Citation: Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang. Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type[J]. AIMS Mathematics, 2020, 5(1): 557-567. doi: 10.3934/math.2020037
[1] | I. Podlubny, Fractional differential equations, mathematics in science and engineering, Academic Press, New York, 1999. |
[2] | D. Kumar, J. Singh, K. Tanwar, et al. A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws, Int. J. Heat Mass Tran., 138 (2019), 1222-1227. doi: 10.1016/j.ijheatmasstransfer.2019.04.094 |
[3] | D. Kumar, J. Singh, M. Al Qurashi, et al. A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and spraying, Adv. Differ. Equa., 2019 (2019), 278. |
[4] | D. Kumar, J. Singh, S. D. Purohit, et al. A hybrid analytical algorithm for nonlinear fractional wave-like equations, Math. Model. Nat. Pheno., 14 (2019), 304. |
[5] | J. Singh, D. Kumar, D. Baleanu, New aspects of fractional Biswas-Milovic model with MittagLeffler law, Math. Model. Nat. Pheno., 14 (2019), 303. |
[6] | D. Peng, K. Sun, S. He, et al. Numerical analysis of a simplest fractional-order hyperchaotic system, Theoretical and Applied Mechanics Letters, 9 (2019), 220-228. doi: 10.1016/j.taml.2019.03.006 |
[7] | S. He, K. Sun, Y. Peng, Detecting chaos in fractional-order nonlinear systems using the smaller alignment index, Phys. Lett. A, 383 (2019), 2267-2271. doi: 10.1016/j.physleta.2019.04.041 |
[8] | Y. Peng, K. Sun, D. Peng, et al. Dynamics of a higher dimensional fractional-order chaotic map, Physica A: Statistical Mechanics and its Applications, 525 (2019), 96-107. doi: 10.1016/j.physa.2019.03.058 |
[9] | D. Chergui, T. E. Oussaeif, M. Ahcene, Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions, AIMS Mathematics, 4 (2019), 112-133. doi: 10.3934/Math.2019.1.112 |
[10] | M. Asaduzzaman, M. Z. Ali, Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations, AIMS Mathematics, 4 (2019), 880-895. doi: 10.3934/math.2019.3.880 |
[11] | Y. Zhao, X. Hou, Y. Sun, et al. Solvability for some class of multi-order nonlinear fractional systems, Adv. Differ. Equa., 2019 (2019), 23. |
[12] | Q. Song, Z. Bai, Positive solutions of fractional differential equations involving the RiemannStieltjes integral boundary condition, Adv. Differ. Equ., 2018 (2018), 183. |
[13] | K. Sheng, W. Zhang, Z. Bai, Positive solutions to fractional boundary value problems with pLaplacian on time scales, Bound. Value Probl., 2018 (2018), 70. |
[14] | Z. Bai, Y. Chen, H. Lian, et al. On the existence of blow up solutions for a class of fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 1175-1187. |
[15] | Z. Bai, Y. Zhang, Solvability of fractional three-point boundary value problems with nonlinear growth, Appl. Math. Comput., 218 (2011), 1719-1725. |
[16] | Y. Zhao, S. Sun, Z. Han, et al. Positive solutions for boundary value problems of nonlinear fractional differential equations, Appl. Math. Comput., 217 (2011), 6950-6958. |
[17] | M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order, Surveys in Mathematics & its Applications, 3 (2008), 1-12. |
[18] | H. Lu, S. Sun, D. Yang, et al. Theory of fractional hybrid differential equations with linear perturbations of second type, Bound. Value Probl., 2013 (2013), 23. |
[19] | S. Sun, Y. Zhao, Z. Han, et al. The existence of solutions for boundary value problem of fractional hybrid differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4961-4967. doi: 10.1016/j.cnsns.2012.06.001 |
[20] | Y. Zhao, S. Sun, Z. Han, et al. Theory of fractional hybrid differential equations, Comput. Math. Appl., 62 (2011), 1312-1324. doi: 10.1016/j.camwa.2011.03.041 |
[21] | Y. Zhao, Y. Sun, Z. Liu, et al. Basic theory of differential equations with mixed perturbations of the second type on time scales, Adv. Differ. Equa., 2019 (2019), 268. |
[22] | B. C. Dhage, Basic results in the theory of hybrid differential equations with mixed perturbations of second type, Funct. Differ. Equ., 19 (2012), 87-106. |
[23] | B. C. Dhage, A fixed point theorem in Banach algebras with applications to functional integral equations, Kyungpook Math. J., 44 (2004), 145-155. |
[24] | A. A. Kilbas, H. H. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam, 2006. |
[25] | C. C. Tisdell, On the solvability of nonlinear first-order boundary-value problems, Electron. J. Differ. Equa., 2006 (2006), 1-8. |