In this paper, we first constructed a semi-ring on a nexus and then defined a fuzzy sub-semi-ring associated with a nexus $ N $. We investigated some properties and applications. Fuzzy versions of some well-known crisp concepts are provided over a nexus. We verified some applications of this fuzzy on semi-ring $ N $. We obtained some relationships between sub-semi-ring and fuzzy sub-semi-ring of $ N $. However, these relationships were not true for ideals. We put a condition on fuzzy sub-semi-ring so that these relationships were true for ideals. We defined strong fuzzy sub-semi-ring on $ N $. For strong fuzzy sub-semi-ring on $ N $ and for every $ \alpha\in[0, \mu(0)] $, the level set $ \mu^\alpha $ was an ideal of $ N $. For some strong fuzzy sub-semi-rings $ \mu $, we verified when $ \mu^\alpha $ was a prime ideal of $ N $. In the following, for a semi-ring homomorphism $ f:N\longrightarrow M $, we showed that if $ \mu\in FSUB_S(N) $, then $ f(\mu)\in FSUB_S(M) $ and if $ \mu\in FSUB_S(M) $ then $ f \circ\mu\in FSUB_S(N) $. Finally, we verified some concepts of fuzzy quotient of a nexus semi-ring.
Citation: Vajiheh Nazemi Niya, Hojat Babaei, Akbar Rezaei. On fuzzy sub-semi-rings of nexuses[J]. AIMS Mathematics, 2024, 9(12): 36140-36157. doi: 10.3934/math.20241715
In this paper, we first constructed a semi-ring on a nexus and then defined a fuzzy sub-semi-ring associated with a nexus $ N $. We investigated some properties and applications. Fuzzy versions of some well-known crisp concepts are provided over a nexus. We verified some applications of this fuzzy on semi-ring $ N $. We obtained some relationships between sub-semi-ring and fuzzy sub-semi-ring of $ N $. However, these relationships were not true for ideals. We put a condition on fuzzy sub-semi-ring so that these relationships were true for ideals. We defined strong fuzzy sub-semi-ring on $ N $. For strong fuzzy sub-semi-ring on $ N $ and for every $ \alpha\in[0, \mu(0)] $, the level set $ \mu^\alpha $ was an ideal of $ N $. For some strong fuzzy sub-semi-rings $ \mu $, we verified when $ \mu^\alpha $ was a prime ideal of $ N $. In the following, for a semi-ring homomorphism $ f:N\longrightarrow M $, we showed that if $ \mu\in FSUB_S(N) $, then $ f(\mu)\in FSUB_S(M) $ and if $ \mu\in FSUB_S(M) $ then $ f \circ\mu\in FSUB_S(N) $. Finally, we verified some concepts of fuzzy quotient of a nexus semi-ring.
[1] | S. Abdurrahman, Karakteristin fuzzy subsemiring, J. Fourier, 9 (2020), 19–23. https://doi.org/10.14421/fourier.2020.91.19-23 doi: 10.14421/fourier.2020.91.19-23 |
[2] | S. Abou-Zaid, On generalized characteristic fuzzy subgroups of a finite group, J. Fuzzy sets Syst., 43 (1991), 235–241. https://doi.org/10.1016/0165-0114(91)90080-A doi: 10.1016/0165-0114(91)90080-A |
[3] | D. Afkhami Taba, A. Hasankhani, M. Bolourian, Soft nexuses, Comput. Math. Appl., 64 (2012), 1812–1821. https://doi.org/10.1016/j.camwa.2012.02.048 doi: 10.1016/j.camwa.2012.02.048 |
[4] | D. Alghazzwi, A. Ali, A. Almutlg, E. A. Abo-Tabl, A. A. Azzam, A novel structure of q-rung orthopair fuzzy sets in ring theory, AIMS Mathematics, 8 (2023), 8365–8385. https://doi.org/10.3934/math.2023422 doi: 10.3934/math.2023422 |
[5] | M. Bolourian, Theory of plenices, PhD thesis, University of Surrey, 2009. |
[6] | M. Bolourian, R, Kamrani, A. Hasankhani, The Structure of Moduloid on a Nexus, Mathematics, 7 (2019), 82. https://doi.org/10.3390/math7010082 doi: 10.3390/math7010082 |
[7] | A. A. Estaji, T. Haghdadi, J. Farokhi, Fuzzy nexus over an ordinal, J. Algebr. Syst., 3 (2015), 65–82. |
[8] | J. S. Golan, Semirings and their applications, Dordrecht: Kluwer Academic Publishers, 1999. |
[9] | Y. Q. Gno, F. Pastijn, Semirings which are unions of rings, Sci. China (Ser. A), 45 (2002), 172–195. |
[10] | M. Haristchain, Formex and plenix structural analysis, PhD thesis, University of Surrey, 1980. |
[11] | U. Hebisch, H. J. Weinert, Semirings: Algebraic theory and applications in computer science, Singapore: World Scientific, 1998. |
[12] | H. Hedayati, A. Asadi, Normal, maximal and product fuzzy subnexuses of nexuses, J. Intell. Fuzzy Syst., 26 (2014), 1341–1348. |
[13] | I. Hee, Plenix structural analysis, PhD thesis, University of Surrey, 1985. |
[14] | R. Kamrani, A. Hasankhani, M. Bolourian, Finitely Generated Submoduloids and Prime Submoduloids on a nexus, Mathematics, 32 (2020), 88–109. |
[15] | R. Kamrani, A. Hasankhani, M. Bolourian, On Submoduloids of a Moduloid on a nexus, Appl. Appl. Math., 15 (2020), 1407–1435. |
[16] | W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, J. Fuzzy Sets Syst., 8 (1982), 133–139. |
[17] | P. Nasehpour, Some remarks on semiring and their ideals, Asian-Eur. J. Math., 12 (2019), 2050002. https://doi.org/10.1142/S1793557120500023 % doi: 10.1142/S1793557120500023 |
[18] | H. Nooshin, Algebraic representation and processing of structural configurations, Comput. Struct., 5 (1975), 119–130. https://doi.org/10.1016/0045-7949(75)90002-4 doi: 10.1016/0045-7949(75)90002-4 |
[19] | H. Nooshin, Formex configuration processing in structural engineering, London: Elsevier Applied Science, 1984. |
[20] | M. Norouzi, A. Asadi, Y. B. Jun, A generalization of subnexuses based on N-structures, Thai J. Math., 18 (2020), 563–575. |
[21] | A. Razaq, G. Alhamzi, On Pythagorean fuzzy ideals of a classical ring, AIMS Mathematics, 8 (2023), 4280–4303. https://doi.org/10.3934/math.2023213 doi: 10.3934/math.2023213 |
[22] | A. Razaq, I. M. Ahmad, M. A. Yousaf, S. Masood, A novel finite rings based algebraic scheme of evolving secure S-boxes for images encryption, Multimed. Tools Appl., 80 (2021), 20191–20215. https://doi.org/10.1007/s11042-021-10587-8 doi: 10.1007/s11042-021-10587-8 |
[23] | A. Razzaque, A. Razaq, G. Alhamzi, H. Garg, M. I. Faraz, A Detailed Study of Mathematical Rings in q-Rung Orthopair Fuzzy Framework, Symmetry, 15 (2023), 697. https://doi.org/10.3390/sym15030697 doi: 10.3390/sym15030697 |
[24] | A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517. |
[25] | A. Saeidi Rashkolia, A. Hasankhani, Fuzzy subnexuses, Ital. J. Pure Appl. Math., 28 (2011), 229–242. |
[26] | M. K. Sen, S. K. Maity, K. P. Shum, Some aspects of semirings, J. Math., 45 (2021), 919–930. |
[27] | N. Sulochana, M. Amala, T. Vasanthi, A study on the classes of semiring and ordered semiring, Adv. Algebr., 9 (2016), 11–15. |
[28] | U. M. Swamy, K. L. N. Swamy, Fuzzy prime ideals of rings, J. Math. Anal. Appl., 134 (1988), 94–103. |
[29] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. |