Research article

Integral type contractions of soft set-valued maps with application to neutral differential equations

  • Received: 06 September 2019 Accepted: 11 November 2019 Published: 20 November 2019
  • MSC : 46S40, 47H10, 54H25

  • We establish e-soft fixed point results for soft set-valued maps under some integral contractive conditions on a complete metric space. Starting from Branciari integral contraction, the presented results are soft set extensions of many existing results on point-to-point and point-to-set mappings. In particular, the established idea herein improves the recently introduced concepts of soft set-valued maps. Moreover, examples and applications to nonlinear neutral differential equations are provided to support the usability of the derived results.

    Citation: Mohammed Shehu Shagari, Akbar Azam. Integral type contractions of soft set-valued maps with application to neutral differential equations[J]. AIMS Mathematics, 2020, 5(1): 342-358. doi: 10.3934/math.2020023

    Related Papers:

  • We establish e-soft fixed point results for soft set-valued maps under some integral contractive conditions on a complete metric space. Starting from Branciari integral contraction, the presented results are soft set extensions of many existing results on point-to-point and point-to-set mappings. In particular, the established idea herein improves the recently introduced concepts of soft set-valued maps. Moreover, examples and applications to nonlinear neutral differential equations are provided to support the usability of the derived results.


    加载中


    [1] A. Aliouche, A common fixed point theorem for weakly compatible mappings in symmetric spaces satsifying a contractive condition of integral type, J. Math. Anal. Appl., 322 (2006), 796-802. doi: 10.1016/j.jmaa.2005.09.068
    [2] I. Altun, D. Turkoglu, Some fixed point theorems for weakly compatible mappings satisfying contractive conditions of integral type on d-complete topological spaces, Fasc. Math., 42 (2009), 5-15.
    [3] S. C. Arora, V. Sharma, Fixed point theorems for fuzzy mappings, Fuzzy Set. Syst., 110 (2000), 127-130. doi: 10.1016/S0165-0114(97)00366-7
    [4] A. Azam, I. Beg, Common fixed points of fuzzy maps, Math. Comput. Model., 49 (2009), 1331-1336. doi: 10.1016/j.mcm.2008.11.011
    [5] A. Azam, M. Arshad, I. Beg, Fixed points of fuzzy contractive and fuzzy locally contractive maps, Chaos. Soliton. Fract., 42 (2009), 2836-2841. doi: 10.1016/j.chaos.2009.04.026
    [6] A. Azam, M. Arshad, P. Vetro, On a pair of fuzzy ψ-contractive mappings, Math. Comput. Model., 52 (2010), 207-214. doi: 10.1016/j.mcm.2010.02.010
    [7] S. Banach, Sur les opérations dans les esembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181. doi: 10.4064/fm-3-1-133-181
    [8] M. Bachar, M. A. Khamsi, Delay differential equations: A partially ordered sets approach in vectorial metric spaces, Fixed Point Theory A., 2014 (2014), 193.
    [9] M. Beygmohammadi, A. Razani, Two fixed point theorems for mappings satisfying a general contractive condition of integral type in modular space, Int. J. Math. Math. Sci., 2010 (2010), 317107.
    [10] R. K. Bose, D. Sahani, Fuzzy mappings and fixed point theorems, Fuzzy Set. Syst., 21 (1987), 53-58. doi: 10.1016/0165-0114(87)90152-7
    [11] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29 (2002), 531-536. doi: 10.1155/S0161171202007524
    [12] D. Butnairu, Fixed point for fuzzy mapping, Fuzzy Set. Syst., 7 (1982), 191-207. doi: 10.1016/0165-0114(82)90049-5
    [13] N. Cagman, S. Karatas, S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011), 351-358. doi: 10.1016/j.camwa.2011.05.016
    [14] A. Djoudi, R. Khemis, Fixed point techniques and stability for neutral nonlinear differential equations with unbounded delays, Georgian Math. J., 13 (2006), 25-34. doi: 10.1515/GMJ.2006.25
    [15] F. Fatimah, D. Rosadi, R. F. Hakim, et al. N-soft sets and their decision making algorithms, Soft Comput., 22 (2018), 3829-3842. doi: 10.1007/s00500-017-2838-6
    [16] S. Heilpern, Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl., 83 (1981), 566-569. doi: 10.1016/0022-247X(81)90141-4
    [17] T. L. Hicks, B. E. Rhoades, Fixed point theorems for d-complete topological spaces, Int. J. Math. Math. Sci., 37 (1992), 847-853.
    [18] J. Jachymski, Remarks on contractive conditions of integral type, Theory Met. Appl., 71 (2009), 1073-1081. doi: 10.1016/j.na.2008.11.046
    [19] M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, B. Aust. Math. Soc., 30 (1984), 1-9. doi: 10.1017/S0004972700001659
    [20] M. A. Khamsi, Quasi contraction mappings in modular spaces without2-contraction, Fixed Point Theory A., 2008 (2008), 916187.
    [21] S. Mila, L. Gajic, D. Tatjana, et al. Fixed point of multivalued integral type of contraction mappings, Fixed Point Theory A., 2015 (2015), 146.
    [22] S. Molodtsov, Soft set theory, Comput. Math. Appl., 37 (1999), 19-31.
    [23] P. Murthy, P. Kumam, S. Tas, Common fixed points of self maps satisfying an integral type contractive conditions in fuzzy metric spaces, Math. Commun., 15 (2010), 521-537.
    [24] S. B. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969), 475-488. doi: 10.2140/pjm.1969.30.475
    [25] B. E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 63 (2003), 4007-4013.
    [26] M. Riaz, N. Çagman, I. Zareef, et al. N-soft topology and its applications to multi-criteria group decision making, J. Intell. Fuzzy Syst., 36 (2019), 6521-6536. doi: 10.3233/JIFS-182919
    [27] M. R. Taskovic, Some new principles in fixed point theory, Math. Japonica., 35 (1990), 645-666.
    [28] M. S. Shagari, A. Azam, Fixed points of soft-set valued and fuzzy set-valued maps with applications, J. Intell. Fuzzy Syst., 37 (2019), 3865-3877. doi: 10.3233/JIFS-190126
    [29] M. D. Weiss, Fixed points and induced fuzzy topologies for fuzzy sets, J. Math. Anal. Appl., 50 (1975), 142-150. doi: 10.1016/0022-247X(75)90044-X
    [30] L. Zadeh, Fuzzy sets, Inf. Contr., 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3483) PDF downloads(438) Cited by(4)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog