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1. Introduction

Due to its importance, fixed point theory is an exciting branch of mathematics and has vital, major
and basic part in both of applied sciences and pure mathematics such as mathematical modeling,
modern optimization, control theory, mathematical economics, and other domains for more details
see [1, 3, 5, 11, 20, 31–33]. It has numerous applications in many areas of mathematical science.

In 2008, Bashirov et al. [8] induced the definition of multiplicative metric space beside studying
some major properties. After that, Bashirov et al. [9] and Florack et al. [14] also studied some other
properties in this space. In 2012, Özavsar and Çevikel [23] presented the notion of multiplicative
contraction maps on multiplicative metric space in such a way that multiplicative triangle inequality
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is used instead of the usual triangular inequality and obtained various existence results of fixed point
beside many topological characteristics of multiplicative metric space. In 2013, He et al. [17] showed
the existence result of common fixed point of four maps using the weakly commuting condition.
Inspired by the work of He et al. [17], Gu and Cho [16] used a contraction condition constructed
by virtue of a comparison function to obtain existence results of the common fixed point for four maps.
Also, many researchers studied common fixed point theorems using the locally contractive, compatible
and weakly compatible conditions respectively (see [1,4,6,7,12,13,15,16,19,29,30]). Recently, Jiang
and Gu [18] displayed the notion of φ-weakly commutative maps and obtained for four maps several
common fixed point theorems.

In 2011, Bhatt et al. [10] introduced the notion of weakly compatible maps and concluded some
common fixed point theorem in complex-valued metric space for these maps. In 2020, Alfaqih et al. [2]
presented the notion of common coincidence point of two pairs of maps beside using implicit relation
with applications to show unified common fixed point theorems in complex-valued metric space.

According to this direction, the purpose of this manuscript is to use the notion of implicit
contractions beside other new contractions in multiplicative GM−metric space to show unique common
fixed point results of four weakly compatible maps holding those implicit contractions and the other
new contractions. Eventually, we introduce several examples to support new results.

2. Preliminaries

Now, we recall many well-known definitions, concepts and usual terminology that will be used in
the sequel of discussion.

Definition 2.1. [8] Assume a nonempty set U and a function θM : U2 −→ [0,+∞) hold the following
properties:
(θM1) θM(q, t) ≥ 1, ∀ q, t ∈ U;
(θM2) θM(q, t) = 1 iff q = t;
(θM3) θM(q, t) = θM(t, q) (symmetry);
(θM4) θM(q, t) ≤ θM(q, h) . θM(h, t) ∀ q, t, h ∈ U (multiplicative triangle inequality).
The function θM is a multiplicative metric on U and the couple (U, θM) is a multiplicative metric space.

Definition 2.2. [22] Suppose V denote to a nonempty set and GM : V3 −→ R+ to a function verify
the following assertions:
(GM1) GM(q, t, h) = 1 if q = t = h;
(GM2) GM(q, q, t) > 1 ∀ q, t ∈ V with q , t;
(GM3) GM(q, q, t) ≤ GM(q, t, h) ∀ q, t, h ∈ V with t , h;
(GM4) GM(q, t, h) = GM(q, h, t) = GM(t, h, q) = ... (symmetry in all variables);
(GM5) GM(q, t, h) ≤ GM(q, f , f ) .GM( f , t, h) ∀ q, t, h, f ∈ V, (rectangular inequality).
Thus, the function GM is a multiplicative generalized metric or, specifically, multiplicative GM−metric
on V and (V,GM) is a multiplicative GM−metric space.

Example 2.3. Suppose a G-metric space (V,G•) and GM : V3 −→ R+ is defined by GM(q, t, h) =

e G•(q,t,h) ∀ q, t, h ∈ V . Then, clearly every G-metric space (V,G•) generates multiplicative GM−metric
space.
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Proposition 2.4. [22] Assume a multiplicative GM−metric space (V,GM), then for all q, t, h, j ∈ V,
the following properties is satisfying:
(1) GM(q, t, h) = 1 if q = t = h;
(2) GM(q, t, h) ≤ GM(q, j, j) .GM(t, j, j) .GM(h, j, j);
(3) GM(q, t, h) ≤ GM(q, q, t) .GM(q, q, h);
(4) GM(q, t, t) ≤ G2

M(t, q, q).

Remark 2.5. Assume a nonempty set V and G : V3 −→ [0,+∞) has the construction G(q, t, h) =

e ( |q−t| + |t−h| + |h−q| ) ∀ q, t, h ∈ V . Furthermore, G is a multiplicative G−metric on V and (V,G) is a
multiplicative G−metric space but G is not G−metric on V since the condition (G1) is not verified.
(G1) G(q, t, h) = 0 i f q = t = h.

Lemma 2.6. [22] Assume a sequence {qn} in a multiplicative GM−metric space (V,GM). If {qn} is a
multiplicative GM−convergent then it is a multiplicative GM−Cauchy sequence.

Lemma 2.7. [22] Suppose a sequence {qn} in a multiplicative GM−metric space (V,GM). A sequence
{qn} in V is a multiplicative GM−convergent to r ∈ V iff GM(qn, r, r) −→ 1 as n −→ ∞.

Lemma 2.8. Assume two sequences {qn} and {tn} in a multiplicative GM−metric space (V,GM) such
that lim

n→∞
qn = q and lim

n→∞
tn = t, then lim

n→∞
GM(qn, tn, tn) = GM(q, t, t).

Proof. For n ∈ N, we have

GM(qn, tn, tn) ≤ GM(qn, q, q) .GM(q, tn, tn)
≤ GM(qn, q, q) .GM(q, t, t) .GM(t, tn, tn).

By taking n→ ∞, we get
lim
n→∞

GM(qn, tn, tn) ≤ GM(q, t, t). (2.1)

Since

GM(q, t, t) ≤ GM(q, qn, qn) .GM(qn, t, t)
≤ GM(q, qn, qn) .GM(qn, tn, tn) .GM(tn, t, t).

As n→ ∞, we obtain
GM(q, t, t) ≤ lim

n→∞
GM(qn, tn, tn). (2.2)

From (2.1) and (2.2), we find
lim
n→∞

GM(qn, tn, tn) = GM(q, t, t).

Definition 2.9. [10] Suppose a nonempty set V and a pair of self-maps (J, I) on V . Thus, (J, I) is
weakly compatible if

Ju = Iu ⇒ JIu = IJu ∀ u ∈ V.

Definition 2.10. [2] Consider a nonempty set V with P,Q, S and T be four self-maps on V . Further,
a point j ∈ V is
(1) a fixed point of P if P j = j;
(2) a common fixed point of P and Q if P j = Q j = j;
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(3) a coincidence point of (T, P) if P j = T j and k ∈ V such that k = P j = T j
is also a coincidence point of (T, P);

(4) a common coincidence point of (T, P) and (S ,Q) if there exist k, r ∈ V such that
Pk = Tk = j and Qr = S r = j.

3. Results

The next class of real functions is defined in [24] but we added some simple modifications in (∆3)
condition:

∆-implicit contractions. Let M denote to the class of real-valued functions and ∆ ∈ M iff ∆ :
[1,+∞)5 → [0,+∞) holding the following conditions:
(∆1) ∆ is continuous and non-decreasing in every coordinate variable;

(∆2) for all x, y ∈ [1,+∞), there exists q1, q2 ∈ (0,+∞) satisfying q1q2 < 1 such that

x ≤ ∆(y, x, y, 1, yx) =⇒ x ≤ yq1 , x ≤ ∆(y, y, x, yx, 1) =⇒ x ≤ yq2;

(∆3) for all δ ∈ (0, 1
2 ), z > 1,

max
{
∆(1, 1, z, z, 1),∆(1, z, 1, 1, z),∆(1, z, 1, z, 1)

}
= zδ < z.

Now, we introduce our first main theorems in complete multiplicative GM−metric space.

Theorem 3.1. Consider a complete multiplicative GM−metric space (V,GM) with the mappings
P,Q, S ,T : V −→ V such that P(V) ⊆ S (V) and Q(V) ⊆ T (V) verify the following: for u, h ∈ V, u , h
and β ∈ (0, 1/2),  GM(Qh, Pu, Pu) ≤ N1,

GM(Pu,Qh,Qh) ≤ N2,
(3.1)

where

(?)



N1 = Υ


GM(Pu,Tu,Tu), GM(S h,Tu,Tu),

GM(Qh, S h, S h), GM(Qh,Tu,Tu),

min
{
GM(Pu, S h, S h), GM(Pu,Tu,Tu)

}

,

N2 = Θ



GM(Qh, S h, S h), GM(Pu,Tu,Tu),

GM(Tu, S h, S h),

min
{
GM(Qh,Tu,Tu), GM(Qh, S h, S h)

}
,

GM(Pu, S h, S h)


.

Since Υ,Θ ∈ M. If one of {P(V), S (V),Q(V),T (V)} is complete, then the couples (T, P) and (S ,Q)
have unique common point of coincidence. Furthermore, the four self-maps have unique common fixed
point such that both the couples (T, P) and (S ,Q) are weakly compatible.
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Proof. Let an arbitrary point u0 in V . Since P(V) ⊆ S (V) and Q(V) ⊆ T (V), then we can construct the
sequence {uk} in V such that, {

h2k = Pu2k = S u2k+1,

h2k+1 = Qu2k+1 = Tu2k+2.
(3.2)

for all k ∈ N ∪ {0}. Assume that either P(V) or S (V) is complete. We then prove that {hk} is a
multiplicative GM−Cauchy sequence. Using u = u2k and h = u2k+1 in inequality related to (Υ), we
have

GM(h2k+1, h2k, h2k) = GM(Qu2k+1, Pu2k, Pu2k)

≤ Υ


GM(Pu2k,Tu2k,Tu2k), GM(S u2k+1,Tu2k,Tu2k),

GM(Qu2k+1, S u2k+1, S u2k+1), GM(Qu2k+1,Tu2k,Tu2k),

min
{
GM(Pu2k, S u2k+1, S u2k+1), GM(Pu2k,Tu2k,Tu2k)

}


≤ Υ


GM(h2k, h2k−1, h2k−1), GM(h2k, h2k−1, h2k−1),

GM(h2k+1, h2k, h2k), GM(h2k+1, h2k−1, h2k−1),

min
{
GM(h2k, h2k, h2k), GM(h2k, h2k−1, h2k−1)

}

.

From (GM1) and (GM5), we obtain

GM(h2k+1, h2k, h2k) ≤ Υ


GM(h2k, h2k−1, h2k−1), GM(h2k, h2k−1, h2k−1),

GM(h2k+1, h2k, h2k),

GM(h2k+1, h2k, h2k) .GM(h2k, h2k−1, h2k−1), 1

 .
By (∆2), we obtain

GM(h2k+1, h2k, h2k) ≤
[
GM(h2k, h2k−1, h2k−1)

]q2
. (3.3)

Similarly, by taking u = u2k+2 and h = u2k+1 in inequality related to (Θ), we get successively

GM(h2k+2, h2k+1, h2k+1) = GM(Pu2k+2,Qu2k+1,Qu2k+1)

≤ Θ



GM(Qu2k+1, S u2k+1, S u2k+1), GM(Pu2k+2,Tu2k+2,Tu2k+2),

GM(Tu2k+2, S u2k+1, S u2k+1),

min
{
GM(Qu2k+1,Tu2k+2,Tu2k+2), GM(Qu2k+1, S u2k+1, S u2k+1)

}
,

GM(Pu2k+2, S u2k+1, S u2k+1)


.

Using (GM1) and (GM5) again, we have

GM(h2k+2, h2k+1, h2k+1) ≤ Θ


GM(h2k+1, h2k, h2k), GM(h2k+2, h2k+1, h2k+1),

GM(h2k+1, h2k, h2k), 1,

GM(h2k+2, h2k+1, h2k+1) .GM(h2k+1, h2k, h2k)

 .
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Hence, using (∆2) again

GM(h2k+2, h2k+1, h2k+1) ≤
[
GM(h2k+1, h2k, h2k)

]q1
. (3.4)

From (3.3) and (3.4), we get

GM(h2k+1, h2k, h2k) ≤
[
GM(h2k, h2k−1, h2k−1)

]q2

≤
[
GM(h2k−1, h2k−2, h2k−2)

]q1q2
≤ ..... ≤

[
GM(h1, h0, h0)

](q1q2)2k

. (3.5)

Consequently,

GM(h2k+2, h2k+1, h2k+1) ≤
[
GM(h2k+1, h2k, h2k)

]q1

≤
[
GM(h1, h0, h0)

](q1q2)2kq1
. (3.6)

For all k,m ∈ N with (k < m), we get

GM(h2m+1, h2k+1, h2k+1)

≤ GM(h2m+1, h2m, h2m) . GM(h2m, h2m−1, h2m−1) .....

GM(h2k+4, h2k+3, h2k+3) . GM(h2k+3, h2k+2, h2k+2) . GM(h2k+2, h2k+1, h2k+1)

≤
[
GM(h1, h0, h0)

](q1q2)2m

.
[
GM(h1, h0, h0)

](q1q2)2m−1q1
.....

[
GM(h1, h0, h0)

](q1q2)2k+1q1
.
[
GM(h1, h0, h0)

](q1q2)2k+1

.
[
GM(h1, h0, h0)

](q1q2)2kq1

≤
[
GM(h1, h0, h0)

](q1q2)2kq1 + (q1q2)2k+1 + (q1q2)2k+1q1 + ..... + (q1q2)2m

≤
[
GM(h1, h0, h0)

](q1q2)2kq1
[
1 + (q1q2) + (q1q2)2 + ...

]
+ (q1q2)2k+1[1 + (q1q2) + (q1q2)2 + ...

]
≤

[
GM(h1, h0, h0)

](q1q2)2kq1(1 + q2)
[
1 + (q1q2) + (q1q2)2 + .....

]

≤
[
GM(h1, h0, h0)

] (q1q2)2kq1(1 + q2)
1 − (q1q2) −→ 1, as k,m −→ ∞,

where (q1q2 < 1) implied that (q1q2)2k −→ 0, as k −→ ∞.

This proves that {hk} is multiplicative GM−Cauchy sequence. From the completeness of (V,GM), there
exists l ∈ V such that hk −→ l as k −→ ∞. Then from Eq (3.2), we find

lim
k−→∞

Pu2k = lim
k−→∞

S u2k+1 = lim
k−→∞

Tu2k+2 = lim
k−→∞

Qu2k+1 = l. (3.7)

Since P(V) ⊆ S (V), if l ∈ S (V), then there exists j ∈ V such that

S j = l. (3.8)
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We will prove that Q j = S j. By putting u = u2k and h = j in inequality related to (Υ), we obtain

GM(Q j, Pu2k, Pu2k) ≤ Υ


GM(Pu2k,Tu2k,Tu2k), GM(S j,Tu2k,Tu2k),

GM(Q j, S j, S j), GM(Q j,Tu2k,Tu2k),

min
{
GM(Pu2k, S j, S j), GM(Pu2k,Tu2k,Tu2k)

}

.

Putting k −→ ∞ and using Eqs (3.7) and (3.8), we get

GM(Q j, l, l) ≤ Υ
(
1, 1, GM(Q j, l, l), GM(Q j, l, l), 1

)
=

[
GM(Q j, l, l)

]β
,

which is contradiction from (∆3), since β ∈ (0, 1/2), then we obtain

[
GM(Q j, l, l)

]1 − β
= 1 =⇒ GM(Q j, l, l) = 1,

implying thereby Q j = l. Hence
Q j = l = S j, (3.9)

i.e., l is coincidence point of the couple (S ,Q).

As Q(V) ⊆ T (V), there exists r ∈ V such that

Tr = l. (3.10)

We will show that Pr = Tr. Taking u = r and h = u2k+1 in inequality related to (Θ), we obtain

GM(Pr,Qu2k+1,Qu2k+1) ≤ Θ



GM(Qu2k+1, S u2k+1, S u2k+1), GM(Pr,Tr,Tr),

GM(Tr, S u2k+1, S u2k+1),

min
{
GM(Qu2k+1,Tr,Tr), GM(Qu2k+1, S u2k+1, S u2k+1)

}
,

GM(Pr, S u2k+1, S u2k+1)


.

Taking k −→ ∞ and using Eqs (3.7) and (3.10), we have

GM(Pr, l, l) ≤ Θ
(
1, GM(Pr, l, l), 1, 1, GM(Pr, l, l)

)
=

[
GM(Pr, l, l)

]β
,

using (∆3), we get GM(Pr, l, l) = 1 which implies that Pr = l. Then

Pr = l = Tr, (3.11)

i.e., l is also coincidence point of the pair (T, P).

Furthermore, l ∈ V is common coincidence point for the four maps.
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In regard to uniqueness: To prove the uniqueness with respect to the coincidence point, consider
l∗ , l another coincidence point of the four maps. Further, there exists j∗, r∗ such that Q j∗ = S j∗ = l∗

and Pr∗ = Tr∗ = l∗. Putting u = r∗ and h = j in (Υ), we get

GM(Q j, Pr∗, Pr∗) ≤ Υ


GM(Pr∗,Tr∗,Tr∗), GM(S j,Tr∗,Tr∗),

GM(Q j, S j, S j), GM(Q j,Tr∗,Tr∗),

min
{
GM(Pr∗, S j, S j), GM(Pr∗,Tr∗,Tr∗)

}

.

This implies that

GM(l, l∗, l∗) ≤ Υ
(
1, GM(l, l∗, l∗), 1, GM(l, l∗, l∗), 1

)
=

[
GM(l, l∗, l∗)

]β
,

that is contradiction due to (∆3), then we have GM(l, l∗, l∗) = 1, i.e., l = l∗. Therefore, the couples
(T, P) and (S ,Q) have unique common point of coincidence.

Consider weak compatibility of the couples (T, P) and (S ,Q) and Eqs (3.9), (3.11), we get

PTr = T Pr, QS j = S Q j. (3.12)

Thus,
Pl = Tl, Ql = S l, (3.13)

i.e., l is coincidence point of the pairs (T, P) and (S ,Q).

Now, we prove that l is common fixed point of P,Q, S and T. Putting u = l and h = j in inequality
related to (Υ), we obtain

GM(Q j, Pl, Pl) ≤ Υ


GM(Pl,Tl,Tl), GM(S j,Tl,Tl),

GM(Q j, S j, S j), GM(Q j,Tl,Tl),

min
{
GM(Pl, S j, S j), GM(Pl,Tl,Tl)

}

.

This tends to

GM(l, Pl, Pl) ≤ Υ
(
1, GM(l, Pl, Pl), 1, GM(l, Pl, Pl), 1

)
=

[
GM(l, Pl, Pl)

]β
,

which contradicts (∆3), then we obtain GM(l, Pl, Pl) = 1, which tends to l = Pl. Then, l = Pl = Tl. By
a similar way, we can show l = Ql = S l. This means that

Pl = Tl = l = Ql = S l. (3.14)

Hence, l is common fixed point of the couples (T, P) and (S ,Q).

The conclusion of uniqueness with respect to common fixed point of P,Q, S and T is more easy result
of the conclusion of uniqueness with respect to common point of coincidence of the pairs (T, P) and
(S ,Q). Also, the conclusion is similar in case l ∈ T (V) and either Q(V) or T (V) is complete . This
completes the conclusion.
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Example 3.2. Let V = [1,∞). Define GM : V3 −→ [1,∞) as

GM(k, r, j) =

( ∣∣∣∣∣kr
∣∣∣∣∣• . ∣∣∣∣∣rj

∣∣∣∣∣• . ∣∣∣∣∣ j
k

∣∣∣∣∣• ),
since

|k|• =

 k if k ≥ 1;

1/k if k < 1.
(3.15)

Then, (V,GM) is multiplicative GM−metric space, see in Example 1.3 of [22].

Let P,Q, S ,T : [1,∞) −→ [1,∞) be defined as

P j =

√
j + 1

2
, Q j = 1, S j = j, T j =

j + 1
2

, ∀ j ∈ V.

It is clearly that P(V) ⊆ S (V) and Q(V) ⊆ T (V).

Also, Let Υ,Θ be defined by

Υ(m, p, r, t,w) = Θ(m, p, r, t,w) = m,

for all m, p, r, t,w ∈ V .

Then Υ and Θ are ∆-implicit contractions, since Υ,Θ satisfy the following:

(i) It is clearly that Υ and Θ are continuous and non-decreasing in every coordinate variable;

(ii) for every x, y ∈ [1,∞), if x ≤ Υ(y, x, y, 1, yx) = y, then there exist q1 = 1 ∈ (0,∞) and if
x ≤ Θ(y, y, x, yx, 1) = y, then there exist q2 = 1 ∈ (0,∞);

(iii) for every z > 1,

max
{
Υ(1, 1, z, z, 1), Υ(1, z, 1, 1, z), Υ(1, z, 1, z, 1)

}
= zβ < z,

and
max

{
Θ(1, 1, z, z, 1), Θ(1, z, 1, 1, z), Θ(1, z, 1, z, 1)

}
= zβ < z.

We next prove the condition (3.1) is verified:

Step 1: with respect to inequality related to (Υ),

L.H.S . = GM(Qh, Pu, Pu) =

∣∣∣∣∣Qh
Pu

∣∣∣∣∣• . ∣∣∣∣∣Pu
Pu

∣∣∣∣∣• . ∣∣∣∣∣ Pu
Qh

∣∣∣∣∣•

=

∣∣∣∣∣∣∣∣∣∣∣∣
1√
u + 1

2

∣∣∣∣∣∣∣∣∣∣∣∣
•

. |1|• .

∣∣∣∣∣∣∣
√

u + 1
2

∣∣∣∣∣∣∣
•

=
u + 1

2
.
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R.H.S . = Υ


GM(Pu,Tu,Tu), GM(S h,Tu,Tu),

GM(Qh, S h, S h), GM(Qh,Tu,Tu),

min
{
GM(Pu, S h, S h), GM(Pu,Tu,Tu)

}


= GM(Pu,Tu,Tu) =

∣∣∣∣∣Pu
Tu

∣∣∣∣∣• . ∣∣∣∣∣Tu
Tu

∣∣∣∣∣• . ∣∣∣∣∣Tu
Pu

∣∣∣∣∣•

=

∣∣∣∣∣∣∣∣∣∣∣∣
1√
u + 1

2

∣∣∣∣∣∣∣∣∣∣∣∣
•

. |1|• .

∣∣∣∣∣∣∣
√

u + 1
2

∣∣∣∣∣∣∣
•

=
u + 1

2
.

Step 2: with respect to inequality related to (Θ),

L.H.S . = GM(Pu,Qh,Qh) =

∣∣∣∣∣ Pu
Qh

∣∣∣∣∣• . ∣∣∣∣∣Qh
Qh

∣∣∣∣∣• . ∣∣∣∣∣Qh
Pu

∣∣∣∣∣•

=

∣∣∣∣∣∣∣
√

u + 1
2

∣∣∣∣∣∣∣
•

. |1|• .

∣∣∣∣∣∣∣∣∣∣∣∣
1√
u + 1

2

∣∣∣∣∣∣∣∣∣∣∣∣
•

=
u + 1

2
.

R.H.S . = Θ



GM(Qh, S h, S h), GM(Pu,Tu,Tu),

GM(Tu, S h, S h),

min
{
GM(Qh,Tu,Tu), GM(Qh, S h, S h)

}
,

GM(Pu, S h, S h)


= GM(Qh, S h, S h) =

∣∣∣∣∣Qh
S h

∣∣∣∣∣• . ∣∣∣∣∣S h
S h

∣∣∣∣∣• . ∣∣∣∣∣S h
Qh

∣∣∣∣∣• =

∣∣∣∣∣1u
∣∣∣∣∣• . |1|• . |u|• = u2.

Hence, we observe that Υ,Θ ∈ M satisfy the condition (3.1). Also, it is clearly that 1 is a unique
common coincidence point of (P,T ) and (Q, S ), and also a unique common fixed point of mappings
P,Q, S and T. Consequently, Theorem 3.1 is supported by this example.

Now, we introduce a new shape of Theorem 3.1 with different contractive condition.

Theorem 3.3. Assume (V,GM) and the maps P,Q, S ,T : V −→ V be the same in Theorem 3.1 satisfy
the following: for u, h ∈ V, u , h,

GM(Qh, Pu, Pu) ≤
[
L1

]β
, (3.16.1)

GM(Pu,Qh,Qh) ≤
[
L2

]β
, (3.16.2)

(3.16)
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since

(??)



L1 = max


GM(Pu,Tu,Tu), GM(S h,Tu,Tu),

GM(Qh, S h, S h), GM(Qh,Tu,Tu),

min
{
GM(Pu, S h, S h), GM(Pu,Tu,Tu)

}

,

L2 = max



GM(Qh, S h, S h), GM(Pu,Tu,Tu),

GM(Tu, S h, S h),

min
{
GM(Qh,Tu,Tu), GM(Qh, S h, S h)

}
,

GM(Pu, S h, S h)


.

where β ∈
(
0,

1
2

)
. If one of {P(V), S (V),Q(V),T (V)} is complete, then the couples (T, P) and (S ,Q)

have unique common point of coincidence. Further, the four self-maps have unique common fixed point
in V if the couples (T, P) and (S ,Q) are weakly compatible.

Proof. As Theorem 3.1, let u0 be arbitrary point in V . From Eq (3.2), assume that either P(V) or S (V)
is complete, then prove that {hk} is a multiplicative GM−Cauchy sequence. Using u = u2k and h = u2k+1

in inequality (3.16.1), we get

GM(h2k+1, h2k, h2k) = GM(Qu2k+1, Pu2k, Pu2k)

≤

max


GM(Pu2k,Tu2k,Tu2k), GM(S u2k+1,Tu2k,Tu2k),

GM(Qu2k+1, S u2k+1, S u2k+1), GM(Qu2k+1,Tu2k,Tu2k),

min
{
GM(Pu2k, S u2k+1, S u2k+1), GM(Pu2k,Tu2k,Tu2k)

}



β

≤

max


GM(h2k, h2k−1, h2k−1), GM(h2k, h2k−1, h2k−1)

GM(h2k+1, h2k, h2k),

GM(h2k+1, h2k, h2k) .GM(h2k, h2k−1, h2k−1), 1



β

,
(
using (GM1), (GM5)

)

implying thereby,

GM(h2k+1, h2k, h2k) ≤ GβM(h2k+1, h2k, h2k) .G
β
M(h2k, h2k−1, h2k−1). (3.17)

Thus,
GM(h2k+1, h2k, h2k) ≤

[
GM(h2k, h2k−1, h2k−1)

]ρ
, (3.18)

since 0 < ρ =
β

1 − β
< 1. Similarly, by putting u = u2k+2 and h = u2k+1 in inequality (3.16.2), we

have
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G(h2k+2, h2k+1, h2k+1) = G(Pu2k+2,Qu2k+1,Qu2k+1)

≤


max



GM(Qu2k+1, S u2k+1, S u2k+1), GM(Pu2k+2,Tu2k+2,Tu2k+2),

GM(Tu2k+2, S u2k+1, S u2k+1),

min
{
GM(Qu2k+1,Tu2k+2,Tu2k+2), GM(Qu2k+1, S u2k+1, S u2k+1)

}
GM(Pu2k+2, S u2k+1, S u2k+1)





β

≤

max


GM(h2k+1, h2k, h2k), GM(h2k+2, h2k+1, h2k+1),

GM(h2k+1, h2k, h2k), 1,

GM(h2k+2, h2k+1, h2k+1) .GM(h2k+1, h2k, h2k)



β

,
(
from (GM1), (GM5)

)

that become,

GM(h2k+2, h2k+1, h2k+1) ≤ GβM(h2k+2, h2k+1, h2k+1) . GβM(h2k+1, h2k, h2k). (3.19)

Then,

GM(h2k+2, h2k+1, h2k+1) ≤
[
GM(h2k+1, h2k, h2k)

]ρ
. (3.20)

Now, from (3.20), we get

GM(hk+1, hk, hk) ≤
[
GM(hk, hk−1, hk−1)

]ρ
≤

[
GM(hk−1, hk−2, hk−2)

]ρ2

≤ ..... ≤
[
GM(h1, h0, h0)

]ρk

. (3.21)

For all k,m ∈ N with (k < m), we obtain

GM(hm, hk, hk) ≤ GM(hm, hm−1, hm−1) . GM(hm−1, hm−2, hm−2) ....... GM(hk+1, hk, hk)

≤
[
GM(h1, h0, h0)

]ρm−1

.
[
GM(h1, h0, h0)

]ρm−2

.......
[
GM(h1, h0, h0)

]ρk

≤
[
GM(h1, h0, h0)

]ρk(1 + ρ + ...... + ρm−k−1)

≤
[
GM(h1, h0, h0)

] ρk

1 − ρ −→ 1, as k,m −→ ∞,

since (0 < ρ < 1) tends to ρk −→ 0, as k −→ ∞.

This illustrates that {hk} is multiplicative GM−Cauchy sequence. Since (V,GM) is complete, then there
exists l ∈ V such that hk −→ l as k −→ ∞. Then from Eq (3.2), we get Eq (3.7).

Since P(V) ⊆ S (V), if l ∈ S (V), then there exists j ∈ V such that Eq (3.8) is verified.
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We will show that Q j = S j. Taking u = u2k and h = j in inequality (3.16.1), we have

GM(Q j, Pu2k, Pu2k) ≤

max


GM(Pu2k,Tu2k,Tu2k), GM(S j,Tu2k,Tu2k),

GM(Q j, S j, S j), GM(Q j,Tu2k,Tu2k),

min
{
GM(Pu2k, S j, S j), GM(Pu2k,Tu2k,Tu2k)

}



β

.

Taking k −→ ∞ and using Eqs (3.7) and (3.8), we get

GM(Q j, l, l) ≤
[

max
{
1, 1, GM(Q j, l, l), GM(Q j, l, l), 1

}]β
=

[
GM(Q j, l, l)

]β
,

which is contradiction with respect to (∆3). Hence, GM(Q j, l, l) = 1, which tends to l = Q j. Thus,
Eq (3.9) is satisfied.

Similarly, since Q(V) ⊆ T (V), there exists r ∈ V such that Eq (3.10) is verified.

We will prove that Pr = Tr. Putting u = r and h = u2k+1 in inequality (3.16.2), we find

GM(Pr,Qu2k+1,Qu2k+1) ≤


max



GM(Qu2k+1, S u2k+1, S u2k+1), GM(Pr,Tr,Tr),

GM(Tr, S u2k+1, S u2k+1),

min
{
GM(Qu2k+1,Tr,Tr), GM(Qu2k+1, S u2k+1, S u2k+1)

}
,

GM(Pz, S u2k+1, S u2k+1)





β

.

Hence,

GM(Pr, l, l) ≤
[

max
{
1, GM(Pr, l, l), 1, 1, GM(Pr, l, l)

}]β
=

[
GM(Pr, l, l)

]β
,

from (∆3), we have GM(Pr, l, l) = 1 which implies that Pr = l. Thus Eq (3.11) is hold.

Hence, l ∈ V is common point of coincidence for the four maps.

Uniqueness: To illustrate the uniqueness with respect to the coincidence point, assume that l∗ , l
be another coincidence point of the four maps beside the other hypotheses as the same method in
Theorem 3.1, then inequality (3.16.1), became

GM(Q j, Pr∗, Pr∗) ≤

max


GM(Pr∗,Tr∗,Tr∗), GM(S j,Tr∗,Tr∗),

GM(Q j, S j, S j), GM(Q j,Tr∗,Tr∗),

min
{
GM(Pr∗, S j, S j), GM(Pr∗,Tr∗,Tr∗)

}



β

.
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Tending thereby

GM(l, l∗, l∗) ≤
[

max
{
1, GM(l, l∗, l∗), 1, GM(l, l∗, l∗), 1

}]β
=

[
GM(l, l∗, l∗)

]β
,

which tends to GM(l, l∗, l∗) = 1 (from ∆3), i.e., l = l∗. Consequently, the couples (T, P) and (S ,Q) have
unique common coincidence point.

By using weak compatibility of (T, P) and (S ,Q) and Eqs (3.9), (3.11), we get Eqs (3.12) and (3.13).
Hence, l is coincidence point of (T, P) and (S ,Q).

Now, we illustrate that f is a common fixed point of P,Q, S and T. Taking u = l and h = j in
inequality (3.16.1), we have

GM(Q j, Pl, Pl) ≤

max


GM(Pl,Tl,Tl), GM(S j,Tl,Tl),

GM(Q j, S j, S j), GM(Q j,Tl,Tl),

min
{
GM(Pl, S j, S j), GM(Pl,Tl,Tl)

}



β

.

This implies to

GM(l, Pl, Pl) ≤
[

max
{
1, GM(l, Pl, Pl), 1, GM(l, Pl, Pl), 1

}]β
=

[
GM(l, Pl, Pl)

]β
,

which is contradiction from (∆3), then we obtain GM(l, Pl, Pl) = 1, which implies to l = Pl. Then,
l = Pl = Tl. Similarly, we can prove l = Ql = S l. This means that Eq (3.14) is satisfied.

Therefore, l is common fixed point of (T, P) and (S ,Q).

As we prove the uniqueness of the common fixed point of the four maps, similarly, we can show the
uniqueness of the common point of coincidence of the four maps. Beside, the conclusion is similar in
case l ∈ T (V) and either Q(V) or T (V) is complete. This completes the conclusion.

Example 3.4. Let V = R. Define GM : V3 −→ [1,∞) as

GM( j, k, r) = ξ
(
| j − k| + |k − r| + |r − j|

)
,

where j, k, r ∈ V and ξ > 1.

It is clearly that GM is multiplicative generalized metric [22] on V and the pair (V,GM) is called
multiplicative GM−metric space.

Let P,Q, S ,T : V −→ V be defined as

P j = 2 = Q j, S j =
1
2

j + 1, T j =
1
4

j +
3
2
, ∀ j ∈ R.
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Then, P(V) ⊆ S (V) and Q(V) ⊆ T (V).

Next, We show that the condition (3.16) is satisfied:
Step 1: from condition (3.16.1),

GM(Qh, Pu, Pu) = 1 ≤

max


GM(Pu,Tu,Tu), GM(S h,Tu,Tu),

GM(Qh, S h, S h), GM(Qh,Tu,Tu),

min
{
GM(Pu, S h, S h), GM(Pu,Tu,Tu)

}



β

.

Step 2: from condition (3.16.2),

GM(Pu,Qh,Qh) = 1 ≤


max



GM(Qh, S h, S h), GM(Pu,Tu,Tu),

GM(Tu, S h, S h),

min
{
GM(Qh,Tu,Tu), GM(Qh, S h, S h)

}
,

GM(Pu, S h, S h)





β

.

Therefore, we note that the condition (3.16) is satisfied. It is clearly that 2 is unique common
coincidence point of (T, p) and (S ,Q), and also unique common fixed point of maps P,Q, S and T .
Then, Theorem 3.3 is verified by this example.

Next, we induce a new thoerem which is an extend to Theorem 3.3.

Theorem 3.5. Suppose a complete multiplicative GM−metric space (V,GM) and the mappings P,Q, S
and T be the same in Theorem 3.1 and L1, L2 are defined as in Theorem 3.3 hold the following: for
u, h ∈ V, u , h, 

GM(Qh, Pu, Pu) ≤
[
ψ1

(
L1

)]β
, (3.22.1)

GM(Pu,Qh,Qh) ≤
[
ψ2

(
L2

)]β
, (3.22.2)

(3.22)

where β ∈
(
0,

1
2

)
and ψ1, ψ2 : [0,∞) −→ [0,∞) is a continuous and monotone increasing functions

such that ψ1(0), ψ2(0) < t for all t > 0. If one of {P(V), S (V),Q(V),T (V)} is complete, then the
couples (T, P) and (S ,Q) have a unique common coincidence point. Also, the four self-maps have
unique common fixed point in V if the pairs (T, P) and (S ,Q) are weakly compatible.

Proof. By a similar way of Theorem 3.3 beside using the concept of continuous and monotone
increasing functions we can conclude the proof of Theorem 3.5.

Example 3.6. Let V,GM, P,Q, S ,T be defined in Example 3.4 and let

ψ1( j) = j1/β = ψ2( j),

such that β ∈
(
0,

1
2

)
.
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Then, ψ1( j) and ψ2( j) satisfy the conditions in Theorem 3.5 and we have:

Step 1: from the condition (3.22.1),

GM(Qh, Pu, Pu) = 1 ≤

max


GM(Pu,Tu,Tu), GM(S h,Tu,Tu),

GM(Qh, S h, S h), GM(Qh,Tu,Tu),

min
{
GM(Pu, S h, S h), GM(Pu,Tu,Tu)

}



β

=

ψ1

max


GM(Pu,Tu,Tu), GM(S h,Tu,Tu),

GM(Qh, S h, S h), GM(Qh,Tu,Tu),

min
{
GM(Pu, S h, S h), GM(Pu,Tu,Tu)

}




β

.

Step 2: from condition (3.22.2),

GM(Pu,Qh,Qh) = 1 ≤


max



GM(Qh, S h, S h), GM(Pu,Tu,Tu),

GM(Tu, S h, S h),

min
{
GM(Qh,Tu,Tu), GM(Qh, S h, S h)

}
,

GM(Pu, S h, S h)





β

=


ψ2


max



GM(Qh, S h, S h), GM(Pu,Tu,Tu),

GM(Tu, S h, S h),

min
{
GM(Qh,Tu,Tu), GM(Qh, S h, S h)

}
,

GM(Pu, S h, S h)







β

.

Now, we present a new corollary with contraction have two mappings.

Corollary 3.7. Consider a complete multiplicative GM−metric space (V,GM) with the maps Q, P :
V −→ V satisfy the following: for u, h ∈ V, u , h,

GM(Ph, Pu, Pu) ≤ GβM(Qh,Qu,Qu)

where β ∈ (0, 1). If Q(V) or P(V) is complete, then the couple (Q, P) has unique coincidence point.
Further, the couple (Q, P) has a unique fixed point in V if it is weakly compatible.

Example 3.8. Let V and GM be the same in Example 3.4 and let Q, P : V −→ V be defined by

Q j =
j + 1

2
, P j = 1, ∀ j ∈ R.
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Let u, h ∈ V with u , h, then we get

GM(Ph, Pu, Pu) = 1 ≤ ξβ |u − h| = GβM(Qh,Qu,Qu).

Clearly, 1 is unique coincidence point of (Q, P) and also unique fixed point of maps (Q, P).
Consequently, all the assertions in Corollary 3.7 are verified by this example.

4. Application

It is very common that many researchers proved different kind of linear and nonliear Volterra
and Fredhlom type integral equations by using various contractions principle. Rasham et al. [26]
proved a significant fixed point results for sufficient conditions to solve two system of nonlinear
integral equations. For more fixed point results having applications related to integral equations
(see [21, 25, 27, 28]).

Theorem 4.1. Let (V,GM) be a complete multiplicative GM−metric space and the map Q : V → V
satisfies the following condition for all u, h, v with u , h , v, then

GM(Qu,Qh,Qv) ≤ GβM(u, h, v)

where β ∈ (0, 1). If Q(V) is complete then Q has coincidence point. Also, Q has a unique fixed point
in V if it is weakly compatible.

Proof. The proof of Theorem 4.1 is similar to our main Theorem 3.1.

Now we are presenting an application for nonlinear integral equations to find out the unique
common solution. Let E = V([0, 1],R+) be the set of all continuous functions on [0, 1]. Consider the
integral equations

ú(υ) =

υ∫
0

K1(υ, t, ú(t)) dt, (4.1)

~(υ) =

υ∫
0

K2(υ, t, ~(t)) dt, (4.2)

v(υ) =

υ∫
0

K3(υ, t, v(t)) dt, (4.3)

for all υ ∈ [0, 1], where K1,K2 K3 are functions from [0, 1] × [0, 1] × E to R.

e|K1(υ,t,ú(t)) − K2(υ,t,~(t)) | + |K2(υ,t,~(t))−K3(υ,t,v(t)) | + |K3(υ,t,v(t))−K1(υ,t,ú(t)) |

≤
1

1 + GM(Qú,Q~,Qv)
.GM(Qú,Q~,Qv).

For ú ∈ V([0, 1],R+), define supremum norm as: ‖ú‖τ = sup
k∈[0,1]

{e| ú(k) |}. Define

GM(ú, ~, v) =

[
sup

k∈[0,1]

{
e(| ú(k)− ~(k) | + | ~(k)− v(k) | + | v(k)− ú(k) |)

}]
= ‖e(| ú− ~| + | ~− v | + | v− ú |)‖τ,
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for all ú, ~, v ∈ V([0, 1],R+),with these settings,
(
V([0, 1],R+),GM

)
becomes a complete multiplicative

GM−metric space.

Now, we prove the following theorem to ensure the uniqueness and existence of a solution of
nonlinear integral equations (4.1), (4.2) and (4.3).

Theorem 4.2. Hypothesize conditions (i) and (ii) are satisfied:
(i) K1,K2,K3 : [0, 1] × [0, 1] × V([0, 1],R+)→ R;
(ii) Define Q : V([0, 1],R+)→ V([0, 1],R+) by

(Qú)(υ) =

υ∫
0

K1(υ, t, ú(t)) dt,

(Q~)(υ) =

υ∫
0

K2(υ, t, ~(t)) dt,

(Qv)(υ) =

υ∫
0

K3(υ, t, v(t)) dt.

Assume that β ∈ (0, 1) for each υ, t ∈ [0, 1] and ú, ~, v ∈ V([0, 1],R+), where

GM(Qú,Q~,Qv) = ‖e| (Qú)(υ)− (Q~)(υ) | + | (Q~)(υ)− (Qv)(υ) | + | (Qv)(υ)− (Qú)(υ) |‖τ .

Then (4.1), (4.2) and (4.3) possess a unique solution.

Proof. By definition (ii)

e| (Qú)(υ)− (Q~)(υ) | + | (Q~)(υ)− (Qv)(υ) | + | (Qv)(υ)− (Qú)(υ) |

=

υ∫
0

e|K1(υ,t,ú(t))−K2(υ,t,~(t)) | + |K2(υ,t,~(t))−K3(υ,t,v(t)) | + |K3(υ,t,v(t))−K1(υ,t,ú(t)) | dt

≤

υ∫
0

1
1 + GM(Qú,Q~,Qv)

.GM(Qú,Q~,Qv) dt.

This implies

e| (Qú)(υ)− (Q~)(υ) | + | (Q~)(υ)− (Qv)(υ) | + | (Qv)(υ)− (Qú)(υ) | ≤
GM(Qú,Q~,Qv)

1 + GM(Qú,Q~,Qv)

‖e| (Qú)(υ)− (Q~)(υ) | + | (Q~)(υ)− (Qv)(υ) | + | (Qv)(υ)− (Qú)(υ) |‖τ ≤
GM(Qú,Q~,Qv)

1 + GM(Qú,Q~,Qv)
1 + GM(Qú,Q~,Qv)

GM(Qú,Q~,Qv)
≤

1
‖e| (Qú)(υ)− (Q~)(υ) | + |(Q~)(υ)− (Qv)(υ) | + |(Qv)(υ)− (Qú)(υ) |‖τ

1
GM(Qú,Q~,Qv)

≤
1

‖e| (Qú)(υ)− (Q~)(υ) | + | (Q~)(υ)− (Qv)(υ) | + | (Qv)(υ)− (Qú)(υ) |‖τ
.
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It yields that

−
1

‖e| (Qú)(υ)− (Q~)(υ) | + | (Q~)(υ)− (Qv)(υ) | + | (Qv)(υ)− (Qú)(υ) |‖τ
≤

−1
GM(Qú,Q~,Qv)

.

The condition of Theorem (4.2) are satisfied, and GM(ú, ~, v) = ‖e(| ú− ~ | + | ~− v | + | v− ú |)‖τ . Hence the
integral equations (4.1), (4.2) and (4.3) admit a unique common solution.

Example 4.3. Take E = [0, 1]. If we put v = 1 in (4.1), (4.2) and (4.3), then we get the following
integral equations

(Qú) =

1∫
0

K1(v, t, ú(t)) dt =

1∫
0

2
25 (v + 1 + ú(t))

dt; (4.4)

(Q~) =

1∫
0

K2(v, t, ~(t)) dt =

1∫
0

2
25 (v + 1 + ~(t))

dt; (4.5)

(Qv) =

1∫
0

K3(v, t, v(t)) dt =

1∫
0

2
25 (v + 1 + v(t))

dt, (4.6)

where

K1(v, t, ú(t)) =
2

25 (v + 1 + ú(t))
;

K2(v, t, ~(t)) =
2

25 (v + 1 + ~(t))
;

K3(v, t, v(t)) =
2

25 (v + 1 + v(t))
.

Equations (4.4)–(4.6) are the special case of Eqs (4.1)–(4.3) respectively, where v ∈ [0, 1].
Proof.

GM(Qú,Q~,Qv)

= exp
{
‖Qú − Q~‖ + ‖Q~ − Qv‖ + ‖Qv − Qú‖

}
=

1∫
0

exp
{
‖K1(v, t, ú(t)) − K2(v, t, ~(t))‖ + ‖K2(v, t, ~(t)) −K3(v, t, v(t))‖

+ ‖K3(v, t, v(t)) − K1(v, t, ú(t))‖
}

dt

=

1∫
0

exp
{ ∥∥∥∥∥ 2

25 (v + 1 + ú(t))
−

2
25 (v + 1 + ~(t))

∥∥∥∥∥ +

∥∥∥∥∥ 2
25 (v + 1 + ~(t))

−
2

25 (v + 1 + v(t))

∥∥∥∥∥ +

∥∥∥∥∥ 2
25 (v + 1 + v(t))

−
2

25 (v + 1 + ú(t))

∥∥∥∥∥ }
dt
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= e2/25

1∫
0

exp
{ ∥∥∥∥∥ 1

v + 1 + ú(t)
−

1
v + 1 + ~(t)

∥∥∥∥∥ +

∥∥∥∥∥ 1
v + 1 + ~(t)

−
1

v + 1 + v(t)

∥∥∥∥∥
+

∥∥∥∥∥ 1
v + 1 + v(t)

−
1

v + 1 + ú(t)

∥∥∥∥∥ }
dt

= e2/25

1∫
0

exp
{ ∥∥∥∥∥ ~(t) − ú(t)

(v + 1 + ú(t))(v + 1 + ~(t))

∥∥∥∥∥ +

∥∥∥∥∥ v(t) − ~(t)
(v + 1 + ~(t))(v + 1 + v(t))

∥∥∥∥∥
+

∥∥∥∥∥ ú(t) − v(t)
(v + 1 + v(t))(v + 1 + ú(t))

∥∥∥∥∥ }
dt

= e2/25
[

exp
{ 1∫

0

∥∥∥∥∥ ~(t) − ú(t)
(v + 1 + ú(t))(v + 1 + ~(t))

∥∥∥∥∥ dt

+

1∫
0

∥∥∥∥∥ v(t) − ~(t)
(v + 1 + ~(t))(v + 1 + v(t))

∥∥∥∥∥ dt +

1∫
0

∥∥∥∥∥ ú(t) − v(t)
(v + 1 + v(t))(v + 1 + ú(t))

∥∥∥∥∥ dt
} ]

≤ e2/25
[

exp
{
‖~(t) − ú(t)‖ + ‖v(t) − ~(t)‖ + ‖ú(t) − v(t)‖

}]
≤ GβM(ú, ~, v); β = e2/25.

It follows that
GM(Qú,Q~,Qv) ≤ GβM(ú, ~, v).

Hence, all conditions of Theorem 4.1 hold. The integral equations (4.4), (4.5) and (4.6) have a unique
solution by using Theorem 4.1.

5. Conclusions

In this manuscript, we achieve the uniqueness and existence of common fixed point of the pairs
(P,T ) and (Q, S ) that satisfy ∆-implicit contractions as one of the other different contractive conditions.
We provide some nontrivial examples for supporting our main theorems. Our main results represent a
generalization and extension to the results in the literature. On the other hand, we prove an application
for the system of nonlinear integral equations to show that the common solution of defined nonlinear
integral inclusions exists and unique. In future we can extend this work, for multivalued mappings,
fuzzy mappings, L-fuzzy mappings, bipolar fuzzy mappings, intuitionistic fuzzy mappings.
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13. T. Dos̃enović, S. Radenović, Multiplicative metric spaces and contractions of rational type,
Advances in the Theory of Nonlinear Analysis and its Applications, 2 (2018), 195–201.
https://doi.org/10.31197/atnaa.481995

14. L. Florack, H. V. Assen, Multiplicative calculus in biomedical image analysis, J. Math. Imaging
Vis., 42 (2012), 64–75. https://doi.org/10.1007/s10851-011-0275-1

AIMS Mathematics Volume 7, Issue 8, 13681–13703.

http://dx.doi.org/https://doi.org/10.1155/2015/218683
http://dx.doi.org/https://doi.org/10.5269/bspm.v38i4.37148
http://dx.doi.org/https://doi.org/10.1016/C2015-0-00349-5
http://dx.doi.org/http://www.ripublication.com/gjpam17/gjpamv13n9$_$35.pdf
http://dx.doi.org/https://doi.org/10.1186/1687-1812-2012-212
http://dx.doi.org/https://doi.org/10.1186/1687-1812-2012-88
http://dx.doi.org/https://doi.org/10.1186/1687-1812-2012-88
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2007.03.081
http://dx.doi.org/https://doi.org/10.1007/s11766-011-2767-6
http://dx.doi.org/https://doi.org/10.1007/s11766-011-2767-6
http://dx.doi.org/https://doi.org/10.1515/bsaft-2017-0002
http://dx.doi.org/https://doi.org/10.31197/atnaa.481995
http://dx.doi.org/https://doi.org/10.1007/s10851-011-0275-1


13702

15. M. Gamal, W. Cholamjiak, Fixed point theorems for weakly compatible mappings under implicit
relations in quaternion valued G-metric spaces, AIMS Mathematics, 6 (2020), 2048–2058.
https://doi.org/10.3934/math.2021125

16. F. Gu, Y. J. Cho, Common fixed points results for four maps satisfying φ-contractive
condition in multiplicative metric spaces, Fixed Point Theory Appl., 2015 (2015), 165.
https://doi.org/10.1186/s13663-015-0412-4

17. X. He, M. Song, D. Chen, Common fixed points for weak commutative mappings
on a multiplicative metric space, Fixed Point Theory Appl., 2014 (2014), 48.
https://doi.org/10.1186/1687-1812-2014-48

18. Y. Jiang, F. Gu, Common coupled fixed point results in multiplicative metric
spaces and applications, J. Nonlinear Sci. Appl., 10 (2017), 1881–1895.
http://dx.doi.org/10.22436/jnsa.010.04.48

19. S. M. Kang, P. Kumar, S. Kumar, P. Nagpal, S. K. Garg, Common fixed points for compatible
mappings and its variants in multiplicative metric spaces, International Journal of Pure and
Applied Mathematics, 102 (2015), 383–406. http://dx.doi.org/10.12732/ijpam.v102i2.14

20. J. L. Li, Several extensions of the Abian–Brown fixed point theorem and their applications to
extended and generalized Nash equilibria on chain-complete posets, J. Math. Anal. Appl., 409
(2014), 1084–1092. https://doi.org/10.1016/j.jmaa.2013.07.070

21. Q. Mahmood, A. Shoaib, T. Rasham, M. Arshad, Fixed point results for the family of multivalued
F-contractive mappings on closed ball in complete dislocated b-metric spaces, Mathematics, 7
(2019), 56. https://doi.org/10.3390/math7010056

22. P. Nagpal, S. Kumar, S. K. Garg, Fixed point results in multiplicative generalized metric spaces,
Adv. Fixed Point Theory, 6 (2016), 352–386.

23. M. Özavsar, A. C. Çevikel, Fixed points of multiplicative contraction mappings on multiplicative
metric spaces, J. Eng. Tech. Appl. Sci., 2 (2017), 65–79. https://doi.org/10.30931/jetas.338608

24. Y. Piao, Unique fixed points for four non-continuous mappings satisfying Ψ−contractive condition
on non-complete multiplicative metric Spaces, Adv. Fixed Point Theory, 9 (2019), 135–145.
https://doi.org/10.28919/afpt/3979

25. T. Rasham, A. Shoaib, N. Hussain, B. A. S. Alamri, M. Arshad, Multivalued fixed point results
in dislocated b-metric spaces with application to the system of nonlinear integral equations,
Symmetry, 11 (2019), 40. https://doi.org/10.3390/sym11010040

26. T. Rasham, A. Shoaib, G. Marino, B. A. S. Alamri, M. Arshad, Sufficient conditions to solve
two systems of integral equations via fixed point results, J. Inequal. Appl., 2019 (2019), 182.
https://doi.org/10.1186/s13660-019-2130-7

27. T. Rasham, A. Shoaib, C. Park, M. D. L. Sen, H. Aydi, J. R. Lee, Multivalued fixed point results
for two families of mappings in modular-like metric spaces with applications, Complexity, 2020
(2020), 2690452. https://doi.org/10.1155/2020/2690452

28. T. Rasham, G. Marino, A. Shahzad, C. Park, A. Shoaib, Fixed point results for a pair of fuzzy
mappings and related applications in b-metric like spaces, Adv. Differ. Equ., 2021 (2021), 259.
https://doi.org/10.1186/s13662-021-03418-5

AIMS Mathematics Volume 7, Issue 8, 13681–13703.

http://dx.doi.org/https://doi.org/10.3934/math.2021125
http://dx.doi.org/https://doi.org/10.1186/s13663-015-0412-4
http://dx.doi.org/https://doi.org/10.1186/1687-1812-2014-48
http://dx.doi.org/http://dx.doi.org/10.22436/jnsa.010.04.48
http://dx.doi.org/http://dx.doi.org/10.12732/ijpam.v102i2.14
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2013.07.070
http://dx.doi.org/https://doi.org/10.3390/math7010056
http://dx.doi.org/https://doi.org/10.30931/jetas.338608
http://dx.doi.org/https://doi.org/10.28919/afpt/3979
http://dx.doi.org/https://doi.org/10.3390/sym11010040
http://dx.doi.org/https://doi.org/10.1186/s13660-019-2130-7
http://dx.doi.org/https://doi.org/10.1155/2020/2690452
http://dx.doi.org/https://doi.org/10.1186/s13662-021-03418-5


13703

29. R. A. Rashwan, H. A. Hammad, M. G. Mahmoud, Common fixed point theorems in complex-
valued S -metric spaces via implicit relations with applications, Res. Fixed Point Theory Appl.,
2019 (2019), 1–17.

30. R. A. Rashwan, H. A. Hammad, M. G. Mahmoud, Common fixed point results for weakly
compatible mappings under implicit relations in complex valued G-metric spaces, Inf. Sci. Lett., 8
(2019), 111–119. http://dx.doi.org/10.18576/isl/080305

31. Q.-Q. Song, M. Guo, H.-Z. Chen, Essential sets of fixed points for correspondences with
applications to Nash equilibria, Fixed Point Theor., 17 (2016), 141–150.

32. L. A. Tomek, K. S. Trivedi, Fixed point iteration in availability modeling, In: Fault-tolerant
computing systems, Berlin, Heidelberg: Springer, 1991, 229–240. https://doi.org/10.1007/978-3-
642-76930-6 20

33. G. X.-Z. Yuan, G. Isac, K.-K. Tan, J. Yu, The study of minimax inequalities, abstract economics
and applications to variational inequalities and Nash equilibria, Acta Applicandae Mathematica,
54 (1998), 135–166. https://doi.org/10.1023/A:1006095413166

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 8, 13681–13703.

http://dx.doi.org/http://dx.doi.org/10.18576/isl/080305
http://dx.doi.org/https://doi.org/10.1007/978-3-642-76930-6_20
http://dx.doi.org/https://doi.org/10.1007/978-3-642-76930-6_20
http://dx.doi.org/https://doi.org/10.1023/A:1006095413166
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Results
	Application
	Conclusions

