Citation: Mohammed Shehu Shagari, Akbar Azam. Integral type contractions of soft set-valued maps with application to neutral differential equations[J]. AIMS Mathematics, 2020, 5(1): 342-358. doi: 10.3934/math.2020023
[1] | A. Aliouche, A common fixed point theorem for weakly compatible mappings in symmetric spaces satsifying a contractive condition of integral type, J. Math. Anal. Appl., 322 (2006), 796-802. doi: 10.1016/j.jmaa.2005.09.068 |
[2] | I. Altun, D. Turkoglu, Some fixed point theorems for weakly compatible mappings satisfying contractive conditions of integral type on d-complete topological spaces, Fasc. Math., 42 (2009), 5-15. |
[3] | S. C. Arora, V. Sharma, Fixed point theorems for fuzzy mappings, Fuzzy Set. Syst., 110 (2000), 127-130. doi: 10.1016/S0165-0114(97)00366-7 |
[4] | A. Azam, I. Beg, Common fixed points of fuzzy maps, Math. Comput. Model., 49 (2009), 1331-1336. doi: 10.1016/j.mcm.2008.11.011 |
[5] | A. Azam, M. Arshad, I. Beg, Fixed points of fuzzy contractive and fuzzy locally contractive maps, Chaos. Soliton. Fract., 42 (2009), 2836-2841. doi: 10.1016/j.chaos.2009.04.026 |
[6] | A. Azam, M. Arshad, P. Vetro, On a pair of fuzzy ψ-contractive mappings, Math. Comput. Model., 52 (2010), 207-214. doi: 10.1016/j.mcm.2010.02.010 |
[7] | S. Banach, Sur les opérations dans les esembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181. doi: 10.4064/fm-3-1-133-181 |
[8] | M. Bachar, M. A. Khamsi, Delay differential equations: A partially ordered sets approach in vectorial metric spaces, Fixed Point Theory A., 2014 (2014), 193. |
[9] | M. Beygmohammadi, A. Razani, Two fixed point theorems for mappings satisfying a general contractive condition of integral type in modular space, Int. J. Math. Math. Sci., 2010 (2010), 317107. |
[10] | R. K. Bose, D. Sahani, Fuzzy mappings and fixed point theorems, Fuzzy Set. Syst., 21 (1987), 53-58. doi: 10.1016/0165-0114(87)90152-7 |
[11] | A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29 (2002), 531-536. doi: 10.1155/S0161171202007524 |
[12] | D. Butnairu, Fixed point for fuzzy mapping, Fuzzy Set. Syst., 7 (1982), 191-207. doi: 10.1016/0165-0114(82)90049-5 |
[13] | N. Cagman, S. Karatas, S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011), 351-358. doi: 10.1016/j.camwa.2011.05.016 |
[14] | A. Djoudi, R. Khemis, Fixed point techniques and stability for neutral nonlinear differential equations with unbounded delays, Georgian Math. J., 13 (2006), 25-34. doi: 10.1515/GMJ.2006.25 |
[15] | F. Fatimah, D. Rosadi, R. F. Hakim, et al. N-soft sets and their decision making algorithms, Soft Comput., 22 (2018), 3829-3842. doi: 10.1007/s00500-017-2838-6 |
[16] | S. Heilpern, Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl., 83 (1981), 566-569. doi: 10.1016/0022-247X(81)90141-4 |
[17] | T. L. Hicks, B. E. Rhoades, Fixed point theorems for d-complete topological spaces, Int. J. Math. Math. Sci., 37 (1992), 847-853. |
[18] | J. Jachymski, Remarks on contractive conditions of integral type, Theory Met. Appl., 71 (2009), 1073-1081. doi: 10.1016/j.na.2008.11.046 |
[19] | M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, B. Aust. Math. Soc., 30 (1984), 1-9. doi: 10.1017/S0004972700001659 |
[20] | M. A. Khamsi, Quasi contraction mappings in modular spaces without △2-contraction, Fixed Point Theory A., 2008 (2008), 916187. |
[21] | S. Mila, L. Gajic, D. Tatjana, et al. Fixed point of multivalued integral type of contraction mappings, Fixed Point Theory A., 2015 (2015), 146. |
[22] | S. Molodtsov, Soft set theory, Comput. Math. Appl., 37 (1999), 19-31. |
[23] | P. Murthy, P. Kumam, S. Tas, Common fixed points of self maps satisfying an integral type contractive conditions in fuzzy metric spaces, Math. Commun., 15 (2010), 521-537. |
[24] | S. B. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969), 475-488. doi: 10.2140/pjm.1969.30.475 |
[25] | B. E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 63 (2003), 4007-4013. |
[26] | M. Riaz, N. Çagman, I. Zareef, et al. N-soft topology and its applications to multi-criteria group decision making, J. Intell. Fuzzy Syst., 36 (2019), 6521-6536. doi: 10.3233/JIFS-182919 |
[27] | M. R. Taskovic, Some new principles in fixed point theory, Math. Japonica., 35 (1990), 645-666. |
[28] | M. S. Shagari, A. Azam, Fixed points of soft-set valued and fuzzy set-valued maps with applications, J. Intell. Fuzzy Syst., 37 (2019), 3865-3877. doi: 10.3233/JIFS-190126 |
[29] | M. D. Weiss, Fixed points and induced fuzzy topologies for fuzzy sets, J. Math. Anal. Appl., 50 (1975), 142-150. doi: 10.1016/0022-247X(75)90044-X |
[30] | L. Zadeh, Fuzzy sets, Inf. Contr., 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X |