Research article Special Issues

On fuzzy sub-semi-rings of nexuses

  • Received: 09 September 2024 Revised: 21 November 2024 Accepted: 06 December 2024 Published: 26 December 2024
  • MSC : 06F35, 16Y60

  • In this paper, we first constructed a semi-ring on a nexus and then defined a fuzzy sub-semi-ring associated with a nexus $ N $. We investigated some properties and applications. Fuzzy versions of some well-known crisp concepts are provided over a nexus. We verified some applications of this fuzzy on semi-ring $ N $. We obtained some relationships between sub-semi-ring and fuzzy sub-semi-ring of $ N $. However, these relationships were not true for ideals. We put a condition on fuzzy sub-semi-ring so that these relationships were true for ideals. We defined strong fuzzy sub-semi-ring on $ N $. For strong fuzzy sub-semi-ring on $ N $ and for every $ \alpha\in[0, \mu(0)] $, the level set $ \mu^\alpha $ was an ideal of $ N $. For some strong fuzzy sub-semi-rings $ \mu $, we verified when $ \mu^\alpha $ was a prime ideal of $ N $. In the following, for a semi-ring homomorphism $ f:N\longrightarrow M $, we showed that if $ \mu\in FSUB_S(N) $, then $ f(\mu)\in FSUB_S(M) $ and if $ \mu\in FSUB_S(M) $ then $ f \circ\mu\in FSUB_S(N) $. Finally, we verified some concepts of fuzzy quotient of a nexus semi-ring.

    Citation: Vajiheh Nazemi Niya, Hojat Babaei, Akbar Rezaei. On fuzzy sub-semi-rings of nexuses[J]. AIMS Mathematics, 2024, 9(12): 36140-36157. doi: 10.3934/math.20241715

    Related Papers:

  • In this paper, we first constructed a semi-ring on a nexus and then defined a fuzzy sub-semi-ring associated with a nexus $ N $. We investigated some properties and applications. Fuzzy versions of some well-known crisp concepts are provided over a nexus. We verified some applications of this fuzzy on semi-ring $ N $. We obtained some relationships between sub-semi-ring and fuzzy sub-semi-ring of $ N $. However, these relationships were not true for ideals. We put a condition on fuzzy sub-semi-ring so that these relationships were true for ideals. We defined strong fuzzy sub-semi-ring on $ N $. For strong fuzzy sub-semi-ring on $ N $ and for every $ \alpha\in[0, \mu(0)] $, the level set $ \mu^\alpha $ was an ideal of $ N $. For some strong fuzzy sub-semi-rings $ \mu $, we verified when $ \mu^\alpha $ was a prime ideal of $ N $. In the following, for a semi-ring homomorphism $ f:N\longrightarrow M $, we showed that if $ \mu\in FSUB_S(N) $, then $ f(\mu)\in FSUB_S(M) $ and if $ \mu\in FSUB_S(M) $ then $ f \circ\mu\in FSUB_S(N) $. Finally, we verified some concepts of fuzzy quotient of a nexus semi-ring.



    加载中


    [1] S. Abdurrahman, Karakteristin fuzzy subsemiring, J. Fourier, 9 (2020), 19–23. https://doi.org/10.14421/fourier.2020.91.19-23 doi: 10.14421/fourier.2020.91.19-23
    [2] S. Abou-Zaid, On generalized characteristic fuzzy subgroups of a finite group, J. Fuzzy sets Syst., 43 (1991), 235–241. https://doi.org/10.1016/0165-0114(91)90080-A doi: 10.1016/0165-0114(91)90080-A
    [3] D. Afkhami Taba, A. Hasankhani, M. Bolourian, Soft nexuses, Comput. Math. Appl., 64 (2012), 1812–1821. https://doi.org/10.1016/j.camwa.2012.02.048 doi: 10.1016/j.camwa.2012.02.048
    [4] D. Alghazzwi, A. Ali, A. Almutlg, E. A. Abo-Tabl, A. A. Azzam, A novel structure of q-rung orthopair fuzzy sets in ring theory, AIMS Mathematics, 8 (2023), 8365–8385. https://doi.org/10.3934/math.2023422 doi: 10.3934/math.2023422
    [5] M. Bolourian, Theory of plenices, PhD thesis, University of Surrey, 2009.
    [6] M. Bolourian, R, Kamrani, A. Hasankhani, The Structure of Moduloid on a Nexus, Mathematics, 7 (2019), 82. https://doi.org/10.3390/math7010082 doi: 10.3390/math7010082
    [7] A. A. Estaji, T. Haghdadi, J. Farokhi, Fuzzy nexus over an ordinal, J. Algebr. Syst., 3 (2015), 65–82.
    [8] J. S. Golan, Semirings and their applications, Dordrecht: Kluwer Academic Publishers, 1999.
    [9] Y. Q. Gno, F. Pastijn, Semirings which are unions of rings, Sci. China (Ser. A), 45 (2002), 172–195.
    [10] M. Haristchain, Formex and plenix structural analysis, PhD thesis, University of Surrey, 1980.
    [11] U. Hebisch, H. J. Weinert, Semirings: Algebraic theory and applications in computer science, Singapore: World Scientific, 1998.
    [12] H. Hedayati, A. Asadi, Normal, maximal and product fuzzy subnexuses of nexuses, J. Intell. Fuzzy Syst., 26 (2014), 1341–1348.
    [13] I. Hee, Plenix structural analysis, PhD thesis, University of Surrey, 1985.
    [14] R. Kamrani, A. Hasankhani, M. Bolourian, Finitely Generated Submoduloids and Prime Submoduloids on a nexus, Mathematics, 32 (2020), 88–109.
    [15] R. Kamrani, A. Hasankhani, M. Bolourian, On Submoduloids of a Moduloid on a nexus, Appl. Appl. Math., 15 (2020), 1407–1435.
    [16] W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, J. Fuzzy Sets Syst., 8 (1982), 133–139.
    [17] P. Nasehpour, Some remarks on semiring and their ideals, Asian-Eur. J. Math., 12 (2019), 2050002. https://doi.org/10.1142/S1793557120500023 % doi: 10.1142/S1793557120500023
    [18] H. Nooshin, Algebraic representation and processing of structural configurations, Comput. Struct., 5 (1975), 119–130. https://doi.org/10.1016/0045-7949(75)90002-4 doi: 10.1016/0045-7949(75)90002-4
    [19] H. Nooshin, Formex configuration processing in structural engineering, London: Elsevier Applied Science, 1984.
    [20] M. Norouzi, A. Asadi, Y. B. Jun, A generalization of subnexuses based on N-structures, Thai J. Math., 18 (2020), 563–575.
    [21] A. Razaq, G. Alhamzi, On Pythagorean fuzzy ideals of a classical ring, AIMS Mathematics, 8 (2023), 4280–4303. https://doi.org/10.3934/math.2023213 doi: 10.3934/math.2023213
    [22] A. Razaq, I. M. Ahmad, M. A. Yousaf, S. Masood, A novel finite rings based algebraic scheme of evolving secure S-boxes for images encryption, Multimed. Tools Appl., 80 (2021), 20191–20215. https://doi.org/10.1007/s11042-021-10587-8 doi: 10.1007/s11042-021-10587-8
    [23] A. Razzaque, A. Razaq, G. Alhamzi, H. Garg, M. I. Faraz, A Detailed Study of Mathematical Rings in q-Rung Orthopair Fuzzy Framework, Symmetry, 15 (2023), 697. https://doi.org/10.3390/sym15030697 doi: 10.3390/sym15030697
    [24] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517.
    [25] A. Saeidi Rashkolia, A. Hasankhani, Fuzzy subnexuses, Ital. J. Pure Appl. Math., 28 (2011), 229–242.
    [26] M. K. Sen, S. K. Maity, K. P. Shum, Some aspects of semirings, J. Math., 45 (2021), 919–930.
    [27] N. Sulochana, M. Amala, T. Vasanthi, A study on the classes of semiring and ordered semiring, Adv. Algebr., 9 (2016), 11–15.
    [28] U. M. Swamy, K. L. N. Swamy, Fuzzy prime ideals of rings, J. Math. Anal. Appl., 134 (1988), 94–103.
    [29] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(145) PDF downloads(22) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog