109. https://doi.org/10.1007/s00033-023-01976-0 doi: 10.1007/s00033-023-01976-0
    [27] R. P. Agarwal, M. Bohner, T. Li, Oscillatory behavior of second-order half-linear damped dynamic equations, Appl. Math. Comput., 254 (2015), 408–418. https://doi.org/10.1016/j.amc.2014.12.091 doi: 10.1016/j.amc.2014.12.091
    [28] M. Bohner, T. S. Hassan, T. Li, Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments, Indag. Math., 29 (2018), 548–560. https://doi.org/10.1016/j.indag.2017.10.006 doi: 10.1016/j.indag.2017.10.006
    [29] T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 86. https://doi.org/10.1007/s00033-019-1130-2 doi: 10.1007/s00033-019-1130-2
    [30] T. S. Hassan, M. Bohner, I. L. Florentina, A. Abdel Menaem, M. B. Mesmouli, New criteria of oscillation for linear Sturm-Liouville delay noncanonical dynamic equations, Mathematics, 11 (2023), 4850. https://doi.org/10.3390/math11234850 doi: 10.3390/math11234850
    [31] G. V. Demidenko, I. I. Matveeva, Asymptotic stability of solutions to a class of second-order delay differential equations, Mathematics, 9 (2021), 1847. https://doi.org/10.3390/math9161847 doi: 10.3390/math9161847
    [32] I. Györi, G. Ladas, Oscillation theory of delay differential equations with applications, Oxford Academic, 1991. https://doi.org/10.1093/oso/9780198535829.001.0001
    [33] A. Kneser, Untersuchungen über die reellen Nullstellen der integrale linearer differentialgleichungen, Math. Ann., 42 (1893), 409–435. https://doi.org/10.1007/BF01444165 doi: 10.1007/BF01444165
    [34] O. Došlý, P. Řehák, Half-linear differential equations, Vol. 202, Elsevier, 2005.
    [35] R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for second order linear, half-linear superlinear and sublinear dynamic equations, Springer Dordrecht, 2002. https://doi.org/10.1007/978-94-017-2515-6
    [36] I. Jadlovská, J. Džurina, Kneser-type oscillation criteria for second-order half-linear delay differential equations, Appl. Math. Comput., 380 (2020), 125289. https://doi.org/10.1016/j.amc.2020.125289 doi: 10.1016/j.amc.2020.125289
    [37] T. S. Hassan, A. A. Menaem, Y. Jawarneh, N. Iqbal, A. Ali, Oscillation criterion of Kneser type for half-linear second-order dynamic equations with deviating arguments, AIMS Math., 9 (2024), 19446–19458. https://doi.org/10.3934/math.2024947 doi: 10.3934/math.2024947
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(156) PDF downloads(24) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog