Cryptography serves as the cornerstone for safe communication and data security in today's digital environment. Because they feature substitution boxes, substitution-permutation networks (SPNs) are crucial for cryptographic algorithms such as the popular Advanced Encryption Standard (AES). The structure and properties of S-boxes have a significant impact on the overall security of cryptographic systems. This article aims to improve cryptographic security through unique S-box construction methodologies. The proposed S-boxes improve the security features by employing chaotic maps and Galois fields, which go beyond traditional design approaches. The S-boxes were analyzed and the weaknesses were removed to design strong candidate S-boxes. The efficiency of the proposed S-boxes in increasing cryptographic resilience is thoroughly explored thereby taking nonlinearity, strict avalanche requirements, bit independence constraints, linear approximation, and differential approximation into account. The dynamic S-boxes have average scores of nonlinearity, strict avalanche criteria(SAC), nonlinearity of Bit Independence Criteria (BIC Nonlinearity), SAC of Bit Independence Criteria (BIC SAC), Linear Approximation Probability (LAP) and Differential Approximation Probability (DAP) is 111.1025, 111.1022, 0.5014, 0.5024, 111.1082, 111.0964, 0.5024, 0.5022, 0.0726, 0.0729 and 0.0214, 0.0219, respectively. Furthermore, given the prevalence of images in modern communication and data storage, this work studies the seamless incorporation of advanced S-boxes into image encryption systems. With its thorough research, the paper contributes to the current discussion on cryptographic security by providing theoretical understandings and practical solutions to improve digital communication and data security in an era of rising cyber dangers and ubiquitous connectivity.
Citation: Mohammad Mazyad Hazzazi, Gulraiz, Rashad Ali, Muhammad Kamran Jamil, Sameer Abdullah Nooh, Fahad Alblehai. Cryptanalysis of hyperchaotic S-box generation and image encryption[J]. AIMS Mathematics, 2024, 9(12): 36116-36139. doi: 10.3934/math.20241714
Cryptography serves as the cornerstone for safe communication and data security in today's digital environment. Because they feature substitution boxes, substitution-permutation networks (SPNs) are crucial for cryptographic algorithms such as the popular Advanced Encryption Standard (AES). The structure and properties of S-boxes have a significant impact on the overall security of cryptographic systems. This article aims to improve cryptographic security through unique S-box construction methodologies. The proposed S-boxes improve the security features by employing chaotic maps and Galois fields, which go beyond traditional design approaches. The S-boxes were analyzed and the weaknesses were removed to design strong candidate S-boxes. The efficiency of the proposed S-boxes in increasing cryptographic resilience is thoroughly explored thereby taking nonlinearity, strict avalanche requirements, bit independence constraints, linear approximation, and differential approximation into account. The dynamic S-boxes have average scores of nonlinearity, strict avalanche criteria(SAC), nonlinearity of Bit Independence Criteria (BIC Nonlinearity), SAC of Bit Independence Criteria (BIC SAC), Linear Approximation Probability (LAP) and Differential Approximation Probability (DAP) is 111.1025, 111.1022, 0.5014, 0.5024, 111.1082, 111.0964, 0.5024, 0.5022, 0.0726, 0.0729 and 0.0214, 0.0219, respectively. Furthermore, given the prevalence of images in modern communication and data storage, this work studies the seamless incorporation of advanced S-boxes into image encryption systems. With its thorough research, the paper contributes to the current discussion on cryptographic security by providing theoretical understandings and practical solutions to improve digital communication and data security in an era of rising cyber dangers and ubiquitous connectivity.
[1] | L. Zhang, Y. Lin, X. Yang, T. Chen, X. Cheng, W. Cheng, From sample poverty to rich feature learning: A new metric learning method for few-shot classification, IEEE Access, 12 (2024), 124990–125002. https://doi.org/10.1109/ACCESS.2024.3444483 doi: 10.1109/ACCESS.2024.3444483 |
[2] | Y. Lin, Z. Xie, T. Chen, X. Cheng, H. Wen, Image privacy protection scheme based on high-quality reconstruction DCT compression and nonlinear dynamics, Expert Syst. Appl., 257 (2024), 124891. https://doi.org/10.1016/j.eswa.2024.124891 doi: 10.1016/j.eswa.2024.124891 |
[3] | L. Cui, Y. Cao, A new S-box structure named affine-power-affine, Int. J Innov. Comput. Info. Ctrl, 3 (2007), 751–759. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=8044cda70fa8d0a18ff4708df185476bb92f3f7a |
[4] | H. Liu, A. Kadir, P. Gong, A fast color image encryption scheme using one-time S-Boxes based on complex chaotic system and random noise, Optics commun., 338 (2015), 340–347. https://doi.org/10.1016/j.optcom.2014.10.021 doi: 10.1016/j.optcom.2014.10.021 |
[5] | X. Wang, Q. Wang, A novel image encryption algorithm based on dynamic S-boxes constructed by chaos, Nonlinear Dyn., 75 (2014), 567–576. https://doi.org/10.1007/s11071-013-1086-2 doi: 10.1007/s11071-013-1086-2 |
[6] | I. Hussain, T. Shah, H. Mahmood, A new algorithm to construct secure keys for AES, Int. J. Contemp. Math. Sci., 5 (2010), 1263. Available from: https://m-hikari.com/ijcms-2010/25-28-2010/hussainIJCMS25-28-2010.pdf |
[7] | X. Zhang, Y. Mao, Z. Zhao, An efficient chaotic image encryption based on alternate circular S-boxes, Nonlinear Dyn., 78 (2014), 359–369. https://doi.org/10.1007/s11071-014-1445-7 doi: 10.1007/s11071-014-1445-7 |
[8] | I. Hussain, T. Shah, H. Mahmood, A projective general linear group based algorithm for the construction of substitution box for block ciphers, Neural Comput. Appl., 22 (2013), 1085–1093. https://doi.org/10.1007/s00521-012-0870-0 doi: 10.1007/s00521-012-0870-0 |
[9] | R. Ali, M. K. Jamil, A. S. Alali, J. Ali, G. Afzal, A robust S-box design using cyclic groups and image encryption, IEEE Access, 11 (2023), 135880–135890. https://doi.org/10.1109/ACCESS.2023.3337443 doi: 10.1109/ACCESS.2023.3337443 |
[10] | R. Liu, H. Liu, M. Zhao, Reveal the correlation between randomness and Lyapunov exponent of n-dimensional non-degenerate hyper chaotic map, Integration, 93 (2023), 102071. https://doi.org/10.1016/j.vlsi.2023.102071 doi: 10.1016/j.vlsi.2023.102071 |
[11] | C. Luo, Y. Wang, Y. Fu, P. Zhou, M. Wang, Constructing dynamic S-boxes based on chaos and irreducible polynomials for image encryption, Nonlinear Dyn., 112 (2024), 1–19. https://doi.org/10.1007/s11071-024-09353-w doi: 10.1007/s11071-024-09353-w |
[12] | B. M. Savadkouhi, A. M. Tootkaboni, S-Boxes design based on the Lu-Chen system and their application in image encryption, Soft Comput., 28 (2024), 1–22. https://doi.org/10.1007/s00500-024-09912-8 doi: 10.1007/s00500-024-09912-8 |
[13] | R. Ali, J. Ali, P. Ping, M. K. Jamil, A novel S-box generator using Frobenius automorphism and its applications in image encryption, Nonlinear Dyn., 1 (2024), 1–24. https://doi.org/10.1007/s11071-024-10003-4 doi: 10.1007/s11071-024-10003-4 |
[14] | D. Ustun, S. Sahinkaya, N. Atli, Developing a secure image encryption technique using a novel S-box constructed through real-coded genetic algorithm's crossover and mutation operators, Expert Syst. Appl., 256 (2024), 124904. https://doi.org/10.1016/j.eswa.2024.124904 doi: 10.1016/j.eswa.2024.124904 |
[15] | Q. Lai, G. Hu, A nonuniform pixel split encryption scheme integrated with compressive sensing and its application in IoMT, IEEE Trans. Ind. Electron., 20 (2024), 11262–11272. https://doi.org/10.1109/TII.2024.3403266 doi: 10.1109/TII.2024.3403266 |
[16] | S. Gao, H. H. C. Iu, U. Erkan, C. Şimşek, J. Mou, A. Toktas, Design, dynamical analysis, and hardware implementation of a novel memcapacitive hyperchaotic logistic map, IEEE Internet Things J., 11 (2024), 30368–30375. Available from: https://ieeexplore.ieee.org/abstract/document/10552354 |
[17] | Z. Xie, Y. Lin, T. Liu, H. Wen, Face privacy protection scheme by security-enhanced encryption structure and nonlinear dynamics, IScience, 27 (2024), 110768. https://doi.org/10.1016/j.isci.2024.110768 doi: 10.1016/j.isci.2024.110768 |
[18] | Y. Wang, Z. Zhang, L. Y. Zhang, J. Feng, J. Gao, P. Lei, A genetic algorithm for constructing bijective substitution boxes with high nonlinearity, Info. Sci., 523 (2020), 152–166. https://doi.org/10.1016/j.ins.2020.03.025 doi: 10.1016/j.ins.2020.03.025 |
[19] | Q. Lai, L. Yang, G. Chen, Two-dimensional discrete memristive oscillatory hyperchaotic maps with diverse dynamics, IEEE Trans. Ind. Electron., 72 (2024), 969–979. https://doi.org/10.1109/TIE.2024.3417974 doi: 10.1109/TIE.2024.3417974 |
[20] | M. Wang, H. Liu, M. Zhao, Construction of a non-degeneracy 3D chaotic map and application to image encryption with keyed S-box, Multimed. Tools Appl., 82 (2023), 34541–34563. https://doi.org/10.1007/s11042-023-14988-9 doi: 10.1007/s11042-023-14988-9 |
[21] | R. Liu, H. Liu, M. Zhao, Cryptanalysis and construction of keyed strong S-Box based on random affine transformation matrix and 2D hyper chaotic map, Expert Syst. Appl., 252 (2024), 124238. https://doi.org/10.1016/j.eswa.2024.124238 doi: 10.1016/j.eswa.2024.124238 |
[22] | S. Yuanyuan, H. Liu, M. Zhao, Constructing keyed strong S-Box with higher nonlinearity based on 2D hyper chaotic map and algebraic operation, Integration, 88 (2023), 269–277. https://doi.org/10.1016/j.vlsi.2022.10.011 doi: 10.1016/j.vlsi.2022.10.011 |
[23] | M. Zhao, H. Liu, Y. Niu, Batch generating keyed strong S-Boxes with high nonlinearity using 2D hyper chaotic map, Integration, 92 (2023), 91–98. https://doi.org/10.1016/j.vlsi.2023.05.006 doi: 10.1016/j.vlsi.2023.05.006 |
[24] | J. Pieprzyk, G. Finkelstein, Towards effective nonlinear cryptosystem design, IEEE Proc.-E: Comput. Digit. Tech., 135 (1988), 325–335. |
[25] | J. Ali, M. K. Jamil, A. S. Alali, R. Ali, A medical image encryption scheme based on Mobius transformation and Galois field, Heliyon, 10 (2024), e23652. https://doi.org/10.1016/j.heliyon.2023.e23652 doi: 10.1016/j.heliyon.2023.e23652 |
[26] | Y. Ma, Y. Tian, L. Zhang, P. Zuo, Two-dimensional hyperchaotic effect coupled mapping lattice and its application in dynamic S-box generation, Nonlinear Dyn., 112 (2024), 1–32. https://doi.org/10.1007/s11071-024-09907-y doi: 10.1007/s11071-024-09907-y |
[27] | F. Artuger, F. Ozkaynak, A new chaotic system and its practical applications in substitution box and random number generator, Multimed. Tools Appl., 2024, 1–15. https://doi.org/10.1007/s11042-024-19053-7 |
[28] | M. Vijayakumar, A. Ahilan, An optimized chaotic S-box for real-time image encryption scheme based on 4-dimensional memristive hyperchaotic map, Ain Shams Eng. J., 1 (2024), 102620. https://doi.org/10.1016/j.asej.2023.102620 doi: 10.1016/j.asej.2023.102620 |
[29] | S. Ullah, X. Liu, A. Waheed, S. Zhang, An efficient construction of S-box based on the fractional order Rabinovich Fabrikant chaotic system, Integration, 94 (2024), 102099. https://doi.org/10.1016/j.vlsi.2023.102099 doi: 10.1016/j.vlsi.2023.102099 |
[30] | A. S. Alali, R. Ali, M. K. Jamil, J. Ali, Gulraiz, Dynamic S-Box construction using mordell elliptic curves over galois field and its applications in image encryption, Mathematics, 12 (2024), 587. https://doi.org/10.3390/math12040587 doi: 10.3390/math12040587 |
[31] | A. Waheed, F. Subhan, S-box design based on logistic skewed chaotic map and modified Rabin-Karp algorithm: Applications to multimedia security, Phys. Scr., 99 (2024), 055236. 10.1088/1402-4896/ad3991 doi: 10.1088/1402-4896/ad3991 |
[32] | F. Artuger, Strong S-box construction approach based on Josephus problem, Soft Comput., 28 (2024), 1–13. https://doi.org/10.1007/s00500-024-09751-7 doi: 10.1007/s00500-024-09751-7 |
[33] | T. Shah, A. Elmoasry, S. I. Batool, M. Khan, Quantum harmonic oscillator and Schrödinger paradox based nonlinear confusion component, Int. J. Theor. Phys., 59 (2020), 3558–3573. https://doi.org/10.1007/s10773-020-04616-9 doi: 10.1007/s10773-020-04616-9 |
[34] | F. Artuger, F. Ozkaynak, A new algorithm to generate AES-like substitution boxes based on sine cosine optimization algorithm, Multimed. Tools Appl., 83 (2024), 38949–38964. https://doi.org/10.1007/s11042-023-17200-0 doi: 10.1007/s11042-023-17200-0 |
[35] | S. Ibrahim, A. M. Abbas, Efficient key-dependent dynamic S-boxes based on permuted elliptic curves, Info. Sci, 558 (2021), 246–264. https://doi.org/10.1016/j.ins.2021.01.014 doi: 10.1016/j.ins.2021.01.014 |
[36] | T. Haider, N. A. Azam, U. Hayat, Substitution box generator with enhanced cryptographic properties and minimal computation time, Expert Syst. Appl., 241 (2024), 122779. https://doi.org/10.1016/j.eswa.2023.122779 doi: 10.1016/j.eswa.2023.122779 |
[37] | A. F. Weister, S. E. Tavares, On the design of S-boxes, Adv. Crypt.-CRYPTO'85, 1 (1986), 1–15. https://doi.org/10.1007/3-540-39799-X\_41 doi: 10.1007/3-540-39799-X\_41 |
[38] | P. T. Akkasaligar, S. Biradar, Selective medical image encryption using DNA cryptography, Inf. Secur. J. Glob. Perspect., 29 (2020), 91–101. https://doi.org/10.1080/19393555.2020.1718248 doi: 10.1080/19393555.2020.1718248 |
[39] | W. Cao, Y. Zhou, C. L. P. Chen, L. Xia, Medical image encryption using edge maps, Signal Process., 132 (2017), 96–109. https://doi.org/10.1016/j.sigpro.2016.10.003 doi: 10.1016/j.sigpro.2016.10.003 |
[40] | A. H. Zahid, A. M. Iliyasu, M. Ahmad, M. M. U. Shaban, M. J. Arshad, H. S. Alhadawi, et al., A novel construction of dynamic S-box with high nonlinearity using heuristic evolution, IEEE Access, 9 (2021), 67797–67812. https://doi.org/10.1109/ACCESS.2021.3077194 doi: 10.1109/ACCESS.2021.3077194 |
[41] | B. Idrees, S. Zafar, T. Rashid, W. Gao, Image encryption algorithm using S-box and dynamic Hénon bit level permutation, Multimed. Tools Appl., 79 (2020), 6135–6162. https://doi.org/10.1007/s11042-019-08282-w doi: 10.1007/s11042-019-08282-w |
[42] | P. Wang, Y. Wang, J. Xiang, X. Xiao, Fast image encryption algorithm for logistics-sine-cosine mapping, Sensors, 22 (2022), 9929. https://doi.org/10.3390/s22249929 doi: 10.3390/s22249929 |
[43] | A. Ur Rehman, X. Liaa, H. Wang, An innovative technique for image encryption using tri-partite graph and chaotic maps, Multimed. Tools Appl., 80 (2021), 21979–22005. https://doi.org/10.1007/s11042-021-10692-8 doi: 10.1007/s11042-021-10692-8 |
[44] | X. Chai, X. Fu, Z. Gan, A color image cryptosystem based on dynamic DNA encryption and chaos, Sign. Process., 155 (2019), 44–62. https://doi.org/10.1016/j.sigpro.2018.09.029 doi: 10.1016/j.sigpro.2018.09.029 |