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Abstract: In this paper, we first constructed a semi-ring on a nexus and then defined a fuzzy sub-semi-
ring associated with a nexus N. We investigated some properties and applications. Fuzzy versions of
some well-known crisp concepts are provided over a nexus. We verified some applications of this fuzzy
on semi-ring N. We obtained some relationships between sub-semi-ring and fuzzy sub-semi-ring of N.
However, these relationships were not true for ideals. We put a condition on fuzzy sub-semi-ring so
that these relationships were true for ideals. We defined strong fuzzy sub-semi-ring on N. For strong
fuzzy sub-semi-ring on N and for every α ∈ [0, µ(0)], the level set µα was an ideal of N. For some
strong fuzzy sub-semi-rings µ, we verified when µα was a prime ideal of N. In the following, for a
semi-ring homomorphism f : N −→ M, we showed that if µ ∈ FS UBS (N), then f (µ) ∈ FS UBS (M)
and if µ ∈ FS UBS (M) then f ◦ µ ∈ FS UBS (N). Finally, we verified some concepts of fuzzy quotient
of a nexus semi-ring.
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1. Introduction

In 1980, Haristchain [10], in order to be able to conveniently handle the vast amount of varied data
that defines a spatial structure, a sophisticated form of database was evolved, which called a plenix
(also see, [13, 19]). In 1984, Nooshin [18] defined the notion of a nexus as a mathematical object that
represents the constitution of a plenix, and a nexus was defined axiomatically by using the concept of
the address set. In 2009, Bolourian [5] introduced the notion of nexus algebras as an abstract algebraic
structure and investigated them. Many authors have worked on nexuses and sub nexuses. In 2019,
Bolourian et al. [6] constructed a moduloid on a nexus. In 2020, Kamrani et al. gave a structure of
moduloid on a nexus and verified the concepts of sub moduloids, finitely generated sub moduloids,
and prime sub moduloids on a nexus [14, 15]. In 2020, Norouzi et al. worked on sub nexuses on
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N-structure [20].
Many familiar concepts in an abstract algebra are studied deeply in the context of nexus algebra

[8, 9, 11, 17, 26, 27]. In 1965, L. A. Zadeh [29] introduced the concept of fuzzy sets. Later in 1971, A.
Rosenfeld [24] used this concept to define a fuzzy sub-groupoid and a fuzzy subgroup. In 1982, W. J.
Liu [16] studied fuzzy invariant subgroups, fuzzy ideals and proved some fundamental properties. In
1988, U. M. Swamy and K. L. N. Swamy [28] defined the concept of fuzzy prime ideals of rings and
got some useful results. In 1991, S. Abou-Zaid [2] introduced the notion of fuzzy sub-near-rings and
ideals. In 2020, S. Abdurrahman [1] defined the notion of fuzzy sub-semi-ring and investigated the
related properties. Moreover, they introduced the ideal of a sub-semi-ring induced from the level set.
They also characterized fuzzy sub-semi-rings.

In 2011, A. Saeidi Rashkolia and A. Hasankhani [25] introduced fuzzy sub nexuses and investigated
these properties. In 2012, D. Afkhami Taba et al. [3], as a generalization of fuzzy nexuses, defined soft
nexuses. In 2014, H. Hedayati and A. Asadi [12] discussed normal, maximal, and product fuzzy sub
nexuses of nexuses. In 2015, A. A. Estaji et al. [7] defined the fuzzy sub-nexuses over a nexus and the
notion of prime fuzzy sub-nexuses. For some recent papers, see references [4, 22, 23]. Many authors
work in fuzzy ideals. In [23], the authors defined q-rung orthopair fuzzy ideals, and also introduced
the notion of q-rung orthopair fuzzy cosete. In [21], the authors defined the concept of Pythagorean
fuzzy cosets of a Pythagorean fuzzy ideal and proved that the set of all Pythagorean fuzzy cosets of
a Pythagorean fuzzy ideal forms a ring under cetain binary operations. In this paper, we construct
a semi-ring on a nexus and then define a fuzzy sub-semi-ring on related nexus N and verify some
applications of it. We obtain some relationship between sub-semi-ring and fuzzy sub-semi-ring of
N. In Proposition 3.12, we show that A is a sub-semi-ring of N if and only if χA is a fuzzy sub-
semi-ring of N. In Proposition 3.14, we show that µ is a fuzzy sub-semi-ring of N if and only if, for
every α ∈ [0, µ(0)], µα is a sub-semi-ring of N. Since the Propositions 3.12 and 3.14 are not true for
ideals and since ideals in semi-rings are very important than sub-semi-rings, we put a condition on
fuzzy sub-semi-ring such that Propositions 3.12 and 3.14 be true for ideals. We define this fuzzy and
named it by a strong fuzzy sub-semi-ring. Also, for a strong fuzzy sub-semi-ring, for every a ∈ N, we
have µ(0) > µ(a). In [28], the authors define fuzzy ideals in rings, but in this paper, the notion of a
fuzzy sub-semi-ring is different from it because N is not a ring (see Remark 4.5). The set of all fuzzy
sub-semi-rings of N is denoted by FS UBS (N), and the set of all strong fuzzy sub-semi-rings of N is
denoted by FS UBT (N). In the following, for a semi-ring homomorphism f : N −→ M, we show that
if µ ∈ FS UBS (N) then f (µ) ∈ FS UBS (M) and if µ ∈ FS UBS (M), then f ◦ µ ∈ FS UBS (N). Finally,
we verify some concepts of fuzzy quotient of a nexus semi-rings.

2. Preliminaries

Now, we review the basic definitions and some elementary aspects that are necessary for this paper.
An address is a sequence of N∗ such that ak = 0 implies that ai = 0, for all i > k. The sequence of

zero is called the empty address and denoted by (). In other words, every non-empty address is of the
form (a1, a2, . . . , an, 0, 0, . . .), where ai and n ∈ N, and. it is denoted by (a1, a2, . . . , an).

Definition 2.1. ( [3, 6, 18]) A set N of addresses is called a nexus if

(I) (a1, a2, . . . , an−1, an) ∈ N implies (a1, a2, . . . , an−1, t) ∈ N,∀ 0 6 t 6 an,
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(II) {ai}
∞
i=1 ∈ N, ai ∈ N implies ∀n ∈ N,∀ 0 6 t 6 an, (a1, . . . , an − t) ∈ N.

Let a ∈ N. The level of a is said to be:

(I) n, if a = (a1, a2, . . . , an), for some ak ∈ N,
(II) ∞, if a is an infinite sequence of N,

(III) 0, if a = ().

The level of a is denoted by l(a) and stem a = a1. We put st(N) = sup{i ∈ N : (i) ∈ N}.

Let a = {ai} and b = {bi}, i ∈ N, be two addresses. Then a 6 b, if l(a) = 0 or if one of the following
cases is satisfied:

(I) if l(a) = 1, that is a = (a1), for some a1 ∈ N and a1 6 b1,
(II) if 1 < l(a) < ∞, then l(a) 6 l(b) and al(a) 6 bl(a) and for any 1 6 i < l(a), ai = bi,

(III) if l(a) = ∞, then a = b.

Definition 2.2. ( [29]) Let N be a set. A fuzzy subset of N is a mapping µ : N −→ [0, 1]. If µ and ν
are fuzzy subsets of N such that ν(x) 6 µ(x) for all x ∈ N, we write ν 6 µ or ν ⊆ µ and say that ν is
contained in µ or ν is a fuzzy subset of µ.

Definition 2.3. ( [25]) Let µ be a fuzzy subset of a nexus N. Then µ is called a fuzzy sub-nexus of N,
if a 6 b implies that µ(b) 6 µ(a), for all a, b ∈ N.

3. Fuzzy sub-semi-rings related to a nexus

In this section, at first we construct a semi-ring on a nexus N.

For () , a, b ∈ N, let a = {at}
n
t=1 and b = {bt}

m
t=1. We define binary operations “+” and “·” on N as

following:

(I) () + a = a + () = a,
(II) a + b = (a1 ∨ b1),

(III) a · b = (a1, · · · , ai−1, ai ∧ bi),

where i{a, b} = min{t : at , bt} (briefly, i{a, b} := i). If there is no such that i, then a = b and
i{a, a} = l(a).

Example 3.1. Consider a nexus:
N = {(), (1), (2), (3), (1, 1), (1, 2), (1, 2, 1), (2, 1), (2, 2), (2, 3), (2, 3, 1), (3, 1)}
with the following diagram:
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(1,2,1) (2,3,1)

(1,1) (1,2)

OO

(2,1) (2,2) (2,3)

OO

(3,1)

(1)

dd OO

(2)

OO
55 33

(3)

55

( )

ii OO
55

Figure 1. Diagram of N.

We have (2, 3, 1) + (3) = (3), (1, 1) + (3, 1) = (3), (1, 1) + (1, 1) = (1).
i{(2, 3), (2, 3, 1)} = 3 and (2, 3) · (2, 3, 1) = (2, 3).
i{(2, 3, 1), (1, 2, 1)} = 1 and (2, 3, 1) · (1, 2, 1) = (1).
i{(2, 3), (2, 3)} = 2 and (2, 3) · (2, 3) = (2, 3).

Now, we prove that (N,+, ·, ()) is a semi-ring.

Lemma 3.2. Let a = {at}
n
t=1, b = {bt}

n
t=1, c = {ct}

n
t=1 ∈ N. Then

(I) if i{a, b} = i{a, c} = r, then i{b, c} > r,
(II) if i{a, b} = r, i{a, c} = s and r , s, then i{b, c} = min{r, s}.

Proof. (I) Since i{a, b} = i{a, c} = r, for every 1 6 i 6 r − 1, we get ai = bi = ci. Consequently,
i{b, c} > r.

(II) Let r < s. Then ai = bi, for every 1 6 i 6 r − 1 and bi = ci, for every 1 6 i 6 s − 1. Hence
bi = ci, for every 1 6 i 6 r − 1, ar , br and ar = cr. It follows that br , cr, and so i{b, c} = r. By a
similar argument we can see that if s < r, then i{b, c} = s. Therefore, i{b, c} = min{r, s}. �

Theorem 3.3. The algebra (N,+, ·, ()) is a semi-ring.

Proof. It is obvious that (N,+, ()) is a commutative semi-group. Now, assume a = {at}
n
t=1, b = {bt}

n
t=1,

c = {ct}
n
t=1 ∈ N. Then there are two cases:

Case 1. Let i{a, b} = i{a, c} = i{b, c} = r. For this we consider 4 sub cases as follows:
Sub case 1-1. If a · b = (a1, · · · , ar) and (a1, · · · , ar) · c = (a1, · · · , ar), then ar < br and ar < cr.

Thus, (a · b) · c = (a1, · · · , ar) · c = (a1, · · · , ar). On the other hand, we have b · c = (b1, · · · , br) or
b·c = (c1, · · · , cr). Since ar < br and ar < cr, we get a·(b·c) = (a1, · · · , ar). Therefore, (a·b)·c = a·(b·c).

Sub case 1-2. If a · b = (a1, · · · , ar) and (a1, · · · , ar) · c = (c1, · · · , cr), then ar < br and cr < ar and
so cr < br. Thus, (a · b) · c = (a1, · · · , ar) · c = (c1, · · · , cr). On the other hand, since ar < br, cr < ar

and cr < br, we get a · (b · c) = (a1, · · · , ar) · (c1, · · · , cr) = (c1, · · · , cr). Therefore, (a · b) · c = a · (b · c).
Sub case 1-3. If a · b = (b1, · · · , br) and (b1, · · · , br) · c = (b1, · · · , br), then br < ar and br < cr.

Thus, (a · b) · c = (b1, · · · , br) · c = (b1, · · · , br). On the other hand, since br < ar and br < cr, we get
a · (b · c) = (a1, · · · , ar).(b1, · · · , br) = (b1, · · · , br). Therefore, (a · b) · c = a · (b · c).
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Sub case 1-4. If a · b = (b1, · · · , br) and (b1, · · · , br) · c = (c1, · · · , cr), then br < ar and cr < br and
so cr < ar. Thus, (a · b) · c = (b1, · · · , br) · c = (c1, · · · , cr). On the other hand, since br < ar, cr < br

and cr < ar, we get a · (b · c) = (a1, · · · , ar) · (c1, · · · , cr) = (c1, · · · , cr). Therefore, (a · b) · c = a · (b · c).
Case 2. Let i{a, b} = i{a, c} = r and i{b, c} = s > r. Then br = cr and we consider 2 sub cases as

follows:
Sub case 2-1. If a · b = (a1, · · · , ar), then ar < br. Since br = cr, (a1, · · · , ar) · c = (a1, · · · , ar).

Thus, (a · b) · c = (a1, · · · , ar) · c = (a1, · · · , ar). On the other hand, we have b · c = (b1, · · · , bs) or
b·c = (c1, · · · , cs). Since ar < br and br = cr, we get a·(b·c) = (a1, · · · , ar). Therefore, (a·b)·c = a·(b·c).

Sub case 2-2. If a · b = (b1, · · · , br), then br < ar. Since br = cr, (b1, · · · , br) · c = (b1, · · · , br).
Thus, (a · b) · c = (b1, · · · , br) · c = (b1, · · · , br). On the other hand, we have b · c = (b1, · · · , bs) or
b·c = (c1, · · · , cs). Since br < ar and br = cr, we get a·(b·c) = (b1, · · · , br). Therefore, (a·b)·c = a·(b·c).

For distributivity, there are two cases:
Case 1. Let a1 , b1 ∨ c1. We have a · (b + c) = (a1, · · · , an) · (b1 ∨ c1) = (a1 ∧ (b1 ∨ c1)). On the

other hand, a · b + a · c = ((a1 ∧ b1) ∨ (a1 ∧ c1)) = (a1 ∧ (b1 ∨ c1)). Therefore, a · (b + c) = a · b + a · c.
Case 2. a1 = b1 ∨ c1. we consider 2 sub cases as follows:
Sub case 2-1. Let c1 6 b1. Then a1 = b1. We have a · (b + c) = (a1, · · · , an) · (b1 ∨ c1) = (a1). Since

c1 6 b1, a · b + a · c = (a1). Therefore, a · (b + c) = a · b + a · c.
Sub case 2-2. Let b1 6 c1. Then a1 = c1. We have a · (b + c) = (a1, · · · , an) · (b1 ∨ c1) = (a1). Since

b1 6 c1, a · b + a · c = (a1). Therefore, a · (b + c) = a · b + a · c.
Since the operations + and · are commutative, also we have (b + c) · a = b · a + c · a.

Therefore, (N,+, ·, ()) is a semi-ring. �

Example 3.4. Let N = {(), (1), (2), (1, 1), (2, 1)}. By defined the binary operations “+ ” and “·” on N,
we have: for every a ∈ N

a + () = () + a = a,
(1) + (1) = (1) + (1, 1) = (1, 1) + (1, 1) = (1),
(2) + a = (2, 1) + a = (2),
a · () = () · a = () and a · (1) = (1) · a = (1),
(2) · (2) = (2) · (2, 1) = (2),
(2) · (1, 1) = (1, 1) · (2, 1) = (1),
(1, 1) · (1, 1) = (1, 1),
(2, 1) · (2, 1) = (2, 1).
For the associativity + we have:
[(1) + (2)] + (1, 1) = (2) + (1, 1) = (2) = (1) + (2) = (1) + [(2) + (1, 1)],
[(1) + (2)] + (2, 1) = (2) + (2, 1) = (2) = (1) + (2) = (1) + [(2) + (2, 1)],
[(1) + (1, 1)] + (2, 1) = (1) + (2, 1) = (2) = (1) + (2) = (1) + [(1, 1) + (2, 1)],
[(2) + (1, 1)] + (2, 1) = (2) + (2, 1) = (2) = (2) + (2) = (2) + [(1, 1) + (2, 1)].
For the associativity · we have:
[(1) · (2)] · (1, 1) = (1) · (1, 1) = (1) = (1) · (1) = (1) · [(2) · (1, 1)],
[(1) · (2)] · (2, 1) = (1) · (2, 1) = (1) = (1) · (2) = (1) · [(2) · (2, 1)],
[(1) · (1, 1)] · (2, 1) = (1) · (2, 1) = (1) = (1) · (1) = (1) · [(1, 1) · (2, 1)],
[(2) · (1, 1)] · (2, 1) = (1) · (2, 1) = (1) = (2) + (1, 1) = (2) · [(1, 1) · (2, 1)].
For the distributivity · over + we have:
(1) · [(2) + (1, 1)] = (1) · (2) = (1) = (1) + (1) = (1) · (2) + (1) · (1, 1),
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(2) · [(1) + (1, 1)] = (2) · (1) = (1) = (1) + (1) = (2) · (1) + (2) · (1, 1),
(1, 1) · [(1) + (2)] = (1.1) · (1) = (1) = (1) + (1) = (1, 1) · (1) + (1, 1) · (2),
(1) · [(2) + (2, 1)] = (1) · (2) = (1) = (1) + (1) = (1) · (2) + (1) · (2, 1),
(2) · [(1) + (2, 1)] = (2) · (2) = (2) = (1) + (2) = (2) · (1) + (2) · (2, 1),
(2, 1) · [(1) + (2)] = (2, 1) · (2) = (2) = (1) + (2) = (2, 1) · (1) + (2, 1) · (2),
(1) · [(1, 1) + (2, 1)] = (1) · (2) = (1) = (1) + (1) = (1) · (1, 1) + (1) · (2, 1),
(1, 1) · [(1) + (2, 1)] = (1, 1) · (2) = (1) = (1) + (1, 1) = (1, 1) · (1) + (1, 1) · (2, 1),
(2, 1) · [(1) + (1, 1)] = (2, 1) · (1) = (1) = (1) + (1, 1) = (2, 1) · (1) + (2, 1) · (1, 1),
(2) · [(1, 1) + (2, 1)] = (2) · (2) = (2) = (1) + (2) = (2) · (1, 1) + (2) · (2, 1),
(1, 1) · [(2) + (2, 1)] = (1, 1) · (2) = (1) = (1) + (1, 1) = (1, 1) · (2) + (1, 1) · (2, 1),
(2, 1) · [(2) + (1, 1)] = (2, 1) · (2) = (2) = (2) + (1, 1) = (2, 1) · (2) + (2, 1) · (1, 1).
Then (N,+, ·, ()) is a semi-ring.

Remark 3.5. Notice that the semi-ring (N,+, ·, ()) can not be a ring. Since, if for every () , a ∈ N,
there exists () , b ∈ N, such that a + b = b + a = (), then a = b = (), which is a contradiction.

Definition 3.6. Let () ∈ X ⊆ N. We say that X is a sub-ring of N, if for every a, b ∈ X, a + b, a · b ∈ X.

In the sequel, for briefly, we denote the semi-ring (N,+, ·, ()) related to a nexus N only by N and put
0 := ().

Example 3.7. Let N = 〈(1, 4), (1, 2, 3)〉 and X = {(), (1), (1, 2), (1, 3), (1, 2, 3)}. X is a sub-semi-ring of
N but since (1, 2, 2) · (1, 2, 3) = (1, 2, 2) < X, X is not an ideal of N.

Definition 3.8. Let () ∈ I ⊆ N. We say that I is an ideal of N, if it satisfies the following conditions:

(I) for every a, b ∈ I, a + b ∈ I,
(II) for every a ∈ I and every b ∈ N, a · b ∈ I.

An ideal I of N is prime if for every a, b ∈ N, a · b ∈ I implies a ∈ I or b ∈ I.

Example 3.9. Let N = 〈(1, 4), (1, 2, 3)〉 and I = {(), (1), (1, 2), (1, 3), (1, 2, 1), (1, 2, 2), (1, 2, 3)}. I is an
ideal of N.

Definition 3.10. A fuzzy subset µ of N is called a fuzzy sub-semi-ring of N if it satisfies the following
conditions: for all a, b ∈ N,

(I) µ(a + b) > min{µ(a), µ(b)},
(III) µ(a · b) > min{µ(a), µ(b)}.

The set of all fuzzy sub-semi-rings of N, is denoted by FS UBS (N).

Example 3.11. We define the fuzzy subset µ of N as follows:

(i) For a = (a1, a2, . . . , an) ∈ N of level n, µ(a) :=
1

a1a2 . . . an
, otherwise

µ(v) =

{
1 v = 0;
0 l(v) = ∞.
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Let a = (a1, . . . , an), b = (b1, . . . , bm) and a1 > b1. Then µ(a + b) = µ((a1)) =
1
a1
>

1
a1 . . . an

.

Hence µ(a + b) > µ(a) > min{µ(a), µ(b)}. Let i{a, b} = i and bi 6 ai. Hence a · b = (b1, . . . , bi) and so

µ(a · b) >
1

b1 . . . bm
= µ(b) > min{µ(a), µ(b)}. Therefore, µ ∈ FS UBS (N).

(ii) For a = (a1, a2, . . . , an) ∈ N, µ(a) :=
1

l(a)
, otherwise

µ(v) =

{
1 v = 0;
0 l(v) = ∞.

Since l(a + b) = 1, µ(a + b) = 1 > min{µ(a), µ(b)}. Clearly l(a · b) 6 l(a), now we have µ(a · b) >
µ(a) > min{µ(a), µ(b)}. Therefore, µ ∈ FS UBS (N).

(iii) For a = (a1, a2, . . . , an) ∈ N, µ(a) :=
1

stem a
, otherwise

µ(v) =

{
1 v = 0;
0 l(v) = ∞.

Let a, b ∈ N with stem a = a1, stem b = b1 and a1 > b1. Hence stem (a + b) = a1 and stem a ·b = b1.
So µ(a + b) = µ(a) > min{µ(a), µ(b)} and µ(a ·b) = µ(b) > min{µ(a), µ(b)}. Therefore, µ ∈ FS UBS (N).

Proposition 3.12. Let A be a subset of N with 0 ∈ A. Then A is a sub-semi-ring of N if and only if
χA ∈ FS UBS (N), where

χA(x) =

{
1 if x ∈ A;
0 if x < A.

Proof. Let A be a sub-semi-ring of N and a, b ∈ N. If a, b ∈ A, then a · b, a + b ∈ A and so χA(a · b) =

χA(a + b) = 1. Now, we have 1 = χA(a + b) > min{χA(a), χA(b)} = 1 and so 1 = χA(a · b) >
min{χA(a), χA(b)} = 1. If a < A, we have min{χA(a), χA(b)} = 0, hence χA(a + b) > min{χA(a), χA(b)} =

0 and χA(a · b) > min{χA(a), χA(b)} = 0. Thus, χA ∈ FS UBS (N).
Conversely, let χA ∈ FS UBS (N). Suppose that a, b ∈ A, then χA(a) = χA(b) = 1. Since χA(a + b) >

min{χA(a), χA(b)} = 1, and χA(a · b) > min{χA(a), χA(b)} = 1, χA(a + b) = χA(a · b) = 1 and so
a + b, a · b ∈ A. Therefore, A is a sub-semi-ring of N. �

Definition 3.13. Let µ ∈ FS UBS (N) and α ∈ [0, 1]. We define µα = {x ∈ N : µ(x) > α} and
S upp(µ) = {a ∈ N : µ(a) , 0}.

Proposition 3.14. Let µ be a fuzzy subset of N such that for every a ∈ N, µ(0) > µ(a). Then µ ∈

FS UBS (N) if and only if, for every α ∈ [0, µ(0)], µα be a sub-semi-ring of N.

Proof. Let µ be a fuzzy sub-semi-ring of N, α ∈ [0, µ(0)] and a, b ∈ µα. Hence 0 ∈ µα, µ(a) > α and
µ(b) > α. This shows that µ(a + b) > min{µ(a), µ(b)} > α, and so a + b ∈ µα. Similarly, a · b ∈ µα and
so µα is a sub-ring of N.

Conversely, let for every α ∈ [0, µ(0)], µα be a sub-semi-ring of N. Let a, b ∈ N, µ(a) = α, µ(b) = β

and α > β. Then a ∈ µα and a, b ∈ µβ. So a+b ∈ µβ and a ·b ∈ µβ. Hence µ(a+b) > β = min{µ(a), µ(b)}
and µ(a · b) > β = min{µ(a), µ(b)}. Therefore, µ is a fuzzy sub-semi-ring of N. �

The following examples shows that the Propositions 3.12 and 3.14 are not true for ideals.
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Example 3.15. Let N = 〈(1, 4), (1, 2, 3)〉 and X = {(), (1), (1, 2), (1, 3), (1, 2, 3)}. X is a sub-ring of N
and so χX is a fuzzy sub-semi-ring of N, but (1, 2, 2) · (1, 2, 3) = (1, 2, 2) < X. This shows that X is not
an ideal of N. Hence Proposition 3.12 is not true for ideals.

Example 3.16. Let N = {(), (1), (2), (3), (1, 2)}. We define the fuzzy µ on N as following:
µ(()) = 1, µ((1)) = 0.95, µ((2)) = 0.5, µ((3)) = 0.75, µ((1, 2)) = 0.85.
For every a ∈ N, we have
()+a = a, (1)+ (1) = (1)+ (1, 2) = (1), (1)+ (2) = (2)+ (1, 2) = (2)+ (2) = (2), (1)+ (3) = (2)+ (3) =

(3)+(3) = (3)+(1, 2) = (3), (1, 2)+(1, 2) = (1, 2). Hence for every a, b ∈ N, µ(a+b) > min{µ(a), µ(b)}.
() ·a = (), (1) ·a = (1), a ·a = a, (2) ·(3) = (2), (2) ·(1, 2) = (3) ·(1, 2) = (1). Hence for every a, b ∈ N,

µ(a · b) > min{µ(a), µ(b)}. Then µ ∈ FS UBS (N) and so by Proposition 3.14, for every α ∈ [0, 1], µα

is a sub-semi-ring of N. We have µ0.75 = {(), (1), (3), (1, 2)}. Since (2) · (3) = (2) < µ0.75, µ0.75 is not an
ideal of N. Therefore, Proposition 3.14 is not true for ideals.

4. Strong fuzzy of a nexus sub-semi-ring

In Examples 3.15 and 3.16, we show that Propositions 3.12 and 3.14 are not true for ideals. Since
ideals in semi-rings are more important than sub-semi-rings, in this section, we want to put a condition
on fuzzy sub-semi-ring such that Propositions 3.12 and 3.14 be true for ideals. See the following
definition:

Definition 4.1. A fuzzy subset µ of N is called a strong fuzzy sub-semi-ring of N if it satisfies the
following conditions: for all a, b ∈ N,

(I) µ(a + b) > min{µ(a), µ(b)},
(III) µ(a · b) > max{µ(a), µ(b)}.

The set of all strong fuzzy sub-semi-rings of N is denoted by FS UBT (N).

Remark 4.2. Let N be a semi-ring and µ ∈ FS UBT (N). Then, for every a ∈ N, µ(0) > µ(a), because
for every a ∈ N, µ(0) = µ(0 · a) > max{µ(a), µ(0)} > µ(a).

It is easy to see that all fuzzy µ that are defined in Examples 3.11(i)–(iii) are strong fuzzy sub-semi-
rings.

Proposition 4.3. Let A be a subset of N with 0 ∈ A. Then A is an ideal of N if and only if, χA ∈

FS UBT (N).

Proof. Let A be an ideal of N and a, b ∈ N. If a, b ∈ A, then a · b, a + b ∈ A and it is show that
χA(a · b) = χA(a + b) = 1. Hence, 1 = χA(a + b) > min{χA(a), χA(b)} = 1 and also we have 1 =

χA(a · b) > max{χA(a), χA(b)} = 1. If a ∈ A and b < A, then a · b ∈ A and so χA(a · b) = 1. Hence,
χA(a · b) > max{χA(a), χA(b)}. Also, we have χA(a + b) > min{χA(a), χA(b)} = 0. If a < A and b < A,
then min{χA(a), χA(b)} = max{χA(a), χA(b)} = 0. Now, we have χA(a · b) > max{χA(a), χA(b)} and
χA(a + b) > min{χA(a), χA(b)}. Therefore, χA ∈ FS UBT (N).

Conversely, let χA ∈ FS UBT (N). If a, b ∈ A, then χA(a) = χA(b) = 1. Since
χA(a + b) > min{χA(a), χA(b)} = 1, then χA(a + b) = 1 and so a + b ∈ A. Let a ∈ A and b ∈ N, then
max{χA(a), χA(b)} = 1. Then χA(a · b) = 1, since χA(a · b) > max{χA(a), χA(b)} = 1, and so a · b ∈ A.
Therefore, A is an ideal of N. �
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Proposition 4.4. Let µ be a fuzzy subset on N. Then µ ∈ FS UBT (N) if and only if, for every α ∈
[0, µ(0)], µα be an ideal of N.

Proof. Let µ ∈ FS UBT (N), α ∈ [0, µ(0)] and a, b ∈ µα. Hence, 0 ∈ µα, µ(a) > α and µ(b) > α.
So µ(a + b) > min{µ(a), µ(b)} > α. Hence, a + b ∈ µα. Now, let a ∈ µα and b ∈ N. So µ(a · b) >
max{µ(a), µ(b)} > α. Hence, a · b ∈ µα. Therefore, µα is an ideal of N.

Conversely, let for every α ∈ [0, µ(0)], µα be an ideal of N. Let a, b ∈ N, µ(a) = α, µ(b) = β and
α > β. Then a ∈ µα and a, b ∈ µβ. So, a + b ∈ µβ and a · b ∈ µα. Hence, µ(a + b) > β = min{µ(a), µ(b)}
and µ(a · b) > α = max{µ(a), µ(b)}. Therefore, µ ∈ FS UBT (N). �

Proposition 4.5. Let 0 , µ ∈ FS UBT (N). Then S upp(µ) is an ideal of N.

Proof. Let µ(0) = 0. Since for every a ∈ N, µ(0) > µ(a), µ(a) = 0 and so µ = 0, which is a
contradiction. Hence, µ(0) , 0 and 0 ∈ S upp(µ). Let a, b ∈ S upp(µ). This shows that µ(a + b) >
min{µ(a), µ(b)} , 0 and so a + b ∈ S upp(µ). Now, let a ∈ S upp(µ) and b ∈ N. Since µ(a) , 0,
µ(a · b) > max{µ(a), µ(b)} , 0. Then a · b ∈ S upp(µ). Therefore, S upp(µ) is an ideal of N. �

The following example shows that the converse of Proposition 4.5, is not true.

Example 4.6. Consider N and µ of Example 3.16. We have S upp(µ) = N is an ideal of N. By Example
3.16, µ0.75 is not an ideal of N. Hence, by Proposition 4.4, µ is not a strong fuzzy sub-semi-ring of N.

The following example shows that S upp(µ) is an ideal of N, but µ is not a fuzzy sub-semi-ring of
N.

Example 4.7. Suppose that N is a semi-ring and for every a = (a1, a2, . . . , an) ∈ N. We put [a] =

[
1
a1

+
1
a2

+ · · · +
1
an

], where [ ] is the bracket function. We define the fuzzy subset µ on N such that for

every a ∈ N,

µ(a) =


1 if [a] ∈ N;

(
1
a1

+
1
a2

+ · · · +
1
an

) − [a] if [a] < N.

Suppose that N = 〈(2, 4)〉, hence S upp(µ) = N is an ideal of N. Since [
1
2

+
1
4

] = [
3
4

] = 0 and

[
1
2

+
1
3

] = [
5
6

] = 0, µ((2, 4)) =
3
4

and µ((2, 3)) =
5
6

. On the other hand, we have (2) = (2, 3) + (2, 4)

and since [
1
2

] = 0, µ((2)) =
1
2

.

Hence, µ((2, 3) + (2, 4)) = µ((2)) =
1
2
<

3
4

= min{
3
4
,

5
6
} = min{µ((2, 3)), µ((2, 4))}. Therefore, µ is

not a fuzzy sub-semi-ring of N.

Proposition 4.8. Let µ be a fuzzy subset of N. Then µ is a strong fuzzy sub-semi-ring if and only if it is
a fuzzy sub-semi-ring and a fuzzy sub-nexus of N.

Proof. Let µ be a strong fuzzy sub-semi-ring of N. Clearly it is a fuzzy sub-semi-ring. If a 6 b, then
a · b = a. Hence µ(a) = µ(a · b) > max{µ(a), µ(b)}. So µ(a) > µ(b) and so µ is a fuzzy sub-nexus of N.
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Conversely, let µ be a fuzzy sub-semi-ring and fuzzy sub-nexus of N. For every a, b ∈ N, since
ab 6 a, b, and µ is a fuzzy sub-nexus of N, we have µ(ab) > µ(a) and µ(ab) > µ(b). Hence, µ(a · b) >
max{µ(a), µ(b)}. Therefore, µ ∈ FS UBT (N). �

The following example give a fuzzy sub-semi-ring µ such that it is not a fuzzy sub-nexus.

Example 4.9. Consider N and µ of Example 3.16. We have (2) 6 (3), 0.5 = µ((2)) and 0.75 = µ((3)),
but 0.5 6 0.75. Hence, µ is not a fuzzy sub-nexus of N.

Definition 4.10. Suppose that N is a semi-ring and µ is a fuzzy subset of N. We say that µ is an integer
fuzzy if for every a, b ∈ N, µ(a) = 0 and µ(b) = 0, imply µ(a · b) = 0. Let α ∈ [0, µ(0)), we say that µ
is a prime fuzzy with respect to α, if for every a, b ∈ N, µ(a) < α and µ(b) < α imply µ(a · b) < α.

Proposition 4.11. Suppose that N , I is an ideal of N, µ is a strong fuzzy sub-semi-ring of N and
α ∈ (0, µ(0)]. Then

(I) I is a prime ideal of N if and only if χI is an integer fuzzy of N,
(II) N , S upp(µ) is a prime ideal of N if and only if µ is an integer fuzzy of N,

(III) µα is a prime ideal of N if and only if µ is a prime fuzzy with respect to α.

Proof. By Definition 4.10, it is clear. �

Proposition 4.12. If N is a cyclic nexus and µ is a strong fuzzy sub-semi-ring, then for every α ∈
[0, µ(0)), µα , N is a prime ideal of N.

Proof. Let a, b ∈ N and a · b ∈ µα, hence µ(a · b) > α. Since N is cyclic nexus, let a 6 b. Hence,
µ(a · b) = µ(a) > α and so a ∈ µα. Then, µα is a prime ideal of N. �

Proposition 4.13. If N is a semi-ring and consider µ of Example 3.11(iii). Then, for every α ∈ [0, µ(0)),
µα , N is a prime ideal of N.

Proof. Let a, b ∈ N and α ∈ [0, µ(0)). If µ(a) < α and µ(b) < α, hence stem a > α and stem b > α.
Thus, stem a ·b > α. Then, µ(a ·b) < α and µ is a prime fuzzy with respect to α. Hence, by Proposition
4.11(III), µα is a prime ideal of N. �

Proposition 4.14. If N is a semi-ring and consider µ of Example 3.11(ii) . Then, for every α ∈ [0, µ(0)),
µα , N is a prime ideal of N if and only if there exists a unique a ∈ N with l(a) = n such that
{b ∈ N : l(a) > n} ⊆ qa.

Proof. At first we assume that there exist unique a ∈ N such that l(a) = n and for every b ∈ N with

l(b) > n, b ∈ qa. We show that µ
1
n is a prime ideal of N. By Proposition 4.11(III), it is sufficient to

show that µ is a prime fuzzy with respect to
1
n

. Let b, b′ ∈ N with µ(b) <
1
n

and µ(b′) <
1
n

. Hence,

l(b) > n and l(b′) > n. Thus, b, b′ ∈ qa and i{b, b′} > n, and so l(b · b′) > n. Then, µ(b · b′) <
1
n

.

Therefore, µ is a prime fuzzy with respect to
1
n

and µ
1
n is a prime ideal.

Conversely, let there exist a, a′ ∈ N such that a , a′, l(a) = l(a′) = n, b ∈ qa and b′ ∈ qa′ with
l(b) > n and l(b′) > n. Since a , a′, l(a) = l(a′) = n, i{a, a′} 6 n and since b ∈ qa and b′ ∈ qa′ with
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l(b) > n and l(b′) > n, i{b, b′} 6 n. Hence, l(b · b′) 6 n, and so µ(b · b′) >
1
n

. Then, b · b′ ∈ µ
1
n , but

b, b′ < µ
1
n . Therefore, µ

1
n is not prime ideal of N and the proof is complete. �

Example 4.15. Consider µ of Example 3.11(ii) and N = 〈(1, 2, 3), (1, 1, 4)〉. Let a = (1, 2, 3) and

b = (1, 1, 4), then µ(a · b) = µ((1, 1)) =
1
2

, but µ(a) = µ(b) =
1
3

. So, a · b ∈ µ
1
2 , but a, b < µ

1
2 . Hence

µ

1
2 is not a prime ideal of N. In the other hand, since for every a ∈ N, stem a = 1, µ1 = {(), (1)} and it

is easy to see that a · b = (1) implies a = (1) or b = (1). So, µ1 is a prime ideal of N.

Proposition 4.16. Suppose that st(N) = n , 1. Consider µ of Example 3.11(ii), δi = max{l(a) :
stem a = i}. Suppose that j is such that 1 , δ j = max{δi : 1 6 i 6 n}. Also, suppose that k is such that

1 , δk = max{δi : 1 6 i 6 n, i , j}. Then for every 1 6 m < δk, µ
1
m is not a prime ideal of N.

Proof. Let a, b ∈ N such that l(a) = δ j and l(b) = δk. Hence, stem a = j, stem b = k, µ(a) =
1
δ j

and

µ(b) =
1
δk

. Then a ·b = ( j∧k), and so µ(a ·b) = 1 >
1
m

, but µ(a) =
1
δ j
<

1
m

, µ(b) =
1
δk
<

1
m

. Therefore,

a · b ∈ µ
1
m , but a, b < µ

1
m . Thus, µ

1
m is not a prime ideal of N. �

Example 4.17. Suppose that N = 〈(5, 4, 3, 2, 1), (6, 2, 1, 1, 1, 1)〉. By notation of Proposition 4.16, we
have st(N) = 6, j = 6, k = 5, δ6 = 6 and δ5 = 5. Let µ as Example 3.11(ii). Now by Proposition 4.16,

for every 1 6 m 6 4, ν
1
m , is not a prime ideal of N.

Definition 4.18. Suppose that N and M are two semi-rings, the function f : N −→ M is a semi-ring
homomorphism if f satisfies the following conditions:

(I) f (0) = 0,
(II) f (a + b) = f (a) + f (b),∀a, b ∈ N,

(III) f (a · b) = f (a) · f (b),∀a, b ∈ N.

Proposition 4.19. Suppose that N and M are two semi-rings and f : N −→ M is a semi-ring
homomorphism:

(I) if µ ∈ FS UBS (M), then µ ◦ f ∈ FS UBS (N) such that for every a ∈ N, (µ ◦ f )(a) = µ( f (a)),
(II) if µ ∈ FS UBS (N), then f (µ) ∈ FS UBS (M) such that for every b ∈ M,

f (µ)(b) =

{
0 if b < Im f ;
sup{µ(a) : f (a) = b} if b ∈ Im f .

Proof. (I) Let a, b ∈ N, then
(µ ◦ f )(a + b) = µ( f (a + b)) = µ( f (a) + f (b)) > min{µ( f (a)), µ( f (b))} = min{(µ ◦ f )(a), (µ ◦ f )(b)}.
(µ ◦ f )(a.b) = µ( f (a · b)) = µ( f (a) · f (b)) > min{µ( f (a)), µ( f (b))} = min{(µo f )(a), (µo f )(b)}.

AIMS Mathematics Volume 9, Issue 12, 36140–36157.



36151

Therefore, µ ◦ f ∈ FS UBS (N).
(II) Let a, b ∈ M. If a < Im f or b < Im f , then min{ f (µ)(a), f (µ)(b)} = 0 and hence f (µ)(a + b) >

min{ f (µ)(a), f (µ)(b)} and f (µ)(a · b) > min{ f (µ)(a), f (µ)(b)}. Now, let a, b ∈ Im f and f (µ)(a) 6
f (µ)(b). We show that f (µ)(a + b) > f (µ)(a) and f (µ)(a · b) > f (µ)(a).

Let ε > 0. Since f (µ)(a) = sup{µ(x) : f (x) = a} and f (µ)(b) = sup{µ(y) : f (y) = b}, there
exist x′, y′ ∈ N such that f (µ)(a) − ε 6 µ(x′) < f (µ)(a) and f (µ)(b) − ε 6 µ(y′) < f (µ)(b). Since
f (x′ + y′) = a + b, f (µ)(a + b) = sup{µ(z) : f (z) = a + b} > µ(x′ + y′) > min{µ(x′), µ(y′)}.

Case 1: If µ(x′) 6 µ(y′), then f (µ)(a + b) > µ(x′) > f (µ)(a) − ε.
Case 2: If µ(x′) > µ(y′), then f (µ)(a + b) > µ(y′) > f (µ)(b) − ε > f (µ)(a) − ε.
Since for every ε > 0, f (µ)(a + b) > f (µ)(a) − ε, we get

f (µ)(a + b) > f (µ)(a) = min{ f (µ)(a), f (µ)(b)}.

Similarly, since f (x′ · y′) = a · b, we have
f (µ(a · b)) = sup{µ(z) : f (z) = a · b} > µ(x′ · y′) > min{µ(x′), µ(y′)} > f (µ)(a) − ε.
Hence, f (µ)(a · b) > f (µ)(a) = min{ f (µ)(a), f (µ)(b)}.
Therefore, f (µ) ∈ FS UBS (N). �

In Proposition 4.19(I), if µ ∈ FS UBT (M), then by a similar argument we can show that µ ◦ f ∈
FS UBT (N). However, Proposition 4.19(II), is not true for µ ∈ FS UBT (N). See the following example:

Example 4.20. Let N = 〈(1, 2)〉, M = 〈(2, 3)〉 and µ be as Example 3.11(ii). Let f : N −→ M be such
that f (0) = 0 and for every a ∈ N, f (a) = (2). Let b = (2) and b′ = (1). Since b · b′ = b′ < Im f , we
have f (µ)(b · b′) = 0 < max{ f (µ)(b), f (µ)(b′)} = 1. Then µ is a strong fuzzy sub-semi-ring of N, but
f (µ) is not a strong fuzzy sub-semi-ring of M.

Let I be an ideal of N and a ∈ N. We put a + I = {a + b : b ∈ I} and
N
I

= {a + I : a ∈ N}.

Lemma 4.21. Let I be an ideal of N and a, a′ ∈ N. Then

(I) a + I = I if and only if a = ().
(II) a + I = a′ + I if and only if stem a = stem a′.

Proof. (I) Clearly, ()+ I = I. Let a+ I = I. Then there exist b ∈ I such that a+b = (). Hence a = b = ().
(II) Assume a1 = stem a = stem a′ = a′1. Hence for every b ∈ I with stem b = b1, we have

a + b = (a1 ∨ b1) = (a′1 ∨ b1) = a′ + b. Therefore, a + I = a′ + I.
Conversely, let a + I = a′ + I. Then Since () ∈ I, we have (a′1) = a′ + () ∈ a′ + I = a + I. Hence

there exist b ∈ I, such that (a′1) = a + b = (a1 ∨ b1), with b1 = stem b. Then a′1 > a1. Similarly, a1 > a′1.
Thus, a1 = a′1. Therefore, stem a = stem a′. �

Example 4.22. Consider a nexus:
N = {(), (1), (2), (3), (4), (1, 1), (1, 2), (1, 1, 1), (1, 1, 2), (1, 1, 3), (2), (2, 1), (2, 1, 1), (2, 1, 2), (3, 1),
(3, 2), (3, 3), (4, 1)}
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with the following diagram.

(1,1,1) (1,1,2) (1,1,3) (2,1,1) (2,1,2)

(1,1)

OO 99 33

(1,2) (2,1)

33 22

(3,1) (3,2) (3,3) (4,1)

(1)

ee OO

(2)

OO

(3)

OO :: 44

(4)

44

( )

ii OO
55 33

Figure 2. Diagram of N.

If I := {(), (1), (2), (1, 1), (1, 2), (2), (2, 1)}, then I is an ideal of N. Using Lemma 4.21, we can see that
() + I = (1, 1) + I = (1, 2) + I = (1, 1, 1) + I = (1, 1, 2) + I = (1, 1, 3) + I,
(2) + I = (2, 1) + I = (2, 1, 1) + I = (2, 1, 2) + I,
(3) + I = (3, 1) + I = (3, 2) + I = (3, 3) + I,
(4) + I = (4, 1) + I.

Then
N
I

= {I, (1) + I, (2) + I, (3) + I, (4) + I}.

Definition 4.23. For every a + I, b + I ∈
N
I

, we define the binary operations “ ∗ ” and “ ◦ ” on
N
I

with
the following:

(I) (a + I) ∗ (b + I) = a + b + I,
(II) (a + I) ◦ (b + I) = a · b + I.

Theorem 4.24. Let I be an ideal of N. Then (
N
I
, ∗, ◦, I) is a semi-ring.

Proof. Let a + I = a′ + I and b + I = b′ + I. By Lemma 4.21, we have a1 = stem a = stem a′ = a′1
and b1 = stem b = stem b′ = b′1. Hence, a1 ∨ b1 = a′1 ∨ b′1 and a1 ∧ b1 = a′1 ∧ b′1. This shows that
a + b + I = a′ + b′ + I and a · b + I = a′ · b′ + I. Therefore, the binary operations ∗ and ◦ are well

defined. By routine calculation we can see that (
N
I
, ∗, I) is a commutative semi-group, and we have

(() + I) ∗ (a + I) = () + a + I = a + I and (a + I) ∗ (() + I) = a + () + I = a + I. Thus, it is a commutative

monoid. Furthermore, (
N
I
, ◦) is a semi-group, in while the operation ◦ is distributive with respect to ∗.

Therefore, (
N
I
, ∗, ◦, I) is a semi-ring. �

Example 4.25. Let I is an ideal of N and
N
I

is the quotient semi-ring. Let f : N −→
N
I

be such that
for every a ∈ N, f (a) = a + I. Clearly f is a semi-ring epimorphism. Let µ be a fuzzy sub-semi-ring

of N and ν :
N
I
−→ [0, 1] be such that for every a ∈ N, ν(a + I) = sup{µ(b) : b + I = a + I}. Since

ν = f (µ), by Proposition 4.19(II), ν is a fuzzy sub-semi-ring of
N
I

.
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Example 4.26. Consider a nexus N = {(), (1), (2), (3), (4), (1, 1), (1, 2), (1, 1, 1), (1, 1, 2), (1, 1, 3),
(2), (2, 1), (2, 1, 1), (2, 1, 2), (3, 1), (3, 2), (3, 3), (4, 1)} with the following diagram:

(1,1,1) (1,1,2) (1,1,3) (2,1,1) (2,1,2)

(1,1)

OO 99 33

(1,2) (2,1)

33 22

(3,1) (3,2) (3,3) (4,1)

(1)

ee OO

(2)

OO

(3)

OO :: 44

(4)

44

( )

ii OO
55 33

Figure 3. Diagram of N.

If I = {(), (1), (2), (1, 1), (1, 2), (2), (2, 1)}, by Lemma 4.21, we have
N
I

= {I, (1) + I, (2) + I, (3) + I, (4) + I}.

Now we define ν :
N
I
−→ [0, 1] such that ν(I) = 1, ν((1) + I) = 1, ν((2) + I) =

1
2

, ν((3) + I) =
1
3

,

ν((4) + I) =
1
4

.

Consider µ in Example 3.11(iii), and f : N −→
N
I

in Example 4.26. It is easy to see that ν = f (µ)

and by Example 4.26, ν ∈ FS UBS (
N
I

).

5. Fuzzy quotient of a nexus semi-ring

In this section, we verify some concepts of fuzzy quotient of a nexus semi-rings.

Definition 5.1. Let a ∈ N and µ ∈ FS UBS (N). We define the fuzzy a + µ : N −→ [0, 1] such that for
every x ∈ N, (a + µ)(x) = µ(a + x).

Proposition 5.2. Suppose that a + µ is the fuzzy of Definition 5.1. Then a + µ ∈ FS UBS (N).

Proof. Let x, x′ ∈ N, stem a = a1, stem x = x1 and stem x′ = x′1. We have
(a+µ)(x+x′) = µ(a+(x1∨x′1)) = µ((a1∨x1)∨(a1∨x′1)) = µ((a+x)+(a+x′)) > min{µ(a+x), µ(a+x′)} =

min{(a + µ)(x), (a + µ)(x′)}.
(a + µ)(x · x′) = µ(a + (x · x′)) = µ((a1 ∨ (x1 ∧ x′1))) = µ((a1 ∨ x1) · (a1 ∨ x′1)) = µ((a + x) · (a + x′)) >

min{µ(a + x), µ(a + x′)} = min{(a + µ)(x), (a + µ)(x′)}
Therefore, a + µ ∈ FS UBS (N). �

Definition 5.3. Let a ∈ N and µ ∈ FS UBS (N). We define Nµ = {a + µ : a ∈ N}. Also we define
operations ⊕ and � on Nµ such that for every a, b ∈ N, (a+µ)⊕(b+µ) = (a+b)+µ and (a+µ)�(b+µ) =

(a · b) + µ.
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Proposition 5.4. Let µ ∈ FS UBS (N). Then, (Nµ,⊕,�, 0 + µ) is a semi-ring.

Proof. Suppose that a, a′, b, b′ ∈ N and a + µ = a′ + µ and b + µ = b′ + µ. Hence, for every x ∈ N, we
have µ(a+ x) = µ(a′+ x) and µ(b+ x) = µ(b′+ x). Let t ∈ N. If x = b+ t, then µ(a+b+ t) = µ(a′+b+ t)
and if x+a′+t, then µ(b+a′+t) = µ(b′+a′+t). Now, for every t ∈ N, we have µ(a+b+t) = µ(a′+b′+t)
and so ((a + b) + µ)(t) = ((a′ + b′) + µ)(t). Hence (a + b) + µ = (a′ + b′) + µ.

Then the operation ⊕ is well-defined. Now we show that the operation � is well defined. Let
stem a = a1, stem b = b1, stem a′ = a′1, stem b = b′1, stem x = x1. We consider two cases: Case 1: Let
a1 > b1 and a′1 > b′1. Then

((a ·b) +µ)(x) = µ((a1∧b1)∨ x1) = µ(b1∨ x1) = µ(b + x) = µ(b′+ x) = µ(b′1∨ x1) = µ((a′ ·b′) + x) =

(a′ · b′ + µ)(x).
Hence (a · b) + µ = (a′ · b′) + µ.
Case 2: Let a1 > b1 and a′1 6 b′1. Then ((a · b) + µ)(x) = µ((a · b) + x) = µ((a1 ∧ b1) ∨ x1) =

µ(b1 ∨ x1) = µ(b + x) = µ(b′ + x) = µ((a · b) + x) = µ(a′ + b′ + x) = µ(a + b + x) = µ(a1 ∨ b1 ∨ x1) =

µ(a + x) = µ(a′ + x) = µ(a′1 ∨ x1) = µ((a′1 ∧ b′1) ∨ x1) = µ((a′ · b′) + x) = ((a′ · b′) + µ)(x).
Hence (a · b) + µ = (a′ · b′) + µ.
Then the operation � is well-defined.
Also, for every a, b, c ∈ N, we have
(c + µ) � ((a + µ) ⊕ (b + µ)) = (c + µ) � ((a + b) + µ)) = (c · (a + b)) + µ = (c · a + c · b) + µ =

((c · a) + µ) ⊕ ((c · b) + µ)⊕ = ((c + µ) � (a + µ)) ⊕ ((c + µ) � (b + µ)).
Therefore, (Nµ,⊕,�, 0 + µ) is a semi-ring. �

Example 5.5. Consider the semi-ring N of Example 4.26 and µ of Example 3.11(i). For every a, b ∈ N,
a + µ = b + µ if and only if, for every x ∈ N, µ(a + x) = µ(b + x). If x = 0, then µ(a) = µ(b).

Let a = (a1, ..., an) and b = (b1, ..., bm). So a1...an = b1...bm. If x = a, we have
1
a1

= µ((a1)) =

µ(a + a) = µ(a + b) = µ((a1 ∨ b1)) =
1

a1 ∨ b1
. Hence, a1 > b1. If x = b, similarly we have

b1 > a1. Hence a1 = b1. Then (1) + µ = (1, 1) + µ = (1, 1, 1) + µ, (1, 2) + µ = (1, 1, 2) + µ,
(2) + µ = (2, 1) + µ = (2, 1, 1) + µ, (3) + µ = (3, 1) + µ, (4) + µ = (4, 1) + µ. Therefore, Nµ =

{µ, (1) + µ, (2) + µ, (3) + µ, (4) + µ, (1, 2) + µ, (1, 1, 3) + µ, (2, 1, 2) + µ, (3, 2) + µ, (3, 3) + µ}.

Proposition 5.6. Let µ, ν ∈ FS UBS (N) and ν 6 µ. Let for every a, b ∈ N, ν(a) = ν(b) implies
µ(a) = µ(b). Then

µ

ν
: Nν −→ [0, 1] with

µ

ν
(a + ν) = µ(a) ∈ FS UBS (Nν).

Proof. Let a, b ∈ N and a + ν = b + ν. Then, for every x ∈ N, (a + ν)(x) = (b + ν)(x) and so
ν(a + x) = ν(b + x). If x = 0, then ν(a) = ν(b), and so µ(a) = µ(b). Thus,

µ

ν
is well-defined. Now, since

µ ∈ FS UBS (N), we have
µ

ν
((a + ν)� (b + ν)) =

µ

ν
((a ·b) + ν) = µ(a ·b) > min{µ(a), µ(b)} = min{

µ

ν
(a + ν),

µ

ν
(b + ν)}. Similarly,

µ

ν
((a + ν) ⊕ (b + ν)) > min{

µ

ν
(a + ν),

µ

ν
(b + ν)}. Therefore,

µ

ν
∈ FS UBS (Nν). �

Proposition 5.7. Let µ, ν ∈ FS UBS (N) and ν 6 µ. Let for every a, b ∈ N, ν(a) = ν(b) implies
µ(a) = µ(b). Then, the semi-rings Nµ and (Nν)µ

ν

are isomorphic.
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Proof. Let f : (Nν)µ
ν

−→ Nµ be such that for every a ∈ N, f ((a + ν) +
µ

ν
) = a + µ. Let a, b ∈ N

and (a + ν) +
µ

ν
= (b + ν) +

µ

ν
. If x ∈ N, ((a + ν) +

µ

ν
)(x + ν) = ((b + ν) +

µ

ν
)(x + ν),, and so

µ

ν
(a + x + ν) =

µ

ν
(b + x + ν). Thus, µ(a + x) = µ(b + x). Then a + µ = b + µ, and so f is well-defined.

Now, we have
f (((a + ν) +

µ

ν
) ⊕ ((b + ν) +

µ

ν
))) = f ((a + b + ν) +

µ

ν
)) = (a + b) + µ = (a + µ) ⊕ (b + µ),

f (((a + ν) +
µ

ν
)� ((b + ν) +

µ

ν
))) = f ((((a · b) + ν) +

µ

ν
)) = (a · b) + µ = (a + µ)� (b + µ). Hence, f is

semi-ring homomorphism. Clearly, f is onto. Now, let f ((a + ν) +
µ

ν
) = f ((b + ν) +

µ

ν
). This shows that

a+µ = b+µ. Then, for every x ∈ N, µ(a+ x) = µ(b+ x) . Thus, ((a+ν)+
µ

ν
)(x+ν) = ((b+ν)+

µ

ν
)(x+ν).

Consequently, (a+ν)+
µ

ν
= (b+ν)+

µ

ν
. Thus, f is one-to-one. Therefore, f is a semi-ring isomorphism

and the semi-rings Nµ and (Nν)µ
ν

are isomorphic. �

6. Conclusions and future work

We define a semi-ring on nexus N and fuzzy sub-semi-ring of this semi-ring. The set of all fuzzy
sub-semi-rings of N is denoted by FS UBS (N). In Proposition 3.12, we show that A is a sub-semi-
ring of N if and only if χA is a fuzzy sub-semi-ring of N. In Proposition 3.14, we show that µ is a
fuzzy sub-semi-ring of N if and only if, for every α ∈ [0, µ(0)], µα is a sub-semi-ring of N. Since the
Propositions 3.12 and 3.14 are not true for ideals and since ideals in semi-rings are more important
than sub-semi-rings, we put a condition on a fuzzy sub-semi-ring such that Propositions 3.12 and
3.14 are true for ideals. We define this fuzzy and named it by a strong fuzzy sub-semi-ring. The
set of all strong fuzzy sub-semi-rings of N, is denoted by FS UBT (N). In the following, for a semi-
ring homomorphism f : N −→ M, we show that if µ ∈ FS UBS (N) then f (µ) ∈ FS UBS (M) and
if µ ∈ FS UBS (M) then f ◦ µ ∈ FS UBS (N). Finally, we verify some concepts of fuzzy quotient
of a nexus semi-ring. In future, for semi-ring related to nexus N, we define polynomial semi-ring
N[x] = {a0 + a1x + · · · + anxn : n ∈ N ∪ {0}, ai ∈ N(1 6 i 6 n)}. Then, we characterize all prime ideals
and prime elements of N.
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