Citation: Ahmad Mohammad Alghamdi, Sadek Gala, Jae-Myoung Kim, Maria Alessandra Ragusa. The anisotropic integrability logarithmic regularity criterion to the 3D micropolar fluid equations[J]. AIMS Mathematics, 2020, 5(1): 359-375. doi: 10.3934/math.2020024
[1] | J. Chen, Z. M. Chen and B. Q. Dong, Uniform attractors of non-homogeneous micropolar fluid flows in non-smooth domains, Nonlinearity, 20 (2007), 1619-1635. |
[2] | Q. Chen and C. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differ. Equations, 252 (2012), 2698-2724. |
[3] | Z. M. Chen and W. Price, Decay estimates of linearized micropolar fluid flows in R3 space with applications to L3-strong solutions, Int. J. Eng. Sci., 44 (2006), 859-873. |
[4] | B. Q. Dong and Z. M. Chen, Regularity criteria of weak solutions to the three-dimensional micropolar flows, J. Math. Phys., 50 (2009), 103525. |
[5] | B. Q. Dong and Z. M. Chen, Global attractors of two-dimensional micropolar fluid flows in some unbounded domains, Appl. Math. Comput., 182 (2006), 610-620. |
[6] | B. Q. Dong and Z. M. Chen, On upper and lower bounds of higher order derivatives for solutions to the 2D micropolar fluid equations, J. Math. Anal. Appl., 334 (2007), 1386-1399. |
[7] | B. Q. Dong and Z. M. Chen, Asymptotic profiles of solutions to the 2D viscous incompressible micropolar fluid flows, Discrete and Continuous Dynamics Systems, 23 (2009), 765-784. |
[8] | B. Q. Dong and Z. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differ. Equations, 249 (2010), 200-213 |
[9] | B. Q. Dong and W. Zhang, On the regularity criterion for the 3D micropolar fluid flows in Besov spaces, Nonlinear Analysis: Theory, Methods & Applications, 73 (2010), 2334-2341. |
[10] | B. Q. Dong, Y. Jia and Z. M. Chen, Pressure regularity criteria of the three-dimensional micropolar fluid flows, Math. Meth. Appl. Sci., 34 (2011), 595-606. |
[11] | A. C. Eringen, Theory of micropolar fluids, Journal of Mathematics and Mechanics, 16 (1966), 1-18. |
[12] | J. Fan, X. Jia and Y. Zhou, A logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain, Appl. Math., 64 (2019), 397-407. |
[13] | J. Fan, Y. Fukumoto and Y. Zhou, Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations, Kinet. Relat. Models, 6 (2013), 545-556. |
[14] | J. Fan, S. Jiang, G. Nakamura, et al. Logarithmically improved regularity criteria for the NavierStokes and MHD equations, J. Math. Fluid Mech., 13 (2011), 557-571. |
[15] | S. Gala, On regularity criteria for the three-dimensional micropolar fluid equations in the critical Morrey-Campanato space, Nonlinear Analysis : Real World Applications, 12 (2011), 2142-2150. |
[16] | S. Gala and M. A. Ragusa, A regularity criterion for 3D micropolar fluid flows in terms of one partial derivative of the velocity, Annales Polonici Mathematici, 116 (2016), 217-228. |
[17] | S. Gala and J. Yan, Two regularity criteria via the logarithmic of the weak solutions to the micropolar fluid equations, J. Partial Differ. Equ., 25 (2012), 32-40. |
[18] | S. Gala, A remark on the logarithmically improved regularity criterion for the micropolar fluid equations in terms of the pressure, Math. Meth. Appl. Sci., 34 (2011), 1945-1953. |
[19] | G. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of micropolar fluid equations, Int. J. Eng. Sci., 15 (1977), 105-108. |
[20] | Y. Jia, W. Zhang and B. Dong, Remarks on the regularity criterion of the 3D micropolar fluid flows in terms of the pressure, Appl. Math. Lett., 24 (2011), 199-203. |
[21] | Y. Jia, W. Zhang and B. Dong, Logarithmical regularity criteria of the three-dimensional micropolar fluid equations in terms of the pressure, Abstr. Appl. Anal., 2012 (2012), 1-13. |
[22] | X. Jia and Y. Zhou, A new regularity criterion for the 3D incompressible MHD equations in terms of one component of the gradient of pressure, J. Math. Anal. Appl., 396 (2012), 345-350. |
[23] | E. Hopf, Über die anfangswertaufgabe fur die hydrodynamischen grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet, Math. Nachr., 4 (1950), 213-231. |
[24] | J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 183-248. |
[25] | Q. Liu and G. Dai, On the 3D Navier-Stokes equations with regularity in pressure, J. Math. Anal. Appl., 458 (2018), 497-507. |
[26] | G. Lukaszewicz, Micropolar fluids. Theory and applications, Modeling and Simulation in Science, Engineering and Technology, Birkhauser, Boston, MA, 1999. |
[27] | M. A. Rojas-Medar, Magneto-micropolar fluid motion: existence and uniqueness of strong solution, Math. Nachr., 188 (1997), 301-319. |
[28] | S. Popel, A. Regirer and P. Usick, A continuum model of blood flow, Biorheology, 11 (1974), 427-437. |
[29] | R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam, The Netherlands, 1977. |
[30] | M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat., 18 (1969), 3-24. |
[31] | B. Yuan, On the regularity criteria of weak solutions to the micropolar fluid equations in Lorentz space, P. Am. Math. Soc., 138 (2010), 2025-2036. |
[32] | J. Yuan, Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations, Math. Meth. Appl. Sci., 31 (2008), 1113-1130. |
[33] | Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3D viscous MHD equations, Forum Math., 24 (2012), 691-708. |