In this paper, we present a characterization of diagonal solutions for a class of linear matrix inequalities. We consider linear hybrid time-delay systems and explore the conditions under which these systems are positive and asymptotically stable. Specifically, we investigate the existence of positive diagonal solutions for a linear inequality when the system matrices are Metzler and nonnegative. Using various mathematical tools, including the Schur complement and separation theorems, we derive necessary and sufficient conditions for the stability of these systems. Our results extend existing stability criteria and provide new insights into the stability analysis of positive time-delay systems.
Citation: Ali Algefary. Diagonal solutions for a class of linear matrix inequality[J]. AIMS Mathematics, 2024, 9(10): 26435-26445. doi: 10.3934/math.20241286
In this paper, we present a characterization of diagonal solutions for a class of linear matrix inequalities. We consider linear hybrid time-delay systems and explore the conditions under which these systems are positive and asymptotically stable. Specifically, we investigate the existence of positive diagonal solutions for a linear inequality when the system matrices are Metzler and nonnegative. Using various mathematical tools, including the Schur complement and separation theorems, we derive necessary and sufficient conditions for the stability of these systems. Our results extend existing stability criteria and provide new insights into the stability analysis of positive time-delay systems.
[1] | Y. F. Dolgii, Stabilization of linear autonomous systems of differential equations with distributed delay, Autom. Remote Control, 68 (2007), 1813–1825. https://doi.org/10.1134/S0005117907100098 doi: 10.1134/S0005117907100098 |
[2] | J. P. Richard, Time-delay systems: an overview of some recent advances and open problems, Automatica, 39 (2003), 1667–1694. https://doi.org/10.1016/S0005-1098(03)00167-5 doi: 10.1016/S0005-1098(03)00167-5 |
[3] | E. Kaszkurewicz, A. Bhaya, Matrix diagonal stability in systems and computation, Springer, 2000. https://doi.org/10.1007/978-1-4612-1346-8 |
[4] | R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511840371 |
[5] | R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge University Press, 1985. https://doi.org/10.1017/CBO9780511810817 |
[6] | Y. Y. Yan, D. Z. Cheng, J. E. Feng, H. T. Li, J. M. Yue, Survey on applications of algebraic state space theory of logical systems to finite state machines, Sci. China Inform. Sci., 66 (2023), 111201. https://doi.org/10.1007/s11432-022-3538-4 doi: 10.1007/s11432-022-3538-4 |
[7] | B. S. Goh, Global stability in two species interactions, J. Math. Biol., 3 (1976), 313–318. https://doi.org/10.1007/BF00275063 doi: 10.1007/BF00275063 |
[8] | K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics, Dordrecht: Springer, 1992. https://doi.org/10.1007/978-94-015-7920-9 |
[9] | S. Meyn, Control techniques for complex networks, Cambridge University Press, 2008. https://doi.org/10.1017/CBO9780511804410 |
[10] | G. P. Barker, A. Berman, R. J. Plemmons, Positive diagonal solutions to the Lyapunov equations, Linear Multilinear Algebra, 5 (1978), 249–256. https://doi.org/10.1080/03081087808817203 doi: 10.1080/03081087808817203 |
[11] | A. Berman, D. Hershkowitz, Matrix diagonal stability and its implications, SIAM J. Algebr. Discrete Methods, 4 (1983), 377–382. http://dx.doi.org/10.1137/0604038 doi: 10.1137/0604038 |
[12] | G. W. Cross, Three types of matrix stability, Linear Algebra Appl., 20 (1978), 253–263. https://doi.org/10.1016/0024-3795(78)90021-6 doi: 10.1016/0024-3795(78)90021-6 |
[13] | N. O. Oleng, K. S. Narendra, On the existence of diagonal solutions to the Lyapunov equation for a third order system, In: Proceedings of the 2003 American Control Conference, 2003, 2761–2766. https://doi.org/10.1109/ACC.2003.1243497 |
[14] | H. Khalil, On the existence of positive diagonal P such that $PA+ A^{T} P < 0$, IEEE Trans. Automat. Control, 27 (1982), 181–184. https://doi.org/10.1109/TAC.1982.1102855 doi: 10.1109/TAC.1982.1102855 |
[15] | J. F. B. M. Kraaijevanger, A characterization of Lyapunov diagonal stability using Hadamard products, Linear Algebra Appl., 151 (1991), 245–254. https://doi.org/10.1016/0024-3795(91)90366-5 doi: 10.1016/0024-3795(91)90366-5 |
[16] | A. Berman, C. King, R. Shorten, A characterisation of common diagonal stability over cones, Linear Multilinear Algebra, 60 (2012), 1117–1123. https://doi.org/10.1080/03081087.2011.647018 doi: 10.1080/03081087.2011.647018 |
[17] | M. Gumus, J. H. Xu, A new characterization of simultaneous Lyapunov diagonal stability via Hadamard products, Linear Algebra Appl., 531 (2017), 220–233. https://doi.org/10.1016/j.laa.2017.05.049 doi: 10.1016/j.laa.2017.05.049 |
[18] | A. Algefary, A characterization of common Lyapunov diagonal stability using Khatri-Rao products, AIMS Math., 9 (2024), 20612–20626. https://doi.org/10.3934/math.20241001 doi: 10.3934/math.20241001 |
[19] | O. Mason, R. Shorten, On the simultaneous diagonal stability of a pair of positive linear systems, Linear Algebra Appl., 413 (2006), 13–23. https://doi.org/10.1016/j.laa.2005.07.019 doi: 10.1016/j.laa.2005.07.019 |
[20] | T. Büyükköroğlu, Common diagonal Lyapunov function for third order linear switched system, J. Comput. Appl. Math., 236 (2012), 3647–3653. https://doi.org/10.1016/j.cam.2011.06.013 doi: 10.1016/j.cam.2011.06.013 |
[21] | M. Gumus, J. H. Xu, On common diagonal Lyapunov solutions, Linear Algebra Appl., 507 (2016), 32–50. https://doi.org/10.1016/j.laa.2016.05.032 doi: 10.1016/j.laa.2016.05.032 |
[22] | R. N. Shorten, K. S. Narendra, Strict positive realness and the existence of diagonal Lyapunov functions, In: Proceedings of the 45th IEEE Conference on Decision and Control, 2006, 2918–2923. https://doi.org/10.1109/CDC.2006.376934 |
[23] | P. H. A. Ngoc, Stability of positive differential systems with delay, IEEE Trans. Automat. Control, 58 (2013), 203–209. https://doi.org/10.1109/TAC.2012.2203031 doi: 10.1109/TAC.2012.2203031 |
[24] | A. Y. Obolenskii, Stability of solutions of autonomous Wazewski systems with delayed action, Ukr. Math. J., 35 (1983), 486–492. https://doi.org/10.1007/BF01061640 doi: 10.1007/BF01061640 |
[25] | E. Fridman, Tutorial on Lyapunov-based methods for time-delay systems, Eur. J. Control, 20 (2014), 271–283. https://doi.org/10.1016/j.ejcon.2014.10.001 doi: 10.1016/j.ejcon.2014.10.001 |
[26] | N. Krasovskii, Stability of motion, Stanford University Press, 1963. |
[27] | A. Y. Aleksandrov, Construction of the Lyapunov-Krasovskii functionals for some classes of positive delay systems, Sib. Math. J., 59 (2018), 753–762. https://doi.org/10.1134/S0037446618050014 doi: 10.1134/S0037446618050014 |
[28] | O. Mason, Diagonal Riccati stability and positive time-delay systems, Syst. Control Lett., 61 (2012), 6–10. https://doi.org/10.1016/j.sysconle.2011.09.022 doi: 10.1016/j.sysconle.2011.09.022 |
[29] | S. Boyd, L. Vandenberghe, Convex optimization, Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511804441 |
[30] | A. Barvinok, A course in convexity, American Mathematical Society, 2002. http://dx.doi.org/10.1090/gsm/054 |
[31] | F. Z. Zhang, The Schur complement and its applications, New York: Springer, 2005. https://doi.org/10.1007/b105056 |