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1. Introduction

The theory of time scales, which unites discrete and continuous analysis was proposed in 1988 by
Stefan Hilger, see [1]. Numerous interesting time scales exist, such as T =N, T =R, and T =qN0 := {qn :
n ∈ N0 for q > 1}. For a wonderful time-scales calculus introduction and application, see [1–5].

Several researchers from numerous applied fields have taken an interest in the phenomenon of
oscillation. The fundamental reason for this is that oscillation has a huge variety of engineering and
science applications. References [6–9] point to numerous studies on the oscillation of delay differential
equation solutions. Research on second-order delay dynamic equations in [10–14] establishes various
oscillation standards for diverse second-order dynamic equations. When comparing the study on
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advanced oscillation to other areas of research, there are not many publications that deal with this
topic specifically [15–19]. We advised the reader to [20–24] in order to have a more understanding
of this topic. In dynamical models, deviation and oscillation scenarios are often formulated by
means of external sources and/or nonlinear diffusion, perturbing the natural evolution of related
systems; see, e.g., [20, 21, 25, 26]. Since these fields have significant practical implications, a
thorough comprehensive understanding of the mathematical principles supporting them is necessary.
Researchers looking for more information can view the papers [27–31]. Therefore, this study is focused
on the oscillation of the second-order half-linear functional dynamic equation(

α1(s)
∣∣∣κ∆(s)

∣∣∣%−1
κ∆(s)

)∆

+ α2(s) |κ(µ(s))|%−1 κ(µ(s)) = 0. (1.1)

On an above-unbounded time scale T, where s ∈ [s0,∞)T, s0 ≥ 0, s0 ∈ T; % is a positive real number;
α1, α2 ∈ Crd ([t0,∞)T,R+) such that

R̃ (s) :=
∫ s

s0

∆ω

α
1/%
1 (ω)

→ ∞ as s→ ∞; (1.2)

and µ ∈ Crd (T,T) is a nondecreasing rd-continuous function such that lims→∞ µ(s) = ∞.
By a solution of the Eq (1.1), we mean a nontrivial real-valued function κ ∈ C1

rd[sx,∞)T, sκ ∈
[s0,∞)T such that α1(s)

∣∣∣κ∆
∣∣∣%−1
κ∆ ∈ C1

rd[sκ,∞)T and κ satisfies (1.1) on [sκ,∞)T, where Crd is the set of
right-dense continuous functions. Let s1 ≥ s0 be a given initial point, φ be a given initial rd-continuous
function on

[
µ∗(s1), s1

]
with µ∗(s1) = mins≥s1{µ(s), s} and β be a given initial constant. An initial value

problem (1.1) with any initial conditions κ(s) = φ(s) for s ∈
[
µ∗(s1), s1

]
and κ∆(s) = β, has a solution

which exists on the whole interval [s0,∞)T, see [2, 32]. If a solution κ of (1.1) is neither eventually
positive nor eventually negative, it is known as oscillatory; if it is neither, it is called nonoscillatory. We
shall not take into account the solutions that vanish in a neighborhood around infinity. The following
shows the differential oscillation results related to (1.1) oscillation results on time scales. It offers
an extensive summary of the important contributions that this work has made. Since Sturm’s major
contribution to the literature, Euler differential equations and their many generalizations have been an
essential component of oscillation theory. The second-order Euler equation is one of the most well-
known and often used that is

κ′′(s) +
λ

s2κ(s) = 0, λ > 0, (1.3)

which is oscillatory if and only if

λ >
1
4
.

Among the most important oscillation criteria of second-order differential equations are Kneser-
type [33], which used Sturmian comparison methods, and the oscillatory behavior of (1.3) to
investigate that

κ′′(s) + α2(s)κ(s) = 0, (1.4)

is oscillatory if

lim inf
s→∞

s2α2 (s) >
1
4
. (1.5)

Many works that deduce Kneser-type criteria for different types of differential equations have been
produced. Here, some of these works, see [34–36]:
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(I) The linear equation (
α1(s)κ′(s)

)′
+ α2(s)κ (s) = 0 (1.6)

oscillates if
lim inf

s→∞
α1(s)R̃2(s)α2 (s) >

1
4
. (1.7)

(II) The half-linear equation (
|κ′(s)|%−1 κ′(s)

)′
+ α2(s) |κ (s)|%−1 κ (s) = 0 (1.8)

oscillates if

lim inf
s→∞

s%+1α2 (s) >
(

%

% + 1

)%+1

. (1.9)

We note that the Euler equation(
|κ′(s)|%−1 κ′(s)

)′
+

λ

s%+1 |κ (s)|%−1 κ (s) = 0, α2 > 0 (1.10)

has a solution that is nonoscillatory κ(s) = s%/(%+1) if λ =

(
%

% + 1

)%+1

. That is to say, for all

solutions of the Eq (1.10), the constant
(

%

% + 1

)%+1

is a lower bound of oscillation, for all solutions

of (1.10).

Recently, Hassan et al. [37] found some interesting Kneser-type criteria for oscillation for Eq (1.1)
as follows:

Theorem 1.1 ( [37]). Assume that l := lim inf s→∞
s

σ(s)
> 0 and

lim inf
s→∞

sϕ% (s)α2 (s)
α1 (s)

>
1

l%(%+1)

(
%

% + 1

)%+1

, (1.11)

where ϕ(s) := min{s, µ(s)}, then all solutions of Eq (1.1) oscillate.

It should be mentioned that this study was significantly influenced by the works made by [33–35,
37]. The present research aims to conclude some sharp Kneser-type oscillation conditions for (1.1)
with µ (s) ≤ s and µ (s) ≥ s.

2. An oscillation criterion of (1.1) when µ (s) ≤ s

This section focuses on Kneser-type oscillation of (1.1) with µ (s) ≤ s.
First, we introduce an important lemma that as a fundamental role in establishing our results.

Lemma 2.1. [28, Lemma 2.2] Assume that

κ(s) > 0, κ∆(s) > 0,
[
α1 (s)

∣∣∣κ∆ (s)
∣∣∣%−1
κ∆ (s)

]∆

< 0 on [s0,∞)T.

Then (
κ (s)
s − s0

)∆

< 0, and κ (s) ≥ (s − s0) κ∆ (s) , on (s0,∞)T.
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Theorem 2.1. For 0 < % ≤ 1. If l := lim inf s→∞
s

σ(s)
> 0 and

Λ := lim inf
s→∞

s1−%σ% (s) µ% (s)α2 (s)
α1 (s)

>
1

l%(1−%)

(
%

% + 1

)%+1

, (2.1)

then all solutions of Eq (1.1) oscillate.

Proof. Assume to the contrary that Eq (1.1) has a nonoscillatory solution κ on [s0,∞)T. Without loss
of generality, we let κ(µ(s)) > 0 for s ∈ [s0,∞)T. By using Lemma 2.1, there exists s1 ∈ [s0,∞)T such
that for s ≥ s1,

κ∆(s) > 0,
(
κ (s)
s − s0

)∆

< 0, κ (s) ≥ (s − s0) κ∆ (s) , and
[
α1 (s)

∣∣∣κ∆ (s)
∣∣∣%−1
κ∆ (s)

]∆

< 0. (2.2)

Let

Ω(s) := α1 (s)
(
κ∆ (s)
κ (s)

)%
. (2.3)

We have

Ω∆ (s) =

(
1
κ%(s)

[
α1 (s)

(
κ∆ (s)

)%])∆

=
1
κ% (s)

[
α1 (s)

(
κ∆ (s)

)%]∆

−
(κ%(s))∆

κ%(s)κ%(σ(s))

[
α1 (s)

(
κ∆ (s)

)%]σ
(1.1)
= −α2(s)

(
κ (µ (s))
κ (s)

)%
−

(κ%(s))∆

κ%(s)
Ωσ (s) . (2.4)

Pötzsche chain rule ( [2, Theorem 1.90]) application yields

(κ%(s))∆

κ%(s)
=

%

κ%(s)

∫ 1

0
[(1 − h) κ (s) + hκσ (s)]%−1 dh κ∆ (s)

≥ %

(
κ(s)
κσ (s)

)1−%
κ∆(s)
κ (s)

= %

(
κ(s)
κσ (s)

)1−% (
Ω (s)
α1 (s)

)1/%

.

Hence,

Ω∆ (s) ≤ −α2(s)
(
κ (µ (s))
κ (s)

)%
− %Ωσ (s)

(
Ω (s)
α1 (s)

)1/% (
κ(s)
κσ (s)

)1−%

.

Assume 0 < κ < 1 is arbitrary. By using the fact that
(
κ (s)
s − s0

)∆

< 0, there is sκ ∈ [s1,∞)T such that for

s ∈ [sκ,∞)T,

Ω∆(s) ≤ −κ%α2(s)
(
µ (s)

s

)%
− %κ1−%Ωσ (s)

(
Ω (s)
α1 (s)

)1/% ( s
σ (s)

)1−%

. (2.5)
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Define

Ω∗ := lim inf
s→∞

s%Ω (s)
α1 (s)

. (2.6)

It is obvious that Ω∗ ∈ (0,∞) due to (2.2) and (2.3). For any ε ∈ (0, 1), there exists S ∈ [sκ,∞)T such
that for s ∈ [S ,∞)T,

s1−%σ% (s) µ% (s)α2 (s)
α1 (s)

≥ εΛ,
s

σ (s)
≥ εl, and

s%Ω (s)
α1 (s)

≥ εΩ∗. (2.7)

Therefore,

Ω∆(s) ≤ −εκ%Λ
α1 (s)
tσ% (s)

− %κ1−%α
− 1
%

1 (s)
(

s
σ (s)

)1−%

Ω1/% (s) Ωσ (s)

= −εκ%Λ
α1 (s)
sσ% (s)

− %κ1−%
(

s
σ (s)

)1−% ασ1 (s)
sσ% (s)

(
t%Ω (s)
α1 (s)

)1/% ( s%Ω (s)
α1 (s)

)σ
≤ −εκ%Λ

α1 (s)
sσ% (s)

− %κ1−%ε2−%+1/%l1−%Ω1+1/%
∗

α1 (s)
sσ% (s)

= −

(
εκ%

Λ

%
+ κ1−%ε2−%+1/%l1−%Ω1+1/%

∗

)
%α1 (s)
sσ% (s)

.

Integrating from s to v, we obtain

Ω (v) −Ω (s) ≤ −

(
εκ%

Λ

%
+ κ1−%ε2−%+1/%l1−%Ω1+1/%

∗

) ∫ v

s

%α1 (ω)
ωσ% (ω)

∆ω

≤ −α1 (s)
(
εκ%

Λ

%
+ κ1−%ε2−%+1/%l1−%Ω1+1/%

∗

) ∫ v

s

%

ωσ% (ω)
∆ω.

Since Ω > 0 and letting v→ ∞, we have

Ω (s) ≥ α1 (s)
(
εκ%

Λ

%
+ κ1−%ε2−%+1/%l1−%Ω1+1/%

∗

) ∫ ∞

s

%

ωσ% (ω)
∆ω. (2.8)

Applying the Pötzsche chain rule ( [2, Theorem 1.90]) yields that

(ω%)∆ = %

∫ 1

0
[(1 − h)ω + hσ(ω)]%−1 dh ≤ %ω%−1. (2.9)

From the quotient rule and (2.9), we obtain(
−1
ω%

)∆

=
(ω%)∆

ω%σ%(ω)
≤

%

ωσ%(ω)
. (2.10)

Substituting (2.10) into (2.8), we deduce that
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Ω (s) ≥ α1 (s)
(
εκ%

Λ

%
+ κ1−%ε2−%+1/%l1−%Ω1+1/%

∗

) ∫ ∞

s

(
−1
ω%

)∆

∆ω

=
α1 (s)

s%

(
εκ%

Λ

%
+ κ1−%ε2−%+1/%l1−%Ω1+1/%

∗

)
.

Hence,

εκ%Λ ≤ %
s%Ω (s)
α1 (s)

− %κ1−%ε2−%+1/%l1−%Ω1+1/%
∗ .

Taking lim inf of every side as s→ ∞, we obtain

εκ%Λ ≤ %Ω∗ − %κ
1−%ε2−%+1/%l1−%Ω

1+ 1
%

∗ .

Due to ε and κ being arbitrary, we obtain

Λ ≤ %Ω∗ − %l1−%Ω
1+ 1

%

∗ .

Let
Y = %l1−%, X = %, and U = Ω∗.

Using the inequality

XU − YU1+ 1
% ≤

%%

(% + 1)%+1

X%+1

Y%
, X,Y > 0, (2.11)

we have,

Λ ≤
1

l%(1−%)

(
%

% + 1

)%+1

,

which provides the contradiction with (2.1). �

Theorem 2.2. Assume that % ≥ 1. If l := lim inf s→∞
s

σ(s)
> 0 and

ß := lim inf
s→∞

σ (s) µ% (s)α2 (s)
α1 (s)

>
1

l%(%−1)

(
%

% + 1

)%+1

, (2.12)

then all solutions of Eq (1.1) oscillate.

Proof. Assume to the contrary that Eq (1.1) has a nonoscillatory solution κ on [s0,∞)T. Without loss
of generality, we let κ(µ(s)) > 0 for s ∈ [s0,∞)T. As the proof of Theorem 2.1, there is sκ ∈ [s1,∞)T,
s1 ∈ [s0,∞)T, such that for s ∈ [sκ,∞)T,

Ω∆ (s) = −κ%α2(s)
(
µ (s)

s

)%
−

(κ%(s))∆

κ%(s)
Ωσ (s) ,

where Ω (s) is defined by (2.3). By the Pötzsche chain rule ( [2, Theorem 1.90]), we have

(κ%(s))∆

κ%(s)
=

%

κ%(s)

∫ 1

0
[(1 − h) κ (s) + hκσ (s)]%−1 dh κ∆ (s) ≥ %

κ∆(s)
κ (s)

= %

(
Ω (s)
α1 (s)

)1/%

.
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Thus,

Ω∆(s) ≤ −κ%α2(s)
(
µ (s)

s

)%
− %Ωσ (s)

(
Ω (s)
α1 (s)

)1/%

= −κ%α2(s)
(
µ (s)

s

)%
− %

ασ1 (s)
sσ% (s)

(
s%Ω (s)
α1 (s)

)σ (
s%Ω (s)
α1 (s)

)1/%

. (2.13)

For any ε ∈ (0, 1), there exists S ∈ [sκ,∞)T such that for s ∈ [S ,∞)T,

σ (s) µ% (s)α2 (s)
α1 (s)

≥ εß,
s

σ (s)
≥ εl, and

s%Ω (s)
α1 (s)

≥ εΩ∗, (2.14)

where Ω∗ is defined by (2.6). Substituting (2.14) into (2.13), we have

Ω∆(s) ≤ −εκ%ß
α1 (s)
s%σ (s)

− % (εΩ∗)1+1/% α
σ
1 (s)

sσ% (s)

≤ −

εκ%ß
%

+ (εΩ∗)1+1/%
(

s
σ (s)

)%−1 %α1 (s)
s%σ (s)

≤ −

(
εκ%

ß
%

+ ε%+1/%l%−1Ω1+1/%
∗

)
%α1 (s)
t%σ (s)

. (2.15)

Integrating (2.15) from s to v, we obtain

Ω (v) −Ω (s) ≤ −

(
εκ%

ß
%

+ ε%+1/%l%−1Ω1+1/%
∗

) ∫ v

s

%α1 (ω)
ω%σ (ω)

∆ω

≤ −α1 (s)
(
εκ%

ß
%

+ ε%+1/%l%−1Ω1+1/%
∗

) ∫ v

s

%

ω%σ (ω)
∆ω.

Since Ω > 0 and passing to the limit as v→ ∞, we obtain

−Ω (s) ≤ −α1 (s)
(
εκ%

ß
%

+ ε%+1/%l%−1Ω1+1/%
∗

) ∫ ∞

s

%

ω%σ (ω)
∆ω. (2.16)

Applying the Pötzsche chain rule ( [2, Theorem 1.90]), we obtain

(ω%)∆ = %

∫ 1

0
[(1 − h)ω + hσ(ω)]%−1dh ≤ %σ%−1(ω).

From the quotient rule and (2.9), we obtain(
−1
ω%

)∆

=
(ω%)∆

ω%σ%(ω)
≤

%

ω%σ(ω)
.

Hence,

−Ω (s) ≤ −α1 (s)
(
εκ%

ß
%

+ ε%+1/%l%−1Ω1+1/%
∗

) ∫ ∞

s

(
−1
ω%

)∆

∆ω = −
α1 (s)

s%

(
εκ%

ß
%

+ ε%+1/%l%−1Ω1+1/%
∗

)
.
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Then

εκ%ß ≤ %
[

s%Ω(s)
α1 (s)

− ε%+1/%l%−1Ω1+1/%
∗

]
.

Taking the lim inf as s→ ∞, yields

εκ%ß ≤ %Ω∗ − %ε%+1/%l%−1Ω1+1/%
∗ .

Since ε and κ are arbitrary, we achieve

ß ≤ %Ω∗ − %l%−1Ω1+1/%
∗ .

By the inequality (2.11), we arrive at

ß ≤
1

l%(%−1)

(
%

% + 1

)%+1

.

It provides us with the contradiction in (2.12). �

3. Oscillation criterion to (1.1) with µ (s) ≥ s

This section focuses on the Kneser-type oscillation criterion to Eq (1.1) when µ (s) ≥ s.

Theorem 3.1. For 0 < % ≤ 1. If l := lim inf s→∞
s

σ(s)
> 0 and

lim inf
s→∞

sσ% (s)α2 (s)
α1 (s)

>
1

l%(1−%)

(
%

% + 1

)%+1

, (3.1)

then all solutions of Eq (1.1) oscillate.

Proof. Assume to the contrary that Eq (1.1) has a nonoscillatory solution κ on [s0,∞)T. Without loss of
generality, we let κ(s) > 0 for s ∈ [s0,∞)T. As shown in the proof of Theorem 2.1, there is s1 ∈ [s0,∞)T
such that for s ∈ [s1,∞)T,

Ω∆ (s) ≤ −α2(s)
(
κ (µ (s))
κ (s)

)%
− %Ωσ (s)

(
Ω (s)
α1 (s)

)1/% (
κ(s)
κσ (s)

)1−%

.

By (2.2), we have for s ∈ [s1,∞)T,
κ (µ (s))
κ (s)

≥ 1. (3.2)

Hence,

Ω∆ (s) ≤ −α2(s) − %Ωσ (s)
(

Ω (s)
α1 (s)

)1/% (
κ(s)
κσ (s)

)1−%

.

The remainder of the proof is omitted because it can be proved similarly as in Theorem 2.1. �

Theorem 3.2. For % ≥ 1. If l := lim inf s→∞
s

σ(s)
> 0 and

lim inf
s→∞

s%σ (s)α2 (s)
α1 (s)

>
1

l%(%−1)

(
%

% + 1

)%+1

, (3.3)

then all solutions of Eq (1.1) oscillate.
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Proof. Assume to the contrary that Eq (1.1) has a nonoscillatory solution κ on [s0,∞)T. Without loss
of generality, we let κ(s) > 0 for s ∈ [s0,∞)T. As shown in the proof of Theorems 2.1 and 2.2, there is
s1 ∈ [s0,∞)T such that for s ∈ [s1,∞)T,

Ω∆ (s) ≤ −α2(s)
(
κ (µ (s))
κ (s)

)%
− %Ωσ (s)

(
Ω (s)
α1 (s)

)1/%

.

By (3.2), we have for s ∈ [s1,∞)T,

Ω∆ (s) ≤ −α2(s) − %Ωσ (s)
(

Ω (s)
α1 (s)

)1/%

.

The rest of the proof is omitted because it is similar to that of Theorem 2.2. �

4. Examples

The next examples illustrate how the theoretical concepts presented in this work can be applied.

Example 4.1. The generalized Euler second-order dynamic equations:

(1) For 0 < % ≤ 1, (
α1(s)

∣∣∣κ∆(s)
∣∣∣%−1
κ∆(s)

)∆

+ δ
α1(s)
sσ%(s)

|κ(s)|%−1 κ(s) = 0

and (
α1(s)

∣∣∣κ∆(s)
∣∣∣%−1
κ∆(s)

)∆

+ δ
α1(s)
sσ%(s)

|κ(σ(s))|%−1 κ(σ(s)) = 0;

(2) For % ≥ 1, (
α1(s)

∣∣∣κ∆(s)
∣∣∣%−1
κ∆(s)

)∆

+ δ
α1(s)
s%σ(s)

|κ(s)|%−1 κ(s) = 0

and (
α1(s)

∣∣∣κ∆(s)
∣∣∣%−1
κ∆(s)

)∆

+ δ
α1(s)
s%σ(s)

|κ(σ(s))|%−1 κ(σ(s)) = 0,

where δ > 0 is a constant and l := lim inf s→∞
s

σ(s)
> 0, oscillate if δ >

1
l%|%−1|

(
%

% + 1

)%+1

by using

Theorems 3.1 and 3.2 respectively.
• It is worth noting the following:

(i) If T = R, the Euler equation for % > m ≥ 0,

(
sm |κ′(s)|%−1 κ′(s)

)′
+ δ

(
% − m
%

)%+1 1
s%+1−m |κ (s)|%−1 κ (s) = 0 (4.1)

has a nonoscillatory solution κ(s) =
((

%

%−m

)%
s%−m

)1/(%+1)
if δ =

(
%

% + 1

)%+1

. That is to say, the

constant
(

%

% + 1

)%+1

is the lower bound of oscillation for all solutions of the Eq (4.1).
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(ii) If α1(s) = 1 and % = 1, the Euler second-order dynamic equations

κ∆∆(s) +
δ

sσ(s)
κ(s) = 0

and
κ∆∆(s) +

δ

sσ(s)
κ(σ(s)) = 0,

oscillate if δ >
1
4

. This condition is known to be the optimal one for the second-order Euler
differential equation

κ′′(s) +
δ

s2κ(s) = 0.

Example 4.2. Consider a second-order half-linear sublinear delay dynamic equation√s
κ∆(s)√∣∣∣κ∆(s)

∣∣∣

∆

+
δ

3
√

3σ (s) µ (s)

κ(µ(s))√
|κ(µ(s))|

= 0 (4.2)

where δ > 0 is a constant. It is evident that (1.2) holds since∫ ∞

ω0

∆ω

α
1
%

1 (ω)
=

∫ ∞

ω0

∆ω

ω
= ∞,

by [4, Example 5.60]. Also,

lim inf
s→∞

s1−%σ% (s) µ% (s) δ (s)
α1 (s)

=
δ

3
√

3
.

Therefore, Theorem 2.1 implies that all solutions of Eq (4.2) oscillate if δ >
1
4√l
.

5. Conclusions

(1) The results of this study are applicable to all time scales without any restriction conditions, such
as: T =N, T =R, and T =qN0 := {qn : n ∈ N0 for q > 1}.

(2) We concluded in this paper some sharp Kneser-type oscillation conditions for the second-order
half-linear functional dynamic equation when µ (s) ≤ s and µ (s) ≥ s. The results reveal an
improvement in Kneser-type when compared to some known outcomes, as described below:

(i) Let µ (s) ≤ s and 0 < % ≤ 1. By virtue of

s1−%σ% (s) µ% (s)α2 (s)
α1 (s)

≥
sµ% (s)α2 (s)

α1 (s)

and
1

l%(%−1)

(
%

% + 1

)%+1

<
1

l%(%+1)

(
%

% + 1

)%+1

for 0 < l < 1,

Theorem 2.1 improves Theorem 1.1 (condition (2.1) improves (1.11)).
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(ii) Let µ (s) ≤ s and % ≥ 1. Since

σ (s) µ% (s)α2 (s)
α1 (s)

≥
sµ% (s)α2 (s)

α1 (s)

and
1

l%(%−1)

(
%

% + 1

)%+1

<
1

l%(%+1)

(
%

% + 1

)%+1

for 0 < l < 1,

Theorem 2.2 improves Theorem 1.1 (condition (2.12) improves (1.11)).
(iii) Let µ (s) ≥ s and 0 < % ≤ 1. By virtue of

sσ% (s)α2 (s)
α1 (s)

≥
s%+1α2 (s)
α1 (s)

and
1

l%(%−1)

(
%

% + 1

)%+1

<
1

l%(%+1)

(
%

% + 1

)%+1

for 0 < l < 1,

Theorem 3.1 improves Theorem 1.1 (condition (3.1) improves (1.11)).
(iv) Let µ (s) ≥ s and % ≥ 1. Since

s%σ (s)α2 (s)
α1 (s)

≥
s%+1α2 (s)
α1 (s)

and
1

l%(%−1)

(
%

% + 1

)%+1

<
1

l%(%+1)

(
%

% + 1

)%+1

for 0 < l < 1,

Theorem 3.2 improves Theorem 1.1 (condition (3.3) improves (1.11)).
(3) It would be interesting to consider the Kneser-type oscillation criterion of all solutions of Eq (1.1)

under the condition ∫ ∞

s0

∆ω

α
1/%
1 (ω)

< ∞.
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