Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Fitted mesh methods based on non-polynomial splines for singularly perturbed boundary value problems with mixed shifts

  • In this paper, numerical schemes based on non-polynomial splines, namely, spline in compression, tension, and adaptive spline, are constructed for singularly perturbed boundary value problems with mixed shifts. A convergence analysis is carried out on the proposed methods. A comparitive study of the results is performed on test problems and presented in the form of tables. Graphs are drawn to illustrate the behavior of the solution to the problems.

    Citation: T. Prathap, R. Nageshwar Rao. Fitted mesh methods based on non-polynomial splines for singularly perturbed boundary value problems with mixed shifts[J]. AIMS Mathematics, 2024, 9(10): 26403-26434. doi: 10.3934/math.20241285

    Related Papers:

    [1] V. Raja, E. Sekar, S. Shanmuga Priya, B. Unyong . Fitted mesh method for singularly perturbed fourth order differential equation of convection diffusion type with integral boundary condition. AIMS Mathematics, 2023, 8(7): 16691-16707. doi: 10.3934/math.2023853
    [2] M. Chandru, T. Prabha, V. Shanthi, H. Ramos . An almost second order uniformly convergent method for a two-parameter singularly perturbed problem with a discontinuous convection coefficient and source term. AIMS Mathematics, 2024, 9(9): 24998-25027. doi: 10.3934/math.20241219
    [3] Zhongdi Cen, Jian Huang, Aimin Xu . A posteriori mesh method for a system of singularly perturbed initial value problems. AIMS Mathematics, 2022, 7(9): 16719-16732. doi: 10.3934/math.2022917
    [4] Şuayip Toprakseven, Seza Dinibutun . Error estimations of a weak Galerkin finite element method for a linear system of $ \ell\geq 2 $ coupled singularly perturbed reaction-diffusion equations in the energy and balanced norms. AIMS Mathematics, 2023, 8(7): 15427-15465. doi: 10.3934/math.2023788
    [5] Nien-Tsu Hu, Sekar Elango, Chin-Sheng Chen, Murugesan Manigandan . Computational methods for singularly perturbed differential equations with advanced argument of convection-diffusion type. AIMS Mathematics, 2024, 9(8): 22547-22564. doi: 10.3934/math.20241097
    [6] Jagbir Kaur, Vivek Sangwan . Stability estimates for singularly perturbed Fisher's equation using element-free Galerkin algorithm. AIMS Mathematics, 2022, 7(10): 19105-19125. doi: 10.3934/math.20221049
    [7] Ruby, Vembu Shanthi, Higinio Ramos . A numerical approach to approximate the solution of a quasilinear singularly perturbed parabolic convection diffusion problem having a non-smooth source term. AIMS Mathematics, 2025, 10(3): 6827-6852. doi: 10.3934/math.2025313
    [8] Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang . Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type. AIMS Mathematics, 2020, 5(1): 557-567. doi: 10.3934/math.2020037
    [9] Essam R. El-Zahar . Approximate analytical solution of singularly perturbed boundary value problems in MAPLE. AIMS Mathematics, 2020, 5(3): 2272-2284. doi: 10.3934/math.2020150
    [10] Shazia Sadiq, Mujeeb ur Rehman . Solution of fractional boundary value problems by $ \psi $-shifted operational matrices. AIMS Mathematics, 2022, 7(4): 6669-6693. doi: 10.3934/math.2022372
  • In this paper, numerical schemes based on non-polynomial splines, namely, spline in compression, tension, and adaptive spline, are constructed for singularly perturbed boundary value problems with mixed shifts. A convergence analysis is carried out on the proposed methods. A comparitive study of the results is performed on test problems and presented in the form of tables. Graphs are drawn to illustrate the behavior of the solution to the problems.



    Delay differential equations model problems in several domains, including biosciences, material science, and medicine[1,2]. Differential-difference equations are differential equations in which the system's evolution depends on both the system's historical context and its present state. A differential equation that consists of at least one shift term and whose highest-order derivative is multiplied by a small perturbation parameter is known as a singularly perturbed differential-difference equation. Singularly perturbed differential difference equations (SPDDEs) generally lead to solutions exhibiting boundary layers, and as the perturbation parameter goes to zero, the smoothness of the solution deteriorates.

    The initial developments on the asymptotic analysis of singularly perturbed differential-difference equations have emerged from the articles by Lange and Miura [3,4]. The numerical explorations in this field can be found in [5], where the authors Kadalbajoo and Sharma have presented a ϵ-uniform numerical scheme comprising of a standard upwind finite difference operator on a fitted piecewise uniform mesh for a class of boundary value problems of singularly perturbed differential-difference equations with small shifts. In [6], the authors Kadalbajoo et al. developed a fitted operator and a fitted mesh finite difference method for a class of singularly perturbed difference-difference equations, the fitted mesh method being ϵ-uniform convergent of second order. Kadalbajoo and Ramesh [7] proposed a hybrid numerical method on Shishkin mesh for solving a singularly perturbed delay differential equation, wherein the solutions were compared with those obtained by using a simple upwind scheme and a midpoint upwind scheme. Sirisha et al. [8] presented a mixed finite difference method for singularly perturbed differential-difference equations with mixed shifts via domain decomposition on a constant mesh. Woldaregay and Duressa [9] presented a numerical scheme for singularly perturbed differential-difference equations with mixed small shifts by using the exponentially fitted operator finite difference method, and in [10] they applied an exponentially finite difference method to a singularly perturbed boundary value problem. Ranjan and Prasad [11] used an exponentially fitted three-term finite difference technique to approximate the solution of a singularly perturbed differential equation with small shifts. Kumar and Kadalbajoo [12] constructed a piecewise uniform mesh for solving singularly perturbed differential-difference equations with small shifts.

    Jain[13] introduced the spline function approximation and shown that they are the consistency relations for the fundamental equations in discrete mechanics. Kadalbajoo and Bawa [14] proposed a variable mesh difference scheme for singularly perturbed boundary value problems using splines, and the method is shown to be quadratically convergent. Kadalbajoo and Patidar [15,16] applied spline techniques such as spline in compression and spline in tension to singularly perturbed two-point boundary value problems. Aziz and Khan [17] studied a spline method for second-order singularly perturbed boundary value problems, and the convergence of the method is shown to be dependent on the choice of the parameters. Mohanty and Jha [18] applied the variable mesh method using spline in compression for singularly perturbed two-point singular boundary value problems. Mohanty and Arora [19] applied tension spline on a non-uniform mesh for singularly perturbed two-point singular boundary value problems with significant first derivatives. Chakravarthy et al.[20,21] presented the numerical solution using spline in compression and spline in tension on a uniform mesh for second-order singularly perturbed delay differential equations. Ravi Kanth and Murali [22] presented a numerical technique for solving singularly perturbed nonlinear delay differential equations by the method of Spline in compression. The quasilinearization technique is applied in converting the nonlinear equation into a sequence of linear equations.

    The aforementioned publications illustrate the implementation of spline methods for various types of singularly perturbed boundary value problems and motivate us in exploring the feasibility of constructing non-polynomial spline methods for solving singularly perturbed boundary value problems with mixed shifts. In the present paper, we constructed numerical methods using spline in compression, spline in tension and adaptive spline on a fitted mesh, and a comparative study is performed on the results. This method ensures a consistent level of accuracy regardless of the perturbation parameter and achieves reliable convergence.

    The content of this paper is organized as follows: In Section 2, we introduce the problem under consideration and some properties of the solution. In Section 3, we discuss the mesh construction strategy for the problem. Section 4 is devoted to the proposed methods for the problem. In Section 5, we discuss the convergence of the proposed methods. In Section 6, we present the numerical results for test problems, and finally the conclusions follow in Section 7.

    Consider the general boundary value problem (BVP) for SPDDE containing both types of shifts:

    ϵy(x)+a(x)y(x)+α(x)y(xδ)+ω(x)y(x)+β(x)y(x+η)=f(x) (2.1)

    for x(0,1),0<ϵ1, subject to the interval and boundary conditions

    y(x)={ϕ(x);x[δ,0]χ(x);x[1,1+η] (2.2)

    where 0<ϵ1 is the perturbation parameter, a(x),α(x),ω(x),β(x),f(x), ϕ(x), and χ(x) are smooth functions, and δ is the delay (negative shift) parameter and η is the advance (positive shift) parameter. As δ,η<ϵ, for a(x)δα(x)+ηβ(x)>0 and α(x)+ω(x)+β(x)<0 x[0,1], the solution exhibits a boundary layer near x=0, while for a(x)δα(x)+ηβ(x)<0 and α(x)+ω(x)+β(x)<0, the solution exhibits a boundary layer near x=1. Here we assume that α(x)M1, β(x)M2, and α(x)+ω(x)+β(x)M<0. The function y(x) being continuous in [0,1] and differentiable in (0,1), satsifying (2.1) and (2.2), provides a smooth solution for (2.1) and (2.2).

    Since the solution of y(x) of (2.1) and (2.2) is sufficiently differentiable, we expand the terms y(xδ) and y(xη) using Taylor series to obtain:

    y(xδ)y(x)δy(x)+δ22y(x)+O(δ3),y(x+η)y(x)+ηy(x)+η22y(x)+O(η3). (2.3)

    On substituting Eq (2.3) in Eq (2.1), the modified form of the Eq (2.1) is

    L(Υ(x))=μΥ(x)+p(x)Υ(x)+q(x)Υ(x)=r(x),0x1 (2.4)

    subject to the conditions

    Υ(0)=ϕ(0)=ϕ0,Υ(1)=χ(1)=χ1. (2.5)

    where Υ(x)y(x), μ(x)=ϵ+α(x)δ22+β(x)η22, p(x)=a(x)δα(x)+ηβ(x), q(x)=α(x)+ω(x)+β(x) and r(x)=f(x).

    We show that the operator L follows the minimum principle for the continuous problem Eq (2.4):

    Lemma 1. Let Υ(x) be a smooth function, with Υ(0)0,Υ(1)0, then for x[0,1], Υ(x)0, whenever L(Υ(x))0 for x(0,1).

    Proof. For proof of this lemma, the reader can refer to [5].

    The bound for the solution of the continuous problem (2.4) is given in the following lemma:

    Lemma 2. Let Υ(x) be the solution of (2.4) and (2.5), then, ΥM1r+max(|ϕ0|,|χ1|), . being the l norm Υ=maxs[0,1]|Υ(s)|.

    Proof. For proof of this lemma, the reader can refer to [5].

    Lemma 1 guarantees the uniqueness of the solutions of (2.4) and (2.5), and the existence of the solution is guaranteed as the given problem is linear. Also, the boundedness to the solution of the problem is implied by Lemma 2. Also, the bounds for the solutions of (2.4) and (2.5) and their derivatives are given in the following lemma.

    Lemma 3. Considering Υ(x) to be the solution of (2.4) and (2.5), we have ||Υ(k)||2kC(2ϵ+δ2M1+η2M2)k for k=1,2,3.

    Proof. For proof of this lemma, the reader can refer to [5].

    Theorem 1. Let Υ(x) be the solution of (2.4) and (2.5), and let Υ(x)=Υr(x)+Υs(x), where the regular component Υr(x) satisfies

    |Υr(x)|M[1+exp(p(x)μ)]
    |Υkr(x)|M[1+(μ)2kexp(p(x)μ)]

    and the singular component Υs(x)satisfies

    |Υks(x)|M(μ)kexp(p(x)μ)

    where 0k3.

    Proof. For proof of this theorem, the reader can refer to [5].

    In this section, we discuss the mesh generation for the numerical solution of the singularly perturbed BVP (2.4) and (2.5).

    The case when the boundary layer occurs at the left end of the domain D=[0,1], it is divided into two subdomains D1 and D2 such that D=D1D2=[0,τ][τ,1], where τ is the transition parameter that is closer to x=0, and is defined by

    τ=min{12,ϵτ0ln(N)} (3.1)

    where N is the number of mesh points in the domain D=[0,1] and τ01|M|. It is clear that τ=12, the mesh is uniform; otherwise, the mesh condenses near the left boundary. It is assumed that N=2m, where m2 is an integer, which guarantees that there is at least one point in the boundary layer region. So, we consider equal number of mesh points in each subdomain and uniform partition over each subdomain with mesh points xi, as defined by

    xi={ih1for 0iN2τ+(iN2)h2for N2<iN (3.2)

    where h1=2τN and h2=2(1τ)N on the domains D1 and D2 respectively.

    Similarly, in the case when the boundary layer occurs at the right end of the solution domain D, we divide into subdomains D1 and D2 such that D=D1D2=[0,1τ][1τ,1], where τ is so-called the transition parameter and is located near the point x=1. We consider equal number of grid points in each subdomain and uniform partition over each subdomain with grid points xi, as defined by

    xi={ih2for 0iN21τ+(iN2)h1for N2<iN. (3.3)

    Now we show that L satisfies the discrete minimum principle:

    Lemma 4. If the mesh function Υ(xi) satisfying Υ(x0)0,Υ(xN)0, then Υ(xi)0, 0xi1, for L(Υ(xi))0, 0<xi<1.

    Proof. Let 0ˉzk1 be such that Υ(ˉzk)=minx[0,1]Υ(xi), and assuming that Υ(ˉzk)<0, clearly ˉzk{0,1}. Hence Υ(ˉzk)=0 and Υ(ˉzk)0.

    Now we have L(Υ(ˉzk))=μ(ˉzk)Υ(ˉzk)+p(xi)Υ(ˉzk))+q(xi)Υ(ˉzk)>0, which is a contradiction to our assumption that Υ(ˉzk)<0. Therefore, Υ(ˉzk)0 and hence Υ(xk)0xi[0,1].

    Lemma 5. Let Υi be any mesh function such that Υ0=ΥN=0. Then, for all 0iN, ΥjM1max1jN1|L(Υj)|.

    Proof. Let us introduce two mesh functions ^υi± defined by

    ˆυ±i=M1max1jN1L(Υj)±Υiˆυ±0=M1max1jN1L(Υj)±Υ00, since Υ0=0,ˆυ±N=M1max1jN1L(Υj)±ΥN0, since Υ0=0

    and for 1iN1

    ˆυ±i=μ(xi)Υ(xi)+p(xi)Υ(xi)+q(xi)Υ(xi)=q(xi)M1max1jN1L(Υj)±L(Υi)0, since q(xi)M11.

    Therefore, by the discrete minimum principle, we have ˆυ±i0 i,0iN, which gives the required estimate.

    Lemma 6.

    eM(1xi)/(ϵ+δ22M1+η22M2)Nj=i+1(1+Mhjϵ+δ22M1+η22M2)1

    for each i.

    Proof.

    eMhj/(ϵ+δ22M1+η22M2)=(eMhj/(ϵ+δ22M1+η22M2))1(1+Mhjϵ+δ22M1+η22M2)1.

    The above inequality is true for each j. Now we multiply these inequalities for j=i+1,...,N, and we obtain

    eM(1xi)/(ϵ+δ22M1+η22M2)Nj=i+1(1+Mhjϵ+δ22M1+η22M2)1.

    Hence the result.

    Lemma 7. For i=0,1,...,N, we set

    Ri=ij=1(1+Mhjϵ+δ22M1+η22M2)

    then for i=0,1,...,N1, we have

    LRiCmax{ϵ+δ22M1+η22M2,hi}Ri.

    Proof. It is easy to verify that

    RiRi1hi=Mϵ+δ22M1+η22M2Ri1.

    Now

    LRi=2(ϵ+δ22αi12+η22βi12)M(RiRi1)(hi+hi+1)(ϵ+δ22M1+η22M2)+(ai12δαi12+ηβi12)MRi1(ϵ+δ22M1+η22M2)
    =MRi(ai12δαi12+ηβi122Mhi(ϵ+δ22αi12+η22βi12)(hi+hi+1)(ϵ+δ22M1+η22M2))ϵ+δ22M1+η22M2+Mhi

    from which the result follows.

    Lemma 8. There exists a constant C such that

    Nj=i+1(1+Mhjϵ+δ22M1+η22M2)1CN4(1i/N)

    for N/2iN.

    Proof. suppose N/2iN. By [23]

    Nj=i+1(1+Mhjϵ+δ22M1+η22M2)1eM(1xi)/(Mh+ϵ+δ22M1+η22M2)=e4(Ni)N1lnN/(1+4N1lnN)=N4(Ni)N1/(1+4N1lnN)=N4(1i/N)N16(i1/N)N1lnN/(1+4N1lnN).

    It is easy to verify that N16(i1/N)N1lnN/(1+4N1lnN) is bounded for any N2 from which the result follows.

    In this section, we present non-polynomial spline methods for solving the boundary value problems (2.4) and (2.5).

    The spline in compression SΔ(x) satisfies in [xi1,xi] the differential equation

    SΔ(x)+ψSΔ(x)=(xix)hi(SΔ(xi1)+ψSΔ(xi1))+(xxi1)hi(SΔ(xi)+ψSΔ(xi)) (4.1)

    where SΔ(xi)=Υi,ψ>0,hi=xixi1.

    Solving (4.1) as a second-order differential equation, we obtain

    SΔ(x)=Acosψx+Bsinψx+(xxi1hi)(SΔ(xi)+ψSΔ(xi)ψ)+(xixhi)(SΔ(xi1)+ψSΔ(xi1)ψ). (4.2)

    Applying the interpolating conditions at xi1 and xi; SΔ(xi1)=Υi1, SΔ(xi)=Υi,SΔ(xi)=Mi, and setting λi=ψhi, we obtain the interpolating constants A and B and hence

    SΔ(x)=h2iλ2isinλi[Misin(λi(xxi1)hi)+Mi1sin(λi(xix)hi)]+h2iλ2i[(xxi1)hi(Mi+λ2ih2iΥi)+(xix)hi(Mi1+λ2ih2iΥi1)]. (4.3)

    Differentiating (4.3) and taking xxi, we obtain

    S(xi)=ΥiΥi1hi+hiλ2i[(1λicotλi)Mi+(1+λisinλi)Mi1].

    Considering the interval (xi,xi+1) and similarly we obtain

    S(x+i)=Υi+1Υihihiλ2i[(1λicotλi)Mi+(1+λisinλi)Mi+1].

    Equating the left and right hand dertivatives at xi, we obtain

    ΥiΥi1hi+hiλ2i[(1λicotλi)Mi+(1+λisinλi)Mi1]=Υi+1Υihihiλ2i[(1λicotλi)Mi+(1+λisinλi)Mi+1]. (4.4)

    This leads to a tridiagonal system

    Υi12Υi+Υi+1=h2i(¯λMi1+2¯¯λMi+¯λMi+1) (4.5)

    where ¯λ=1λ2i[λisinλi1] and ¯¯λ=1λ2i[1λicotλi].

    The consistency relation for (4.5) may be expressed as λi2=tan(λi2), whose smallest positive root is λi8.986818916, which leads to the equation ¯λ+¯¯λ=12.

    To obtain an approximation for Υi and Υi, we use the Taylor series approximation for Υ about xi as:

    Υ(xi+1)=Υi+1Υi+hi+1Υi+h2i+12Υi (4.6)
    Υ(xi1)=Υi1ΥihiΥi+h2i2Υi. (4.7)

    Solving (4.6) and (4.7) for Υi and Υi, we will obtain

    Υi=Υi+1+Υi1hi+1+hi (4.8)
    Υi=2hihi+1(hi+hi+1)[hi+1Υi1(hi+hi+1)Υi+hiΥi+1]. (4.9)

    Using the above approximations (4.8) and (4.9) in Υi+1=Υi+hi+1Υi and Υi1=ΥihiΥi, we obtain

    Υi+1=1hi(hi+hi+1)[(2hi+1hi)Υi12(hi+hi+1)Υi+3hiΥi+1] (4.10)
    Υi1=1hi+1(hi+hi+1)[3hi+1Υi1+2(hi+hi+1)Υi+(hi+12hi)Υi+1]. (4.11)

    We write Eq (2.4) as

    μ(xi)Υ(xi)=μiMi=r(xi)p(xi)Υ(xi)q(xi)Υ(xi). (4.12)

    Now we rewrite Eq (4.5) as

    μi(Υi12Υi+Υi+1)=h2i(¯λμiMi1+2¯¯λμiMi+¯λμiMi+1). (4.13)

    Substituting (4.12) in (4.13) and using the approximations (4.8), (4.10), and (4.11), we obtain the following tridiagonal scheme:

    EiΥi1+FiΥi+GiΥi+1=Hi,i=1,2,,N1, (4.14)

    where

    Ei=μih2i+2¯λpi+1hi+1hi(hi+hi+1)¯λpi+1hi+hi+12¯¯λpihi+hi+13¯λpi1hi+hi+1+¯λqi1,Fi=2μih2i2¯λpi+1hi+2¯¯λqi+2¯λpi1hi+1,Gi=μih2i+3¯λpi+1hi+hi+1+¯λqi+1+2¯¯λpihi+hi+1+¯λpi1hi+hi+12¯λpi1hihi+1(hi+hi+1),Hi=¯λri1+2¯¯λri+¯λri+1.

    Using the Thomas algorithm, we can solve the above tri-diagonal scheme (4.14) subject to the boundary conditions (2.5).

    The spline in tension SΔ(x) in [xi1,xi] satisfies the differential equation

    SΔ(x)ψSΔ(x)=(xix)hi(Mi1ψΥi1)+(xxi1)hi(MiψΥi) (4.15)

    where ψ>0 is a tension factor, SΔ(xi)=Υi, SΔ(xi)=mi, SΔ(xi)=Mi, hi=xixi1.

    Solving (4.15) as a second-order differential equation, we obtain

    SΔ(x)=Aeψx+Beψx(xxi1hi)(MiψΥiψ)(xixhi)(Mi1ψΥi1ψ). (4.16)

    Applying the interpolating conditions at xi1 and xi and setting Λi=ψhi, we obtain the interpolating constants A and B, and hence

    SΔ(x)=h2iΛ2isinhΛi[Mi1sinh(Λi(xix)hi)+Misinh(Λi(xxi1)hi)]+(Υi1h2iΛ2iMi1)(xixhi)+(Υih2iΛ2iMi)(xxi1hi). (4.17)

    Differentiating (4.17) and taking xxi, we obtain

    S(xi)=ΥiΥi1hi+hiΛ2i[(1ΛisinhΛi)Mi1+(1+ΛicothΛi)Mi].

    Considering the interval (xi,xi+1) and similarly, we obtain

    S(x+i)=Υi+1Υihi+hiΛ2i[(1ΛicothΛi)Mi+(1+ΛisinhΛi)Mi+1].

    Equating the left and right hand dertivatives at xi, we have

    ΥiΥi1hi+hiΛ2i[(1ΛisinhΛi)Mi1+(1+ΛicothΛi)Mi]=Υi+1Υihi+hiΛ2i[(1ΛicothΛi)Mi+(1+ΛisinhΛi)Mi+1]. (4.18)

    This leads to a tridiagonal system

    Υi12Υi+Υi+1=h2i(Λ1Mi1+2Λ2Mi+Λ1Mi+1) (4.19)

    where Λ1=1Λ2i[1ΛisinhΛi] and Λ2=1Λ2i[ΛicothΛi1].

    We rewrite the Eq (4.19) as

    μi(Υi12Υi+Υi+1)=h2i(Λ1μiMi1+2Λ2μiMi+Λ1μiMi+1). (4.20)

    Substituting (4.12) in (4.20) and using the approximations (4.8), (4.10), and (4.11), we obtain the following tridiagonal linear system:

    ¯EiΥi1+¯FiΥi+¯GiΥi+1=¯Hi,i=1,2,,N1, (4.21)

    where

    ¯Ei=μih2i+2Λ1pi+1hi+1hi(hi+hi+1)Λ1pi+1hi+hi+12Λ2pihi+hi+13Λ1pi1hi+hi+1+Λ1qi1,¯Fi=2μih2i2Λ1pi+1hi+2Λ2qi+2Λ1pi1hi+1,¯Gi=μih2i+3Λ1pi+1hi+hi+1+Λ1qi+1+2Λ2pihi+hi+1+Λ1pi1hi+hi+12Λ1pi1hihi+1(hi+hi+1),¯Hi=Λ1ri1+2Λ2ri+Λ1ri+1.

    Using the Thomas algorithm, we can solve the above tri-diagonal scheme (4.21) subject to the boundary conditions (2.5).

    The function SΔ(x), which we call adaptive spline, satisfies the following differential equation:

    ΘSΔ(x)ψSΔ(x)=(xix)hi(ΘMiψmi)+(xix)hi(ΘMi1ψi1). (4.22)

    Solving (4.22) and using interpolatory constraints SΔ(xi1)=Υi1, SΔ(xi)=Υi, we obtain

    SΔ(x)=Ai+Bie2qzih2i8ν3i[2ν2iz2i+2νizi+1](Mi2νihimi)+h2i8ν3i[2ν2i(1z2i)+2νi(1zi)+1](Mi12νihimi1) (4.23)

    where νi=ψhi2Θ, zi=xxi1hi and Θ,ψ are constants.

    Ai(e2νi1)=Υi+Υi1e2νi+h2i8ν3i[(2ν2i+2νi+1)e2νi][Mi2νihimi]h2i8ν3i[(2ν2i2νi+1)e2νi1][Mi12νihimi1] (4.24)
    Bi(e2νi1)=ΥiΥi1h2i4ν2i[(νi+1)(Mi2νihimi)+(νi1)(Mi12νihimi1)]. (4.25)

    The function SΔ(x) on the interval [xi,xi+1] is obtained by replacing i with i+1 (4.23).

    Applying the conditions of continuity to the first or second derivative of SΔ(x) at xi, we obtain the following relationship:

    ((2ν2i+2νi+1)e2νi1)[Mi+12νihimi+1]+((2ν2i2νi2)e2νi+(2ν2i2νi+2))[Mi2νihimi]+(2ν2i+2νi+1+e2νi)[Mi12νihimi1]=8ν3ih2i[Υi+1e2νi(e2νi+1)Υi+Υi1] (4.26)

    which simplifies to the following form of tridiagonal system:

    Υi12Υi+Υi+1=h2i(A3Mi1+(A1+A4)Mi+A2Mi+1). (4.27)

    Some additional relations for the adaptive spline are listed as follows:

    (i) mi1=hi(A1Mi1+A2Mi)+ΥiΥi1hi

    (ⅱ) mi=hi(A3Mi1+A4Mi)+ΥiΥi1hi

    (ⅱ) Mi1=2νiςihi[(A4mi1+A2mi)+B1(ΥiΥi1hi)]

    (ⅳ) Mi=2νiςihi[(A3mi1+A4mi)+B2(ΥiΥi1hi)]

    where ςi=νicothνi12νi,

    A1=14(1+2ςi)+ςi2νi, A2=14(12ςi)ςi2νi, A3=14(1+2ςi)ςi2νi and

    A4=14(12ςi)+ςi2νi, B1=12(12ςi), B2=12(1+2ςi).

    In the limiting case, when νi0, we have

    ςi=0, ςiνi=16, A1=13, A2=16, A3=16, A4=13, B1=12, B2=12

    and the spline function (4.23) reduces to the cubic spline.

    By introducing the parameter μi, we rewrite Eq (4.27) as

    μi(Υi12Υi+Υi+1)=h2i(A3μiMi1+(A1+A4)μiMi+A2μiMi+1). (4.28)

    Substituting (4.12) in (4.28) and using the approximations (4.8), (4.10), and (4.11), we obtain the tridiagonal linear system of the form:

    ¯¯EiΥi1+¯¯FiΥi+¯¯GiΥi+1=¯¯Hi,i=1,2,,N1, (4.29)

    where

    ¯¯Ei=μih2i+2A2pi+1hi+1hi(hi+hi+1)A2pi+1hi+hi+1(A1+A4)pihi+hi+13A3pi1hi+hi+1+A3qi1,¯¯Fi=2μih2i2A2pi+1hi+(A1+A4)qi+2A3pi1hi+1,¯¯Gi=μih2i+3A2pi+1hi+hi+1+A2qi+1+(A1+A4)pihi+hi+1+A3pi1hi+hi+12A3pi1hihi+1(hi+hi+1),¯¯Hi=A2ri1+(A1+A4)ri+A3ri+1.

    Using the Thomas algorithm, we can solve the above tri-diagonal scheme (4.29) subject to the boundary conditions (2.5).

    Here we perform the convergence analysis for the scheme described in Section 4.1.

    Writing the tri-diagonal system Eq (4.14) in matrix-vector form, we obtain

    AΥ=C+T(hi) (5.1)

    in which A=[mi,j],1i,jN1, is a tri-diagonal matrix of order N1, with

    mi,i1=μi+2hihi+1¯λpi+1hi+hi+1h2i¯λpi+1hi+hi+12h2i¯¯λpihi+hi+13h2i¯λpi1hi+hi+1+h2i¯λqi1mi,i=2μi2hi¯λpi+1+2h2i¯¯λqi+2h2i¯λpi1hi+1mi,i+1=μi+3h2i¯λpi+1hi+hi+1+h2i¯λqi+1+2h2i¯¯λpihi+hi+1+h2i¯λpi1hi+hi+12h3i¯λpi1hi+1(hi+hi+1)

    and C=(di) is a column vector with di=h2i(¯λri1+2¯¯λri+¯λri+1) with i=1,2,,N1 with T(hi)=O(h3i).

    We also have

    AˉΥT(hi)=C (5.2)

    where (ˉΥ)=(¯Υ0,¯Υ1,,¯ΥN)T and T(hi)=(T0(hi),T1(hi),,TN(hi))T denote the actual solution and the local truncation error, respectively.

    From Eqs (5.1) and (5.2), we obtain

    A(ˉΥΥ)=T(hi). (5.3)

    Thus the error equation is

    AE=T(hi) (5.4)

    where E=ˉΥΥ=(eo,e1,e2,,eN)T. Let |p(x)|c1, |q(x)|c2 and [mi,j] is the (i,j)th element of the matrix A. Then we have

    |mi,i+1|(μi+3h2i¯λc1hi+hi+1+h2i¯λc2+2h2i¯¯λc1hi+hi+1+h2i¯λc1hi+hi+12h3i¯λc1hi+1(hi+hi+1))
    |mi,i1|(μi+2hihi+1¯λc1hi+hi+1h2i¯λc1hi+hi+12h2i¯¯λc1hi+hi+13h2i¯λc1hi+hi+1+h2i¯λc2).

    For sufficiently small hi, we have

    |mi,i+1|μi0, i=1,2,,N2.
    |mi,i1|μi0, i=1,2,,N1.

    Hence the matrix is irreducible [24].

    Let the ith row elements' sum of matrix A be Si, then we have

    Si=N1j=1mi,j=μi+2hihi+1¯λpi+1hi+hi+1h2i¯λpi+1hi+hi+12h2i¯¯λpihi+hi+13h2i¯λpi1hi+hi+1+h2i¯λqi12hi¯λpi+1+2h2i¯¯λqi+2h2i¯λpi1hi+1, for i=1Si=N1j=1mi,j=μi2hi¯λpi+1+2h2i¯¯λqi+2h2i¯λpi1hi+1+3h2i¯λpi+1hi+hi+1+h2i¯λqi+1+2h2i¯¯λpihi+hi+1+h2i¯λpi1hi+hi+12h3i¯λpi1hi+1(hi+hi+1), for i=N1Si=N1j=1mi,j=2hihi+1¯λpi+1hi+hi+1+2h2i¯λpi+1hi+hi+12h2i¯λpi1hi+hi+12hi¯λpi+1+2h2i¯λpi1hi+12h3i¯λpi1hi+1(hi+hi+1)+h2i¯λqi1+2h2i¯¯λqi+h2i¯λqi+1, for i=2,3,,N2.

    Let c1=min|p(x)|, c1=max|p(x)|, c2=min|q(x)|, c2=max|q(x)| and h=N1maxi=1{hi,hi+1} so that 0<c1c1c1,0<c2c2c2.

    Then for a given h, the matrix A is irreducible and monotone ([24,25]).

    From (5.3), we have

    maxi|ˆΥiΥi|A1maxi|T(hi)|. (5.5)

    At the end points i=0 and N, the above inequality holds, and for 1iN1, we have

    T(hi)=¯λh2qΥi(ˆζ)+3¯λ4h2pΥi(ˆζ)+2¯¯λ3h2pΥi(ˆζ) (5.6)

    where ˆζ(xi1,xi).

    Since the mesh is piecewise uniform with step difference h, from (5.5) and (5.6), we obtain

    max1iN1|ˆΥiΥi|Mh2Υ(ˆζ). (5.7)

    Also, we have from [26]

    A1max1iN1{|Fi|(|Ei|+|Gi|)}1MhM (5.8)

    as 0<h<1.

    Using (5.7) and (5.8) in (5.5), we obtain

    max1iN1|ˆΥiΥi|Mh2Υi(ˆζ). (5.9)

    For a left layer problem, let the fine mesh points for the inside layer region be x1,,xN/2, and the coarse mesh points in the outer region be xN/2+1,,xN1. Further Υr(x) and Υs(x) are the regular and the singular components of the numerical solution. Then, using (5.2) along with (3.1) and h1, h2 into (5.9) and Theorem 1, we obtain

    max1iN1|ˆΥr,iΥr,i|M{N2ln2N[1+μ1exp(p(xN/2)μ)];x1,,xN/2N2[1+μ1exp(p(xN1)μ)];xN/2+1,,xN1. (5.10)

    Similarily,

    max1iN1|ˆΥs,iΥs,i|M{N2ln2N[μ3exp(p(xi0)μ)];x1,,xN/2N2[μ3exp(p(xN1)μ)];xN/2+1,,xN1. (5.11)

    The above results (5.10) and (5.11) can be concluded as

    Theorem 2. a(x),α(x),ω(x),β(x),f(x), ϕ(x), and χ(x) be sufficiently smooth functions so that Υ(x)C3[0,1]. Let Υi, i=0(1)N be the approximate solution of (2.4), obtained using the fitted mesh finite difference method (4.14) with the conditions (2.5). Then, there is a constant M independent of ϵ and the mesh size such that

    sup0<ϵ<<1max1iN1|ˆΥiΥi|MN2ln2N.

    To check the efficiency of the methods described in Sections 4.1–4.3, four test problems of SPDDEs are solved, of which two problems are of left end boundary layer type and the other two are right layer problems.

    The double mesh principle is used for finding the maximum absolute errors, which is given by the formula:

    EN=max0iN|ΥNiΥ2N2i|

    and the numerical rate of convergence for the considered problems is calculated by the following formula:

    RN=log|EN/E2N|log2.

    The numerical techniques outlined in Sections 4.1–4.3 are applied to the test problems, and the maximum absolute errors and the numerical rate of convergence are evaluated. The numerical results are tabulated for a spectrum of values of δ and η, smaller than ϵ for all the test problems. The findings are displayed in Tables 18. Also, the ϵ-uniform maximum absolute errors EN for various values of the mesh parameter N and for ϵ{20,21,220} is compared for each method described in Section 4 in Table 9. The numerical work illustrates the efficiency of the methods and is also consistent with those in literature. Graphs illustrating the influence of the shift parameters on the solution of the problem are depicted in Figures 18. The relationship between the error EN and the number of mesh points N for the considered examples is plotted in Figures 912. These plots illustrate the efficiency of the methods presented in Sections 4.1–4.3.

    Table 1.  Maximum absolute errors for Example 1 when δ=0.5ϵ,η=0.5ϵ.
    ϵ N 26 27 28 29 210
    Spline in Compression
    20 1.8810E-05 4.7012E-06 1.1752E-06 2.9378E-07 7.3558E-08
    22 8.8134E-05 2.2013E-05 5.5034E-06 1.3758E-06 3.4391E-07
    24 8.1525E-04 2.0374E-04 5.0827E-05 1.2700E-05 3.1750E-06
    26 6.3743E-03 2.0907E-03 6.7481E-04 1.6755E-04 4.1846E-05
    28 5.5897E-03 1.7562E-03 5.2179E-04 1.4793E-04 5.6396E-05
    210 5.3611E-03 1.6560E-03 4.7654E-04 1.3067E-04 6.5446E-05
    212 5.3586E-03 1.6328E-03 6.7996E-04 2.9124E-04 1.0985E-04
    214 5.3838E-03 1.6564E-03 7.6895E-04 3.6697E-04 1.6921E-04
    216 5.3742E-03 1.6938E-03 8.1807E-04 3.9078E-04 1.9067E-04
    218 5.3681E-03 1.9998E-03 8.4126E-04 4.0919E-04 1.9697E-04
    220 5.3663E-03 2.0949E-03 9.9648E-04 4.1920E-04 2.0463E-04
    Spline in Tension with ¯λ=112,¯¯λ=512
    20 8.9357E-06 2.2334E-06 5.5837E-07 1.3959E-07 3.4897E-08
    22 5.2069E-05 1.3006E-05 3.2517E-06 8.1288E-07 2.0322E-07
    24 6.6675E-04 1.6661E-04 4.1572E-05 1.0390E-05 2.5974E-06
    26 5.9734E-03 1.9667E-03 6.3616E-04 1.5799E-04 3.9461E-05
    28 5.4387E-03 1.7092E-03 5.0668E-04 1.4326E-04 5.7942E-05
    210 5.2786E-03 1.6330E-03 4.7061E-04 1.3258E-04 6.5979E-05
    212 5.2529E-03 1.6148E-03 6.7202E-04 2.8937E-04 1.0942E-04
    214 5.2535E-03 1.6181E-03 7.5928E-04 3.6485E-04 1.6870E-04
    216 5.2494E-03 1.6225E-03 7.8994E-04 3.8808E-04 1.9012E-04
    218 5.2474E-03 1.6213E-03 8.0063E-04 3.9742E-04 1.9618E-04
    220 5.2469E-03 1.6205E-03 8.0129E-04 4.0121E-04 1.9932E-04
    Adaptive Spline with A1=13,A2=16, A3=16,A4=13.
    20 1.3861E-05 3.4652E-06 8.6625E-07 2.1656E-07 5.4140E-08
    22 7.0099E-05 1.7509E-05 4.3762E-06 1.0940E-06 2.7350E-07
    24 7.4096E-04 1.8518E-04 4.6200E-05 1.1545E-05 2.8862E-06
    26 6.1737E-03 2.0287E-03 6.5548E-04 1.6277E-04 4.0653E-05
    28 5.5144E-03 1.7327E-03 5.1425E-04 1.4560E-04 5.7167E-05
    210 5.3196E-03 1.6445E-03 4.7358E-04 1.3162E-04 6.5712E-05
    212 5.2989E-03 1.6236E-03 6.7599E-04 2.9031E-04 1.0964E-04
    214 5.3072E-03 1.6336E-03 7.6395E-04 3.6591E-04 1.6896E-04
    216 5.3011E-03 1.6430E-03 8.0093E-04 3.8936E-04 1.9040E-04
    218 5.2977E-03 1.6408E-03 8.1588E-04 4.0178E-04 1.9654E-04
    220 5.2967E-03 1.6393E-03 8.1569E-04 4.0768E-04 2.0121E-04

     | Show Table
    DownLoad: CSV
    Table 2.  Rate of convergence for Example 1 when δ=0.5ϵ,η=0.5ϵ.
    ϵ N 26 27 28 29 210
    Spline in Compression
    20 2.0004E+00 2.0001E+00 2.0001E+00 1.9978E+00 2.0019E+00
    22 2.0013E+00 2.0000E+00 2.0001E+00 2.0001E+00 1.9973E+00
    24 2.0005E+00 2.0031E+00 2.0008E+00 2.0000E+00 2.0001E+00
    26 1.6083E+00 1.6314E+00 2.0099E+00 2.0014E+00 2.0004E+00
    28 1.6703E+00 1.7509E+00 1.8185E+00 1.3913E+00 1.0370E+00
    210 1.6948E+00 1.7970E+00 1.8667E+00 9.9754E-01 9.9931E-01
    212 1.7145E+00 1.2639E+00 1.2233E+00 1.4066E+00 1.7334E+00
    214 1.7005E+00 1.1071E+00 1.0672E+00 1.1168E+00 1.2182E+00
    216 1.6658E+00 1.0500E+00 1.0658E+00 1.0353E+00 1.0600E+00
    218 1.4246E+00 1.2492E+00 1.0398E+00 1.0548E+00 1.0190E+00
    220 1.3571E+00 1.0720E+00 1.2492E+00 1.0346E+00 1.0492E+00
    Spline in Tension with ¯λ=112,¯¯λ=512
    20 2.0004E+00 1.9999E+00 2.0000E+00 2.0000E+00 2.0000E+00
    22 2.0012E+00 1.9999E+00 2.0001E+00 2.0000E+00 2.0000E+00
    24 2.0007E+00 2.0028E+00 2.0004E+00 2.0001E+00 2.0000E+00
    26 1.6028E+00 1.6283E+00 2.0096E+00 2.0013E+00 2.0004E+00
    28 1.6700E+00 1.7541E+00 1.8225E+00 1.3060E+00 1.0384E+00
    210 1.6926E+00 1.7949E+00 1.8277E+00 1.0067E+00 1.0039E+00
    212 1.7018E+00 1.2648E+00 1.2156E+00 1.4030E+00 1.7230E+00
    214 1.6990E+00 1.0916E+00 1.0573E+00 1.1128E+00 1.2162E+00
    216 1.6939E+00 1.0384E+00 1.0254E+00 1.0294E+00 1.0580E+00
    218 1.6945E+00 1.0180E+00 1.0105E+00 1.0185E+00 1.0152E+00
    220 1.6950E+00 1.0160E+00 9.9797E-01 1.0092E+00 1.0151E+00
    Adaptive Spline with A1=13,A2=16, A3=16,A4=13.
    20 2.0000E+00 2.0001E+00 2.0000E+00 2.0000E+00 2.0001E+00
    22 2.0013E+00 2.0003E+00 2.0001E+00 2.0000E+00 2.0000E+00
    24 2.0005E+00 2.0029E+00 2.0007E+00 2.0000E+00 2.0000E+00
    26 1.6056E+00 1.6299E+00 2.0097E+00 2.0014E+00 2.0004E+00
    28 1.6702E+00 1.7525E+00 1.8205E+00 1.3487E+00 1.0377E+00
    210 1.6937E+00 1.7960E+00 1.8472E+00 1.0022E+00 1.0016E+00
    212 1.7065E+00 1.2641E+00 1.2194E+00 1.4048E+00 1.7282E+00
    214 1.6999E+00 1.0965E+00 1.0620E+00 1.1148E+00 1.2172E+00
    216 1.6900E+00 1.0366E+00 1.0406E+00 1.0321E+00 1.0590E+00
    218 1.6909E+00 1.0080E+00 1.0220E+00 1.0316E+00 1.0168E+00
    220 1.6920E+00 1.0070E+00 1.0006E+00 1.0187E+00 1.0271E+00

     | Show Table
    DownLoad: CSV
    Table 3.  Maximum absolute errors for Example 2 when δ=0.5ϵ,η=0.5ϵ.
    ϵ N 26 27 28 29 210
    Spline in Compression
    20 1.5614E-04 3.9022E-05 9.7534E-06 2.4384E-06 6.0959E-07
    22 8.9441E-04 2.2270E-04 5.5620E-05 1.3902E-05 3.4755E-06
    24 5.9742E-03 2.0030E-03 6.6444E-04 1.6564E-04 4.1380E-05
    26 4.5574E-03 1.3529E-03 5.0802E-04 2.5037E-04 1.2186E-04
    28 6.0144E-03 2.3338E-03 7.5164E-04 3.0400E-04 1.5216E-04
    210 7.5601E-03 3.4084E-03 1.4917E-03 5.8945E-04 1.9272E-04
    212 8.2372E-03 3.8447E-03 1.8076E-03 8.4357E-04 3.7223E-04
    214 9.2374E-03 4.0756E-03 1.9366E-03 9.3023E-04 4.4902E-04
    216 9.9542E-03 4.6066E-03 2.0265E-03 9.7163E-04 4.7182E-04
    218 1.0142E-02 4.9653E-03 2.3046E-03 1.0104E-03 4.8662E-04
    220 1.0190E-02 5.0593E-03 2.4842E-03 1.1532E-03 5.0446E-04
    Spline in Tension with ¯λ=112,¯¯λ=512
    20 1.1725E-04 2.9305E-05 7.3245E-06 1.8312E-06 4.5778E-07
    22 7.4143E-04 1.8464E-04 4.6116E-05 1.1529E-05 2.8820E-06
    24 5.5515E-03 1.8808E-03 6.2760E-04 1.5647E-04 3.9089E-05
    26 4.2226E-03 1.2665E-03 5.4144E-04 2.6088E-04 1.2573E-04
    28 5.5417E-03 2.2204E-03 7.2415E-04 3.1155E-04 1.5415E-04
    210 6.9397E-03 3.2824E-03 1.4610E-03 5.8199E-04 1.9090E-04
    212 7.4112E-03 3.6615E-03 1.7752E-03 8.3563E-04 3.7028E-04
    214 7.5140E-03 3.7951E-03 1.8776E-03 9.2200E-04 4.4700E-04
    216 7.5305E-03 3.8198E-03 1.9195E-03 9.5035E-04 4.6972E-04
    218 7.5337E-03 3.8215E-03 1.9255E-03 9.6516E-04 4.7804E-04
    220 7.5344E-03 3.8214E-03 1.9248E-03 9.6666E-04 4.8393E-04
    Adaptive Spline with A1=13,A2=16, A3=16,A4=13.
    20 1.3661E-04 3.4123E-05 8.5293E-06 2.1323E-06 5.3307E-07
    22 8.1790E-04 2.0367E-04 5.0868E-05 1.2714E-05 3.1783E-06
    24 5.7630E-03 1.9419E-03 6.4602E-04 1.6105E-04 4.0235E-05
    26 4.3902E-03 1.3098E-03 5.2471E-04 2.5562E-04 1.2379E-04
    28 5.7777E-03 2.2771E-03 7.3790E-04 3.0777E-04 1.5315E-04
    210 7.2327E-03 3.3453E-03 1.4763E-03 5.8572E-04 1.9181E-04
    212 7.7767E-03 3.7447E-03 1.7914E-03 8.3960E-04 3.7125E-04
    214 7.8796E-03 3.9117E-03 1.9029E-03 9.2610E-04 4.4801E-04
    216 7.8874E-03 3.9363E-03 1.9612E-03 9.5891E-04 4.7076E-04
    218 7.8874E-03 3.9336E-03 1.9672E-03 9.8189E-04 4.8129E-04
    220 7.8873E-03 3.9320E-03 1.9644E-03 9.8338E-04 4.9126E-04

     | Show Table
    DownLoad: CSV
    Table 4.  Rate of convergence for Example 2 when δ=0.5ϵ,η=0.5ϵ.
    ϵ N 26 27 28 29 210
    Spline in Compression
    20 2.0004E+00 2.0003E+00 2.0000E+00 2.0000E+00 2.0000E+00
    22 2.0058E+00 2.0014E+00 2.0003E+00 2.0000E+00 2.0000E+00
    24 1.5766E+00 1.5920E+00 2.0041E+00 2.0010E+00 2.0003E+00
    26 1.7521E+00 1.4131E+00 1.0208E+00 1.0388E+00 1.0523E+00
    28 1.3657E+00 1.6346E+00 1.3060E+00 9.9853E-01 1.0027E+00
    210 1.1493E+00 1.1922E+00 1.3395E+00 1.6129E+00 1.2906E+00
    212 1.0993E+00 1.0888E+00 1.0995E+00 1.1803E+00 1.3321E+00
    214 1.1805E+00 1.0735E+00 1.0579E+00 1.0508E+00 1.0937E+00
    216 1.1116E+00 1.1847E+00 1.0605E+00 1.0422E+00 1.0258E+00
    218 1.0304E+00 1.1074E+00 1.1896E+00 1.0540E+00 1.0343E+00
    220 1.0101E+00 1.0262E+00 1.1071E+00 1.1929E+00 1.0507E+00
    Spline in Tension with ¯λ=112,¯¯λ=512
    20 2.0004E+00 2.0003E+00 2.0000E+00 2.0000E+00 2.0000E+00
    22 2.0056E+00 2.0014E+00 2.0000E+00 2.0001E+00 2.0000E+00
    24 1.5615E+00 1.5834E+00 2.0040E+00 2.0010E+00 2.0002E+00
    26 1.7372E+00 1.2260E+00 1.0534E+00 1.0531E+00 1.0569E+00
    28 1.3195E+00 1.6165E+00 1.2168E+00 1.0151E+00 1.0109E+00
    210 1.0801E+00 1.1678E+00 1.3279E+00 1.6081E+00 1.2685E+00
    212 1.0173E+00 1.0445E+00 1.0871E+00 1.1743E+00 1.3292E+00
    214 9.8545E-01 1.0153E+00 1.0260E+00 1.0445E+00 1.0906E+00
    216 9.7925E-01 9.9279E-01 1.0142E+00 1.0166E+00 1.0225E+00
    218 9.7923E-01 9.8886E-01 9.9642E-01 1.0136E+00 1.0119E+00
    220 9.7940E-01 9.8938E-01 9.9363E-01 9.9822E-01 1.0133E+00
    Adaptive Spline with A1=13,A2=16, A3=16,A4=13.
    20 2.0013E+00 2.0002E+00 2.0000E+00 2.0000E+00 2.0000E+00
    22 2.0057E+00 2.0014E+00 2.0004E+00 2.0001E+00 2.0000E+00
    24 1.5693E+00 1.5878E+00 2.0040E+00 2.0010E+00 2.0003E+00
    26 1.7450E+00 1.3197E+00 1.0375E+00 1.0461E+00 1.0546E+00
    28 1.3433E+00 1.6257E+00 1.2615E+00 1.0069E+00 1.0068E+00
    210 1.1124E+00 1.1801E+00 1.3338E+00 1.6105E+00 1.2795E+00
    212 1.0543E+00 1.0638E+00 1.0933E+00 1.1773E+00 1.3306E+00
    214 1.0103E+00 1.0396E+00 1.0390E+00 1.0476E+00 1.0922E+00
    216 1.0027E+00 1.0051E+00 1.0323E+00 1.0264E+00 1.0241E+00
    218 1.0037E+00 9.9969E-01 1.0025E+00 1.0286E+00 1.0201E+00
    220 1.0043E+00 1.0012E+00 9.9825E-01 1.0013E+00 1.0268E+00

     | Show Table
    DownLoad: CSV
    Table 5.  Maximum absolute errors for Example 3 when δ=0.5ϵ,η=0.5ϵ.
    ϵ N 26 27 28 29 210
    Spline in Compression
    20 7.4209E-05 1.8555E-05 4.6383E-06 1.1595E-06 2.8988E-07
    22 2.6475E-04 6.6137E-05 1.6532E-05 4.1328E-06 1.0332E-06
    24 2.2048E-03 5.4819E-04 1.3686E-04 3.4205E-05 8.5503E-06
    26 1.6223E-02 5.2834E-03 1.6952E-03 4.2087E-04 1.0517E-04
    28 1.4750E-02 4.8312E-03 1.5329E-03 4.6074E-04 1.2810E-04
    210 1.4386E-02 4.7405E-03 1.5276E-03 4.7532E-04 1.3956E-04
    212 1.4292E-02 4.7143E-03 1.5229E-03 4.7861E-04 1.4660E-04
    214 1.4268E-02 4.7072E-03 1.5211E-03 4.7847E-04 1.4735E-04
    216 1.4262E-02 4.7053E-03 1.5205E-03 4.7834E-04 1.4737E-04
    218 1.4260E-02 4.7048E-03 1.5203E-03 4.7829E-04 1.4736E-04
    220 1.4260E-02 4.7047E-03 1.5203E-03 4.7826E-04 1.4735E-04
    Spline in Tension with ¯λ=112,¯¯λ=512
    20 3.5760E-05 8.9381E-06 2.2345E-06 5.5863E-07 1.3965E-07
    22 1.5326E-04 3.8284E-05 9.5692E-06 2.3922E-06 5.9805E-07
    24 1.6953E-03 4.2263E-04 1.0548E-04 2.6372E-05 6.5921E-06
    26 1.4857E-02 4.8524E-03 1.5576E-03 3.8682E-04 9.6666E-05
    28 1.4474E-02 4.7406E-03 1.5066E-03 4.5711E-04 1.3085E-04
    210 1.4390E-02 4.7370E-03 1.5251E-03 4.7431E-04 1.3990E-04
    212 1.4367E-02 4.7333E-03 1.5276E-03 4.7959E-04 1.4679E-04
    214 1.4361E-02 4.7319E-03 1.5276E-03 4.8004E-04 1.4773E-04
    216 1.4360E-02 4.7316E-03 1.5275E-03 4.8005E-04 1.4780E-04
    218 1.4359E-02 4.7315E-03 1.5275E-03 4.8005E-04 1.4781E-04
    220 1.4359E-02 4.7314E-03 1.5275E-03 4.8004E-04 1.4780E-04
    Adaptive Spline with A1=13,A2=16, A3=16,A4=13.
    20 5.4881E-05 1.3716E-05 3.4287E-06 8.5719E-07 2.1430E-07
    22 2.0871E-04 5.2192E-05 1.3045E-05 3.2610E-06 8.1524E-07
    24 1.9498E-03 4.8540E-04 1.2117E-04 3.0288E-05 7.5710E-06
    26 1.5538E-02 5.0677E-03 1.6264E-03 4.0384E-04 1.0092E-04
    28 1.4611E-02 4.7855E-03 1.5193E-03 4.5859E-04 1.2928E-04
    210 1.4387E-02 4.7386E-03 1.5263E-03 4.7474E-04 1.3962E-04
    212 1.4329E-02 4.7236E-03 1.5252E-03 4.7909E-04 1.4668E-04
    214 1.4314E-02 4.7194E-03 1.5243E-03 4.7925E-04 1.4754E-04
    216 1.4310E-02 4.7183E-03 1.5240E-03 4.7919E-04 1.4758E-04
    218 1.4309E-02 4.7181E-03 1.5239E-03 4.7916E-04 1.4758E-04
    220 1.4309E-02 4.7180E-03 1.5239E-03 4.7915E-04 1.4758E-04

     | Show Table
    DownLoad: CSV
    Table 6.  Rate of convergence for Example 3 when δ=0.5ϵ,η=0.5ϵ.
    ϵ N 26 27 28 29 210
    Spline in Compression
    20 1.9998E+00 2.0001E+00 2.0000E+00 2.0000E+00 1.9999E+00
    22 2.0011E+00 2.0001E+00 2.0001E+00 2.0000E+00 2.0000E+00
    24 2.0079E+00 2.0020E+00 2.0005E+00 2.0001E+00 2.0000E+00
    26 1.6185E+00 1.6400E+00 2.0100E+00 2.0006E+00 2.0006E+00
    28 1.6103E+00 1.6561E+00 1.7342E+00 1.8467E+00 1.7264E+00
    210 1.6015E+00 1.6338E+00 1.6843E+00 1.7680E+00 1.9785E+00
    212 1.6001E+00 1.6302E+00 1.6699E+00 1.7070E+00 1.7694E+00
    214 1.5998E+00 1.6298E+00 1.6686E+00 1.6992E+00 1.7294E+00
    216 1.5998E+00 1.6297E+00 1.6684E+00 1.6986E+00 1.7259E+00
    218 1.5998E+00 1.6297E+00 1.6684E+00 1.6985E+00 1.7256E+00
    220 1.5998E+00 1.6297E+00 1.6685E+00 1.6985E+00 1.7256E+00
    Spline in Tension with ¯λ=112,¯¯λ=512
    20 2.0003E+00 2.0000E+00 2.0000E+00 2.0000E+00 1.9992E+00
    22 2.0011E+00 2.0003E+00 2.0001E+00 2.0000E+00 2.0000E+00
    24 2.0041E+00 2.0024E+00 1.9999E+00 2.0002E+00 2.0000E+00
    26 1.6144E+00 1.6394E+00 2.0096E+00 2.0006E+00 2.0006E+00
    28 1.6103E+00 1.6538E+00 1.7207E+00 1.8046E+00 1.9139E+00
    210 1.6030E+00 1.6351E+00 1.6850E+00 1.7614E+00 1.9282E+00
    212 1.6019E+00 1.6315E+00 1.6714E+00 1.7081E+00 1.7689E+00
    214 1.6017E+00 1.6312E+00 1.6700E+00 1.7002E+00 1.7305E+00
    216 1.6016E+00 1.6311E+00 1.6699E+00 1.6995E+00 1.7267E+00
    218 1.6016E+00 1.6311E+00 1.6699E+00 1.6995E+00 1.7265E+00
    220 1.6016E+00 1.6311E+00 1.6699E+00 1.6995E+00 1.7264E+00
    Adaptive Spline with A1=13,A2=16, A3=16,A4=13.
    20 2.0004E+00 2.0001E+00 2.0000E+00 2.0000E+00 2.0004E+00
    22 1.9996E+00 2.0004E+00 2.0001E+00 2.0000E+00 2.0000E+00
    24 2.0061E+00 2.0021E+00 2.0002E+00 2.0002E+00 2.0000E+00
    26 1.6164E+00 1.6397E+00 2.0098E+00 2.0006E+00 2.0006E+00
    28 1.6103E+00 1.6552E+00 1.7281E+00 1.8268E+00 1.9612E+00
    210 1.6023E+00 1.6345E+00 1.6848E+00 1.7656E+00 1.9567E+00
    212 1.6010E+00 1.6309E+00 1.6707E+00 1.7076E+00 1.7696E+00
    214 1.6007E+00 1.6305E+00 1.6693E+00 1.6997E+00 1.7300E+00
    216 1.6007E+00 1.6304E+00 1.6692E+00 1.6991E+00 1.7263E+00
    218 1.6007E+00 1.6304E+00 1.6692E+00 1.6990E+00 1.7260E+00
    220 1.6007E+00 1.6304E+00 1.6692E+00 1.6990E+00 1.7260E+00

     | Show Table
    DownLoad: CSV
    Table 7.  Maximum absolute errors for Example 4 when δ=0.5ϵ,η=0.5ϵ.
    ϵ N 26 27 28 29 210
    Spline in Compression
    20 2.1409E-04 5.3492E-05 1.3371E-05 3.3426E-06 8.3566E-07
    22 2.4625E-03 6.1193E-04 1.5295E-04 3.8222E-05 9.5546E-06
    24 1.8032E-02 6.0309E-03 1.9736E-03 4.9120E-04 1.2274E-04
    26 1.6844E-02 5.5738E-03 1.7374E-03 4.7951E-04 1.2498E-04
    28 1.6571E-02 5.5462E-03 1.8009E-03 5.5139E-04 1.5101E-04
    210 1.6461E-02 5.5261E-03 1.8035E-03 5.6688E-04 1.7244E-04
    212 1.6382E-02 5.5106E-03 1.8021E-03 5.6773E-04 1.7483E-04
    214 1.6363E-02 5.4928E-03 1.7991E-03 5.6766E-04 1.7497E-04
    216 1.6360E-02 5.4886E-03 1.7945E-03 5.6693E-04 1.7497E-04
    218 1.6360E-02 5.4881E-03 1.7935E-03 5.6574E-04 1.7480E-04
    220 1.6360E-02 5.4881E-03 1.7934E-03 5.6546E-04 1.7451E-04
    Spline in Tension with ¯λ=112,¯¯λ=512
    20 8.3380E-05 2.0846E-05 5.2112E-06 1.3028E-06 3.2570E-07
    22 1.7497E-03 4.3512E-04 1.0881E-04 2.7195E-05 6.7981E-06
    24 1.6272E-02 5.4611E-03 1.7876E-03 4.4502E-04 1.1122E-04
    26 1.6341E-02 5.4210E-03 1.7037E-03 4.8628E-04 1.2196E-04
    28 1.6388E-02 5.4906E-03 1.7840E-03 5.4715E-04 1.5224E-04
    210 1.6375E-02 5.4969E-03 1.7950E-03 5.6442E-04 1.7173E-04
    212 1.6346E-02 5.4928E-03 1.7959E-03 5.6602E-04 1.7438E-04
    214 1.6339E-02 5.4848E-03 1.7947E-03 5.6613E-04 1.7459E-04
    216 1.6339E-02 5.4829E-03 1.7925E-03 5.6579E-04 1.7460E-04
    218 1.6338E-02 5.4828E-03 1.7920E-03 5.6522E-04 1.7452E-04
    220 1.6338E-02 5.4827E-03 1.7920E-03 5.6508E-04 1.7438E-04
    Adaptive Spline with A1=13,A2=16, A3=16,A4=13.
    20 1.4872E-04 3.7165E-05 9.2902E-06 2.3225E-06 5.8063E-07
    22 2.1059E-03 5.2351E-04 1.3088E-04 3.2708E-05 8.1764E-06
    24 1.7150E-02 5.7458E-03 1.8806E-03 4.6811E-04 1.1698E-04
    26 1.6591E-02 5.4963E-03 1.7192E-03 4.8193E-04 1.1484E-04
    28 1.6479E-02 5.5182E-03 1.7923E-03 5.4903E-04 1.5131E-04
    210 1.6419E-02 5.5113E-03 1.7992E-03 5.6563E-04 1.7206E-04
    212 1.6368E-02 5.5020E-03 1.7989E-03 5.6686E-04 1.7460E-04
    214 1.6355E-02 5.4899E-03 1.7969E-03 5.6688E-04 1.7478E-04
    216 1.6354E-02 5.4870E-03 1.7938E-03 5.6639E-04 1.7478E-04
    218 1.6353E-02 5.4867E-03 1.7931E-03 5.6556E-04 1.7466E-04
    220 1.6354E-02 5.4867E-03 1.7930E-03 5.6537E-04 1.7446E-04

     | Show Table
    DownLoad: CSV
    Table 8.  Rate of convergence for Example 4 when δ=0.5ϵ,η=0.5ϵ.
    ϵ N 26 27 28 29 210
    Spline in Compression
    20 2.0008E+00 2.0002E+00 2.0001E+00 2.0000E+00 2.0000E+00
    22 2.0087E+00 2.0003E+00 2.0006E+00 2.0001E+00 2.0000E+00
    24 1.5801E+00 1.6116E+00 2.0064E+00 2.0007E+00 2.0005E+00
    26 1.5955E+00 1.6817E+00 1.8573E+00 1.9399E+00 7.4174E-01
    28 1.5791E+00 1.6228E+00 1.7076E+00 1.8684E+00 1.7986E+00
    210 1.5747E+00 1.6155E+00 1.6697E+00 1.7170E+00 1.8269E+00
    212 1.5718E+00 1.6125E+00 1.6664E+00 1.6992E+00 1.7348E+00
    214 1.5748E+00 1.6103E+00 1.6641E+00 1.6979E+00 1.7267E+00
    216 1.5757E+00 1.6128E+00 1.6624E+00 1.6961E+00 1.7261E+00
    218 1.5757E+00 1.6136E+00 1.6645E+00 1.6945E+00 1.7247E+00
    220 1.5758E+00 1.6136E+00 1.6652E+00 1.6962E+00 1.7235E+00
    Spline in Tension with ¯λ=112,¯¯λ=512
    20 1.9999E+00 2.0001E+00 2.0000E+00 2.0000E+00 2.0000E+00
    22 2.0076E+00 1.9996E+00 2.0005E+00 2.0001E+00 2.0000E+00
    24 1.5751E+00 1.6112E+00 2.0061E+00 2.0005E+00 2.0005E+00
    26 1.5918E+00 1.6699E+00 1.8088E+00 1.9953E+00 1.2196E+00
    28 1.5776E+00 1.6219E+00 1.7051E+00 1.8456E+00 2.0904E+00
    210 1.5748E+00 1.6146E+00 1.6692E+00 1.7166E+00 1.8229E+00
    212 1.5734E+00 1.6128E+00 1.6658E+00 1.6986E+00 1.7348E+00
    214 1.5748E+00 1.6117E+00 1.6645E+00 1.6972E+00 1.7262E+00
    216 1.5753E+00 1.6130E+00 1.6636E+00 1.6962E+00 1.7256E+00
    218 1.5753E+00 1.6133E+00 1.6647E+00 1.6954E+00 1.7249E+00
    220 1.5753E+00 1.6134E+00 1.6650E+00 1.6962E+00 1.7243E+00
    Adaptive Spline with A1=13,A2=16, A3=16,A4=13.
    20 2.0006E+00 2.0002E+00 2.0000E+00 2.0000E+00 2.0000E+00
    22 2.0081E+00 2.0000E+00 2.0005E+00 2.0001E+00 2.0000E+00
    24 1.5776E+00 1.6113E+00 2.0062E+00 2.0006E+00 2.0005E+00
    26 1.5939E+00 1.6767E+00 1.8348E+00 2.0692E+00 8.4768E-01
    28 1.5783E+00 1.6224E+00 1.7069E+00 1.8594E+00 1.9163E+00
    210 1.5749E+00 1.6150E+00 1.6694E+00 1.7170E+00 1.8261E+00
    212 1.5728E+00 1.6128E+00 1.6661E+00 1.6989E+00 1.7348E+00
    214 1.5749E+00 1.6112E+00 1.6644E+00 1.6975E+00 1.7265E+00
    216 1.5755E+00 1.6130E+00 1.6632E+00 1.6962E+00 1.7259E+00
    218 1.5756E+00 1.6135E+00 1.6647E+00 1.6951E+00 1.7249E+00
    220 1.5756E+00 1.6135E+00 1.6651E+00 1.6963E+00 1.7240E+00

     | Show Table
    DownLoad: CSV
    Table 9.  The ϵ-uniform errors EN for methods in Sect. 4, for ϵ{20,21,220}.
    N 26 27 28 29 210
    Example 1
    Spline in Compression 5.3663E-03 2.0949E-03 9.9648E-04 4.1920E-04 2.0463E-04
    Spline in Tension 5.2469E-03 1.6205E-03 8.0129E-04 4.0121E-04 1.9932E-04
    Adaptive Spline 5.2967E-03 1.6393E-03 8.1569E-04 4.0768E-04 2.0121E-04
    Example 2
    Spline in Compression 1.0190E-02 5.0593E-03 2.4842E-03 1.1532E-03 5.0446E-04
    Spline in Tension 7.5344E-03 3.8214E-03 1.9248E-03 9.6666E-04 4.8393E-04
    Adaptive Spline 7.8873E-03 3.9320E-03 1.9644E-03 9.8338E-04 4.9126E-04
    Example 3
    Spline in Compression 1.4260E-02 4.7047E-03 1.5203E-03 4.7826E-04 1.4735E-04
    Spline in Tension 1.4359E-02 4.7314E-03 1.5275E-03 4.8004E-04 1.4780E-04
    Adaptive Spline 1.4309E-02 4.7180E-03 1.5239E-03 4.7915E-04 1.4758E-04
    Example 4
    Spline in Compression 1.6360E-02 5.4881E-03 1.7934E-03 5.6546E-04 1.7451E-04
    Spline in Tension 1.6338E-02 5.4827E-03 1.7920E-03 5.6508E-04 1.7438E-04
    Adaptive Spline 1.6354E-02 5.4867E-03 1.7930E-03 5.6537E-04 1.7446E-04

     | Show Table
    DownLoad: CSV
    Figure 1.  Numerical solution for Example 1 with ϵ=101 and δ=0.5ϵ using spline in tension method (4.2).
    Figure 2.  Numerical solution for Example 1 with ϵ=103 and η=0.5ϵ using spline in tension method (4.2).
    Figure 3.  Numerical solution for Example 2 with ϵ=106 and δ=0.5ϵ using spline in compression method (4.1).
    Figure 4.  Numerical solution for Example 2 with ϵ=101 and η=0.5ϵ using spline in compression method (4.1).
    Figure 5.  Numerical solution for Example 3 with ϵ=103 and δ=0.5ϵ using spline in tension method (4.2).
    Figure 6.  Numerical solution for Example 3 with ϵ=101 and η=0.5ϵ using spline in tension method (4.2).
    Figure 7.  Numerical solution for Example 4 with ϵ=106 and δ=0.5ϵ using adaptive spline method (4.3).
    Figure 8.  Numerical solution for Example 4 with ϵ=101 and η=0.5ϵ using adaptive spline method (4.3).
    Figure 9.  Log-log plot for Example 1 in spline in compression method (4.1).
    Figure 10.  Log-log plot for Example 2 in spline in tension method (4.2).
    Figure 11.  Log-log plot for Example 3 in adaptive spline method (4.3).
    Figure 12.  Log-log plot for Example 4 in spline in tension method (4.2).

    Example 1. ϵy(x)+y(x)2y(xδ)+y(x)y(x+η)=1, y(x)=1;δx0,y(x)=1,1x1+η.

    Example 2. ϵy(x)+2.5y(x)2exy(xδ)y(x)xy(x+η)=1, y(x)=1;δx0,y(x)=1,1x1+η.

    Example 3. ϵy(x)y(x)2y(xδ)+y(x)2y(x+η)=0, y(x)=1;δx0,y(x)=1,1x1+η.

    Example 4. ϵy(x)(1+ex2)y(x)xy(xδ)+x2y(x)(1ex)y(x+η)=1, y(x)=1;δx0,y(x)=1,1x1+η.

    In this paper, we proposed fitted mesh numerical methods for solving singularly perturbed boundary value problems of second-order ordinary differential equations with mixed shifts. The shifts that are smaller than the perturbation parameter are approximated using Taylor series and non-polynomial splines, namely, the spline in compression, the spline in tension, and the adaptive spline are applied to the Shishkin mesh. The methods presented are analyzed for convergence and shown to be first-order convergent. Numerical computations are carried out on two test problems that exhibit layer behavior on the left of the underlying interval and two right-layer problems. The maximum absolute errors and rates of convergence are tabulated, which show the first-order uniform rate of convergence. Graphs are plotted for the test problems for different values of the perturbation and shift parameters. From the figures, the effect of the shifts on the boundary layer behavior of the solution of the problems can be observed. As the shifts increase in magnitude, the thickness of the layer decreases for the left-layer problems, while for the right-layer problems, it increases. The methods presented in this paper have been found to be almost equally efficient in achieving ϵ-uniform convergence and the numerical rate of convergence. Hence, it can be concluded that the presented methods provide considerable advantage for solving singularly perturbed linear second-order boundary value problems with mixed shifts.

    Both the authors contributed equally to this work.

    The authors wish to thank the National Board for Higher Mathematics, Department of Atomic Energy, Government of India, for their financial support under the project No. 02011/8/2021 NBHM(R.P)/R&D Ⅱ/7224, dated 24.06.2021.

    The authors declare that they have no conflict of interest, relevant to the content of this article.



    [1] R. Bellman, K. L. Cooke, Differential-difference equations, Academic Press, New York, 1963.
    [2] A. Bellen, M. Zennaro, Numerical methods for delay differential equations, Oxford Science Publications, New York, 2003.
    [3] C. G. Lange, R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations. Ⅴ. Small shifts with layer behavior, SIAM J. Appl. Math., 54 (1994), 249–272. https://doi.org/10.1137/S0036139992228120 doi: 10.1137/S0036139992228120
    [4] C. G. Lange, R. M. Miura, Singular perturbation analysis of boundary-value problems for differential-difference equations. Ⅵ. Small shifts with rapid oscillations, SIAM J. Appl. Math., 54 (1994), 273–283. https://doi.org/10.1137/S0036139992228119 doi: 10.1137/S0036139992228119
    [5] M. K. Kadalbajoo, K. K. Sharma, Numerical treatment of a mathematical model arising from a model of neuronal variability, J. Math. Anal. Appl., 307 (2005), 606–627. https://doi.org/10.1016/j.jmaa.2005.02.014 doi: 10.1016/j.jmaa.2005.02.014
    [6] M. K. Kadalbajoo, K. C. Patidar, K. K. Sharma, ϵ-Uniformly convergent fitted methods for the numerical solution of the problems arising from singularly perturbed general DDEs, Appl. Math. Comput., 182 (2006), 119–139. https://doi.org/10.1016/j.amc.2006.03.043 doi: 10.1016/j.amc.2006.03.043
    [7] M. K. Kadalbajoo, V. P. Ramesh, Hybrid method for numerical solution of singularly perturbed delay differential equations, Appl. Math. Comput., 187 (2007), 797–814. https://doi.org/10.1016/j.amc.2006.08.159 doi: 10.1016/j.amc.2006.08.159
    [8] L. Sirisha, K. Phaneendra, Y. N. Reddy, Mixed finite difference method for singularly perturbed differential difference equations with mixed shifts via domain decomposition, Ain Shams Eng. J., 9 (2018), 647–654. https://doi.org/10.1016/j.asej.2016.03.009 doi: 10.1016/j.asej.2016.03.009
    [9] M. M. Woldaregay, G. F. Duressa, Higher-order uniformly convergent numerical scheme for singularly perturbed differential difference equations with mixed small shifts, Int. J. Differ. Equat., 2020. https://doi.org/10.1155/2020/6661592 doi: 10.1155/2020/6661592
    [10] M. M. Woldaregay, G. F. Duressa, Robust mid-point upwind scheme for singularly perturbed delay differential equations, Comput. Appl. Math., 40 (2021). https://doi.org/10.1007/s40314-021-01569-5 doi: 10.1007/s40314-021-01569-5
    [11] R. Ranjan, H. S. Prasad, A novel approach for the numerical approximation to the solution of singularly perturbed differential-difference equations with small shifts, J. Appl. Math. Comput., 65 (2021), 403–427. https://doi.org/10.1007/s12190-020-01397-6 doi: 10.1007/s12190-020-01397-6
    [12] D. Kumar, M. K. Kadalbajoo, A parameter uniform method for singularly perturbed differential-difference equations with small shifts, J. Numer. Math., 21 (2013), 1–22. https://doi.org/10.1515/jnum-2013-0001 doi: 10.1515/jnum-2013-0001
    [13] M. K. Jain, Spline function approximation in discrete mechanics, Int. J. Nonlin. Mech., 14 (1979), 341–345. https://doi.org/10.1016/0020-7462(79)90007-6 doi: 10.1016/0020-7462(79)90007-6
    [14] M. K. Kadalbajoo, R. K. Bawa, Variable-mesh difference scheme for singularly-perturbed boundary-value problems using splines, J. Optimiz. Theory Appl., 90 (1996), 405–416. https://doi.org/10.1007/BF02190005 doi: 10.1007/BF02190005
    [15] M. K. Kadalbajoo, K. C. Patidar, Numerical solution of singularly perturbed two-point boundary value problems by spline in tension, Appl. Math. Comput., 13 (2002), 299–320. https://doi.org/10.1016/S0096-3003(01)00146-1 doi: 10.1016/S0096-3003(01)00146-1
    [16] M. K. Kadalbajoo, K. C. Patidar, Spline techniques for the numerical solution of singular perturbation problems, J. Optimiz. Theory Appl., 112 (2002), 575–594. https://doi.org/10.1023/A:1017968116819 doi: 10.1023/A:1017968116819
    [17] T. Aziz, A. Khan, A spline method for second-order singularly perturbed boundary-value problems, J. Comput. Appl. Math., 147 (2002), 445–452. https://doi.org/10.1016/S0377-0427(02)00479-X doi: 10.1016/S0377-0427(02)00479-X
    [18] R. K. Mohanty, N. Jha, A class of variable mesh spline in compression methods for singularly perturbed two point singular boundary value problems, Appl. Math. Comput., 168 (2005), 704–716. https://doi.org/10.1016/j.amc.2004.09.049 doi: 10.1016/j.amc.2004.09.049
    [19] R. K. Mohanty, U. Arora, A family of non-uniform mesh tension spline methods for singularly perturbed two-point singular boundary value problems with significant first derivatives, Appl. Math. Comput., 172 (2006), 531–544. https://doi.org/10.1016/j.amc.2005.02.023 doi: 10.1016/j.amc.2005.02.023
    [20] P. P. Chakravarthy, S. D. Kumar, R. N. Rao, D. P. Ghate, A fitted numerical scheme for second order singularly perturbed delay differential equations via cubic spline in compression, Adv. Differ. Equat., 300 (2015). https://doi.org/10.1186/s13662-015-0637-x doi: 10.1186/s13662-015-0637-x
    [21] P. P. Chakravarthy, S. D. Kumar, R. N. Rao, Numerical solution of second order singularly perturbed delay differential equations via cubic spline in tension, Int. J. Appl. Comput. Math., 3 (2017), 1703–1717. https://doi.org/10.1007/s40819-016-0204-5 doi: 10.1007/s40819-016-0204-5
    [22] A. R. Kanth, M. K. P. Murali, A numerical technique for solving nonlinear singularly perturbed delay differential equations, Math. Model. Anal., 23 (2018), 64–78. https://doi.org/10.3846/mma.2018.005 doi: 10.3846/mma.2018.005
    [23] R. B. Kellogg, A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comput., 32 (1978), 1025–1039. https://doi.org/10.1090/S0025-5718-1978-0483484-9 doi: 10.1090/S0025-5718-1978-0483484-9
    [24] R. S. Varga, Matrix iterative analysis, Prentice-Hall Inc, Englewood Cliffs, New Jersey, 1962.
    [25] D. M. Young, Iterative solution of large linear systems, Academic Press, New York, 1971.
    [26] J. M. Varah, A lower bound for the smallest singular value of a matrix, Linear Algebra Appl., 11 (1975), 3–5. https://doi.org/10.1016/0024-3795(75)90112-3 doi: 10.1016/0024-3795(75)90112-3
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(876) PDF downloads(94) Cited by(0)

Figures and Tables

Figures(12)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog