In this manuscript, we induced several vivid common fixed point theorems for four maps in the setting of complete multiplicative $ {G_{\boldsymbol{M}}}- $metric space via various contractive conditions such as $ \Delta $-implicit contractions. Some new definitions and results are introduced in multiplicative $ {G_{\boldsymbol{M}}}- $ metric space.Moreover, illustrative examples are given to validate our obtained results and an application to a system of nonlinear integral equations are provided to show the novelty of our new results.
Citation: Mohamed Gamal, Tahair Rasham, Watcharaporn Cholamjiak, Fu-Gui Shi, Choonkil Park. New iterative scheme for fixed point results of weakly compatible maps in multiplicative $ {G_{\boldsymbol{M}}}- $metric space via various contractions with application[J]. AIMS Mathematics, 2022, 7(8): 13681-13703. doi: 10.3934/math.2022754
In this manuscript, we induced several vivid common fixed point theorems for four maps in the setting of complete multiplicative $ {G_{\boldsymbol{M}}}- $metric space via various contractive conditions such as $ \Delta $-implicit contractions. Some new definitions and results are introduced in multiplicative $ {G_{\boldsymbol{M}}}- $ metric space.Moreover, illustrative examples are given to validate our obtained results and an application to a system of nonlinear integral equations are provided to show the novelty of our new results.
[1] | M. Abbas, B. Ali, Y. I. Suleiman, Common fixed points of locally contractive mappings in multiplicative metric spaces with application, Int. J. Math. Math. Sci., 2015 (2015), 218683. https://doi.org/10.1155/2015/218683 doi: 10.1155/2015/218683 |
[2] | W. M. Alfaqih, M. Imdad, F. Rouzkard, Unified common fixed point theorems in complex valued metric spaces via an implicit relation with applications, Boletim da Sociedade Paranaense de Matemática, 38 (2020), 9–29. https://doi.org/10.5269/bspm.v38i4.37148 doi: 10.5269/bspm.v38i4.37148 |
[3] | M. R. Alfuraidan, Q. H. Ansari, Fixed point theory and graph theory: foundations and integrative approaches, 1 Eds., Tokyo: Academic Press, 2016. https://doi.org/10.1016/C2015-0-00349-5 |
[4] | S. Ali, A common fixed point result in complex valued $b$-metric spaces under contractive condition, Global Journal of Pure and Applied Mathematics, 13 (2017), 4869–4876. http://www.ripublication.com/gjpam17/gjpamv13n9_35.pdf |
[5] | A. C. Aouine, A. Aliouche, Fixed point theorems Of Kannan type With an application to control theory, Applied Mathematics E-Notes, 21 (2021), 238–249. |
[6] | J. H. Asl, S. Rezapour, N. Shahzad, On fixed points of $\alpha$-$\psi$-contractive multifunctions, Fixed Point Theory Appl., 2012 (2012), 212. https://doi.org/10.1186/1687-1812-2012-212 doi: 10.1186/1687-1812-2012-212 |
[7] | H. Aydi, M. Bota, E. Karapinar, S. Mitrovic, A fixed point theorem for set valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., 2012 (2012), 88. https://doi.org/10.1186/1687-1812-2012-88 doi: 10.1186/1687-1812-2012-88 |
[8] | A. E. Bashirov, E. M. Kurpamar, A. Özyapici, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337 (2008), 36–48. https://doi.org/10.1016/j.jmaa.2007.03.081 doi: 10.1016/j.jmaa.2007.03.081 |
[9] | A. E. Bashirov, E. Misirli, Y. Tandoǧdu, A. Özyapici, On modeling with multiplicative differential equations, Appl. Math. J. Chin. Univ., 26 (2011), 425–438. https://doi.org/10.1007/s11766-011-2767-6 doi: 10.1007/s11766-011-2767-6 |
[10] | S. Bhatt, S. Chaukiyal, R. C. Dimri, A common fixed point theorem for weakly compatible maps in complex valued metric spaces, Int. J. Math. Sci. Appl., 1 (2011), 1385–1389. |
[11] | A. Bucur, About application of the fixed point theory, Scientific Bulletin, 22 (2017), 13–17. https://doi.org/10.1515/bsaft-2017-0002 doi: 10.1515/bsaft-2017-0002 |
[12] | S. K. Datta, S. Ali, A common fixed point theorem under contractive condition in complex valued metric spaces, Int. J. Adv. Sci. Tech. Res., 6 (2012), 467–475. |
[13] | T. Do$\widetilde {\rm{s}}$enović, S. Radenović, Multiplicative metric spaces and contractions of rational type, Advances in the Theory of Nonlinear Analysis and its Applications, 2 (2018), 195–201. https://doi.org/10.31197/atnaa.481995 doi: 10.31197/atnaa.481995 |
[14] | L. Florack, H. V. Assen, Multiplicative calculus in biomedical image analysis, J. Math. Imaging Vis., 42 (2012), 64–75. https://doi.org/10.1007/s10851-011-0275-1 doi: 10.1007/s10851-011-0275-1 |
[15] | M. Gamal, W. Cholamjiak, Fixed point theorems for weakly compatible mappings under implicit relations in quaternion valued $G$-metric spaces, AIMS Mathematics, 6 (2020), 2048–2058. https://doi.org/10.3934/math.2021125 doi: 10.3934/math.2021125 |
[16] | F. Gu, Y. J. Cho, Common fixed points results for four maps satisfying $ \phi$-contractive condition in multiplicative metric spaces, Fixed Point Theory Appl., 2015 (2015), 165. https://doi.org/10.1186/s13663-015-0412-4 doi: 10.1186/s13663-015-0412-4 |
[17] | X. He, M. Song, D. Chen, Common fixed points for weak commutative mappings on a multiplicative metric space, Fixed Point Theory Appl., 2014 (2014), 48. https://doi.org/10.1186/1687-1812-2014-48 doi: 10.1186/1687-1812-2014-48 |
[18] | Y. Jiang, F. Gu, Common coupled fixed point results in multiplicative metric spaces and applications, J. Nonlinear Sci. Appl., 10 (2017), 1881–1895. http://dx.doi.org/10.22436/jnsa.010.04.48 doi: 10.22436/jnsa.010.04.48 |
[19] | S. M. Kang, P. Kumar, S. Kumar, P. Nagpal, S. K. Garg, Common fixed points for compatible mappings and its variants in multiplicative metric spaces, International Journal of Pure and Applied Mathematics, 102 (2015), 383–406. http://dx.doi.org/10.12732/ijpam.v102i2.14 doi: 10.12732/ijpam.v102i2.14 |
[20] | J. L. Li, Several extensions of the Abian–Brown fixed point theorem and their applications to extended and generalized Nash equilibria on chain-complete posets, J. Math. Anal. Appl., 409 (2014), 1084–1092. https://doi.org/10.1016/j.jmaa.2013.07.070 doi: 10.1016/j.jmaa.2013.07.070 |
[21] | Q. Mahmood, A. Shoaib, T. Rasham, M. Arshad, Fixed point results for the family of multivalued $F$-contractive mappings on closed ball in complete dislocated $b$-metric spaces, Mathematics, 7 (2019), 56. https://doi.org/10.3390/math7010056 doi: 10.3390/math7010056 |
[22] | P. Nagpal, S. Kumar, S. K. Garg, Fixed point results in multiplicative generalized metric spaces, Adv. Fixed Point Theory, 6 (2016), 352–386. |
[23] | M. Özavsar, A. C. Çevikel, Fixed points of multiplicative contraction mappings on multiplicative metric spaces, J. Eng. Tech. Appl. Sci., 2 (2017), 65–79. https://doi.org/10.30931/jetas.338608 doi: 10.30931/jetas.338608 |
[24] | Y. Piao, Unique fixed points for four non-continuous mappings satisfying $ \varPsi-$contractive condition on non-complete multiplicative metric Spaces, Adv. Fixed Point Theory, 9 (2019), 135–145. https://doi.org/10.28919/afpt/3979 doi: 10.28919/afpt/3979 |
[25] | T. Rasham, A. Shoaib, N. Hussain, B. A. S. Alamri, M. Arshad, Multivalued fixed point results in dislocated b-metric spaces with application to the system of nonlinear integral equations, Symmetry, 11 (2019), 40. https://doi.org/10.3390/sym11010040 doi: 10.3390/sym11010040 |
[26] | T. Rasham, A. Shoaib, G. Marino, B. A. S. Alamri, M. Arshad, Sufficient conditions to solve two systems of integral equations via fixed point results, J. Inequal. Appl., 2019 (2019), 182. https://doi.org/10.1186/s13660-019-2130-7 doi: 10.1186/s13660-019-2130-7 |
[27] | T. Rasham, A. Shoaib, C. Park, M. D. L. Sen, H. Aydi, J. R. Lee, Multivalued fixed point results for two families of mappings in modular-like metric spaces with applications, Complexity, 2020 (2020), 2690452. https://doi.org/10.1155/2020/2690452 doi: 10.1155/2020/2690452 |
[28] | T. Rasham, G. Marino, A. Shahzad, C. Park, A. Shoaib, Fixed point results for a pair of fuzzy mappings and related applications in $b$-metric like spaces, Adv. Differ. Equ., 2021 (2021), 259. https://doi.org/10.1186/s13662-021-03418-5 doi: 10.1186/s13662-021-03418-5 |
[29] | R. A. Rashwan, H. A. Hammad, M. G. Mahmoud, Common fixed point theorems in complex-valued $S$-metric spaces via implicit relations with applications, Res. Fixed Point Theory Appl., 2019 (2019), 1–17. |
[30] | R. A. Rashwan, H. A. Hammad, M. G. Mahmoud, Common fixed point results for weakly compatible mappings under implicit relations in complex valued $G$-metric spaces, Inf. Sci. Lett., 8 (2019), 111–119. http://dx.doi.org/10.18576/isl/080305 doi: 10.18576/isl/080305 |
[31] | Q.-Q. Song, M. Guo, H.-Z. Chen, Essential sets of fixed points for correspondences with applications to Nash equilibria, Fixed Point Theor., 17 (2016), 141–150. |
[32] | L. A. Tomek, K. S. Trivedi, Fixed point iteration in availability modeling, In: Fault-tolerant computing systems, Berlin, Heidelberg: Springer, 1991,229–240. https://doi.org/10.1007/978-3-642-76930-6_20 |
[33] | G. X.-Z. Yuan, G. Isac, K.-K. Tan, J. Yu, The study of minimax inequalities, abstract economics and applications to variational inequalities and Nash equilibria, Acta Applicandae Mathematica, 54 (1998), 135–166. https://doi.org/10.1023/A:1006095413166 doi: 10.1023/A:1006095413166 |