Research article

Pythagorean fuzzy sets in UP-algebras and approximations

  • Received: 20 November 2020 Accepted: 25 March 2021 Published: 31 March 2021
  • MSC : 03E72, 03G25, 08A72

  • The aim of this paper is to apply the concept of Pythagorean fuzzy sets to UP-algebras, and then we introduce five types of Pythagorean fuzzy sets in UP-algebras. In addition, we will also discuss the relationship between some assertions of Pythagorean fuzzy sets and Pythagorean fuzzy UP-subalgebras (resp., Pythagorean fuzzy near UP-filters, Pythagorean fuzzy UP-filters, Pythagorean fuzzy UP-ideals, Pythagorean fuzzy strong UP-ideals) in UP-algebras and study upper and lower approximations of Pythagorean fuzzy sets.

    Citation: Akarachai Satirad, Ronnason Chinram, Aiyared Iampan. Pythagorean fuzzy sets in UP-algebras and approximations[J]. AIMS Mathematics, 2021, 6(6): 6002-6032. doi: 10.3934/math.2021354

    Related Papers:

  • The aim of this paper is to apply the concept of Pythagorean fuzzy sets to UP-algebras, and then we introduce five types of Pythagorean fuzzy sets in UP-algebras. In addition, we will also discuss the relationship between some assertions of Pythagorean fuzzy sets and Pythagorean fuzzy UP-subalgebras (resp., Pythagorean fuzzy near UP-filters, Pythagorean fuzzy UP-filters, Pythagorean fuzzy UP-ideals, Pythagorean fuzzy strong UP-ideals) in UP-algebras and study upper and lower approximations of Pythagorean fuzzy sets.



    加载中


    [1] M. A. Ansari, A. Haidar, A. N. A. Koam, On a graph associated to UP-algebras, Math. Comput. Appl., 23 (2018), 1–12.
    [2] M. A. Ansari, A. N. A. Koam, A. Haider, Rough set theory applied to UP-algebras, Ital. J. Pure Appl. Math., 42 (2019), 388–402.
    [3] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. doi: 10.1016/S0165-0114(86)80034-3
    [4] R. Chinram, A. Iampan, Codewords generated by UP-valued functions, AIMS Mathematics, 6 (2021), 4771–4785. doi: 10.3934/math.2021280
    [5] R. Chinram, T. Panityakul, Rough Pythagorean fuzzy ideals in ternary semigroups, J. Math. Comput. Sci., 20 (2020), 303–312.
    [6] N. Dokkhamdang, A. Kesorn, A. Iampan, Generalized fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., 16 (2018), 171–190. doi: 10.30948/afmi.2018.16.2.171
    [7] W. A. Dudek, Y. B. Jun, H. S. Kim, Rough set theory applied to BCI-algebras, Quasigroups Relat. Syst., 9 (2002), 45–54.
    [8] T. Guntasow, S. Sajak, A. Jomkham, A. Iampan, Fuzzy translations of a fuzzy set in UP-algebras, J. Indones. Math. Soc., 23 (2017), 1–19. doi: 10.22342/jims.23.2.371.1-19
    [9] A. Hussain, T. Mahmood, M. I. Ali, Rough Pythagorean fuzzy ideals in semigroups, Comput. Appl. Math., 38 (2019), 1–15. doi: 10.1007/s40314-019-0767-y
    [10] A. Iampan, Multipliers and near UP-filters of UP-algebras, Journal of Discrete Mathematical Sciences and Cryptography, 2019, 1–14.
    [11] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top., 5 (2017), 35–54.
    [12] A. Iampan, Introducing fully UP-semigroups, Discuss. Math. Gen. Algebra Appl., 38 (2018), 297–306. doi: 10.7151/dmgaa.1290
    [13] A. Iampan, A. Satirad, M. Songsaeng, A note on UP-hyperalgebras, J. Algebr. Hyperstruct. Log. Algebr., 1 (2020), 77–95. doi: 10.29252/hatef.jahla.1.2.7
    [14] A. Iampan, M. Songsaeng, G. Muhiuddin, Fuzzy duplex UP-algebras, Eur. J. Pure Appl. Math., 13 (2020), 459–471. doi: 10.29020/nybg.ejpam.v13i3.3752
    [15] Y. Imai, K. Iséki, On axiom systems of propositional calculi. XIV, Proc. Japan Acad., 42 (1966), 19–22.
    [16] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 26–29.
    [17] R. Jansi, K. Mohana, Bipolar Pythagorean fuzzy A-ideals of BCI-algebra, International Journal of Innovative Science, Engineering & Technology, 6 (2019), 2348–7968.
    [18] Y. B. Jun, Roughness of ideals in BCK-algebras, Sci. Math. Japonica. Online, 7 (2002), 115–119.
    [19] H. S. Kim, Y. H. Kim, On BE-algebras, Sci. Math. Japonica. Online, 2006 (2006), 1299–1302.
    [20] T. Klinseesook, S. Bukok, A. Iampan, Rough set theory applied to UP-algebras, Journal of Information and Optimization Sciences, 41 (2020), 705–722. doi: 10.1080/02522667.2018.1552511
    [21] S. M. Mostafa, M. A. A. Naby, M. M. M. Yousef, Fuzzy ideals of KU-algebras, Int. Math. Forum, 63 (2011), 3139–3149.
    [22] Z. Pawlak, Rough sets, Internat. J. Comput. Inform. Sci., 11 (1982), 341–356. doi: 10.1007/BF01001956
    [23] C. Prabpayak, U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna, 5 (2009), 54–57.
    [24] A. Satirad, R. Chinram, A. Iampan, Four new cnocepts of extension of KU/UP-algebras, Missouri J. Math. Sci., 32 (2020), 138–157.
    [25] A. Satirad, A. Iampan, Fuzzy sets in fully UP-semigroups, Ital. J. Pure Appl. Math., 42 (2019), 539–558.
    [26] A. Satirad, A. Iampan, Fuzzy soft sets over fully UP-semigroups, Eur. J. Pure Appl. Math., 12 (2019), 294–331. doi: 10.29020/nybg.ejpam.v12i2.3412
    [27] A. Satirad, A. Iampan, Topological UP-algebras, Discuss. Math. Gen. Algebra Appl., 39 (2019), 231–250. doi: 10.7151/dmgaa.1317
    [28] A. Satirad, P. Mosrijai, A. Iampan, Formulas for finding UP-algebras, Int. J. Math. Comput. Sci., 14 (2019), 403–409.
    [29] A. Satirad, P. Mosrijai, A. Iampan, Generalized power UP-algebras, Int. J. Math. Comput. Sci., 14 (2019), 17–25.
    [30] T. Senapati, Y. B. Jun, K. P. Shum, Cubic set structure applied in UP-algebras, Discrete Math. Algorithms Appl., 10 (2018), 1850049. doi: 10.1142/S1793830918500490
    [31] T. Senapati, G. Muhiuddin, K. P. Shum, Representation of UP-algebras in interval-valued intuitionistic fuzzy environment, Ital. J. Pure Appl. Math., 38 (2017), 497-517.
    [32] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, A. Iampan, Fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., 12 (2016), 739–756.
    [33] R. R. Yager, Pythagorean fuzzy subsets, 2013 Joint IFSA World Congress NAFIPS Annual Meeting (IFSA/NAFIPS), 2013, 57–61.
    [34] R. R. Yager, A. M. Abbasov, Pythagorean member grades, complex numbers, and decision making, Int. J. Intell. Syst., 28 (2013), 436–452. doi: 10.1002/int.21584
    [35] L. A. Zadeh, Fuzzy sets, Inform. Contr., 8 (1965), 338–353. doi: 10.1016/S0019-9958(65)90241-X
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2902) PDF downloads(291) Cited by(4)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog