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Abstract: In this paper, we consider the solvability for boundary value problems of nonlinear
fractional differential equations with mixed perturbations of the second type. The expression of the
solution for the boundary value problem of nonlinear fractional differential equations with mixed
perturbations of the second type is discussed based on the definition and the property of the Caputo
differential operators. By the fixed point theorem in Banach algebra due to Dhage, an existence theorem
for the boundary value problem of nonlinear fractional differential equations with mixed perturbations
of the second type is given under mixed Lipschitz and Carathéodory conditions. As an application, an
example is presented to illustrate the main results. Our results in this paper extend and improve some
well-known results. To some extent, our work fills the gap on some basic theory for the boundary value
problems of fractional differential equations with mixed perturbations of the second type involving
Caputo differential operator.
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1. Introduction

In this paper, we discuss the following boundary value problem of nonlinear fractional differential
equations with mixed perturbations of the second type CDα

0+

[
u(t)−k(t,u(t))

f (t,u(t))

]
= g(t, u(t)), t ∈ J = [0,T ],

a
[

u(t)−k(t,u(t))
f (t,u(t))

]
t=0

+ b
[

u(t)−k(t,u(t))
f (t,u(t))

]
t=T

= c,
(1.1)
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where 0 < α ≤ 1, CDα
0+ is Caputo fractional derivative, f ∈ C(J × R,R \ {0}), k ∈ C(J × R,R),

g ∈ C(J × R,R), and a, b, c are real constants with a + b , 0.
Let J = [0,T ] be a bounded interval in R with T > 0. Let C(J × R,R) denote the class of all

continuous functions k : J ×R→ R. Let C(J ×R,R) denote the class of functions g : J ×R→ R such
that

(i) the map t 7→ u−k(t,u)
f (t,u) is measurable for each u ∈ R, and

(ii) the map u 7→ u−k(t,u)
f (t,u) is continuous for each t ∈ J.

The class C(J × R,R) is called the Carathéodory class of functions on J × R which are Lebesgue
integrable when bounded by a Lebesgue integrable function on J.

By a solution of the boundary value problem (1.1), we mean a function u such that

(i) the function t 7→ u−k(t,u)
f (t,u) is continuous for each u ∈ R, and

(ii) u satisfies the equations in (1.1).

Fractional calculus has been drawn people’s attention extensively. This is because of its extensive
development by the theory and by its applications in various fields, such as physics, engineering,
chemistry and biology; see [1]. Compared with integer derivatives, fractional derivatives are used for
a better description of considered material properties, and the design of mathematical models by the
differential equations of fractional order can be more accurately illustrated the characteristics of the
real-world phenomena, such as the exothermic reactions model having constant heat source [2], the
fractional SIRS-SI model describing the transmission of malaria disease [3], the fractional model of
nonlinear wave-like equations [4], the fractional Biswas-Milovic model having Kerr and parabolic law
nonlinearities [5] and the fractional-order chaotic and hyperchaotic systems [6–8]. Many papers about
the solvability for fractional equations and systems have appeared; see [9–20].

Benchohra et al. [17] investigated the existence of solutions for first order boundary value problems
for fractional order differential equations{

CDα
0+ x(t) = f (t, x(t)), t ∈ [0,T ],

ax(0) + bx(T ) = c,

where 0 < α < 1, CDα
0+ is the Caputo fractional derivative, f : [0,T ]×R→ R is a continuous function,

and a, b, c are real constants with a + b , 0.
In recent years, the theory of nonlinear differential equations with perturbations has been a hot

research topic; see [18–22]. Dhage [22] discussed the following first order hybrid differential equation
with mixed perturbations of the second type d

dt

[
x(t)−k(t,x(t))

f (t,x(t))

]
= g(t, x(t)), t ∈ [t0, t0 + a],

x(t0) = x0 ∈ R,

where [t0, t0 + a] is a bounded interval in R for some t0, a ∈ R with a > 0, f ∈ C([t0, t0 + a]×R,R \ {0})
and k, g ∈ C([t0, t0 + a]×R,R). They developed the theory of hybrid differential equations with mixed
perturbations of the second type, and gave some original and interesting results.

As far as we know, there are no results for the boundary value problem (1.1) of nonlinear fractional
differential equations with mixed perturbations of the second type. From the above works, we consider
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the solvability of the boundary value problem (1.1). An existence theorem for the boundary value
problem (1.1) is given under mixed Lipschitz and Carathéodory conditions. Our results in this paper
extend and improve some well-known results.

The paper is organized as follows: Section 2 gives some definitions and lemmas to prove our main
results. Section 3 establishes an existence theorem for the boundary value problem (1.1) under mixed
Lipschitz and Carathéodory conditions by the fixed point theorem in Banach algebra due to Dhage.
Section 4 presents an example to illustrate the main results, which is followed by the conclusion in
Section 5.

2. Preliminaries

For the convenience of the reader, we give some background materials from fractional calculus
theory to facilitate analysis of the boundary value problem (1.1). These materials can be found in the
recent literature, see [23, 24].

Definition 2.1. ( [24]) The Caputo fractional derivative of order α > 0 of a continuous function
f : (0,+∞)→ R is given by

CDα

0+ f (t) =
1

Γ(n − α)

∫ t

0

f (n)(s)
(t − s)α−n+1 ds,

where n is the smallest integer greater than or equal to α, provided that the right side is pointwise
defined on (0,+∞).

Definition 2.2. ( [24]) The Riemann-Liouville fractional integral of order α > 0 of a function
f : (0,+∞)→ R is given by

Iα0+ f (t) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s)ds,

provided that the right side is pointwise defined on (0,+∞).

From the definition of the Caputo derivative, we can obtain the following statement.

Lemma 2.1. ( [24]) Let α > 0. If we assume u ∈ C(0, 1) ∩ L(0, 1), then the fractional differential
equation

CDα

0+u(t) = 0

has u(t) = c0 + c1t + c2t2 + · · · + cn−1tn−1, ci ∈ R, i = 0, 1, 2, · · · , n − 1, as unique solutions, where n is
the smallest integer greater than or equal to α.

Lemma 2.2. ( [24]) Assume that u ∈ Cn[0, 1] with a fractional derivative of order α > 0 that
belongs to Cn[0, 1]. Then

Iα0+
CDα

0+u(t) = u(t) + c0 + c1t + c2t2 + · · · + cn−1tn−1,

for some ci ∈ R, i = 0, 1, 2, · · · , n − 1, where n is the smallest integer greater than or equal to α.

The following fixed point theorem in Banach algebra due to Dhage [23] is useful in the proofs of
our main results.
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Lemma 2.3. ( [23]) Let Q be a closed convex and bounded subset of the Banach space P and let
A, C : P→ P and B : Q→ P be three operators such that

(a) A and C are Lipschitz with the Lipschitz constants α and β respectively,
(b) B is compact and continuous,
(c) u = AuBv + Cu for all v ∈ Q⇒ u ∈ Q, and
(d) αM + β < 1, where M = ‖B(Q)‖ = sup{‖B(u)‖ : u ∈ Q}.

Then the operator equation AuBu + Cu = u has a solution in Q.

3. Existence result

In this section, we discuss the existence results for boundary value problems (1.1).
We place the boundary value problem (1.1) in the space C(J,R) of all continuous functions defined

on J. ‖ · ‖ denotes a supremum norm in C(J,R) by

‖u‖ = sup
t∈J
|u(t)|,

and a multiplication “·” in C(J,R) by

(u · v)(t) = (uv)(t) = u(t)v(t)

for u, v ∈ C(J,R). Clearly C(J,R) is a Banach algebra with respect to above norm and multiplication
in it. L1(J,R) denotes the space of Lebesgue integrable functions on J equipped with the norm ‖ · ‖L1

defined by

‖u‖L1 =

∫ T

0
|u(s)|ds.

We present the following hypotheses.

(A1) There exist constants L1 > 0 and L2 > 0 such that

| f (t, u) − f (t, v)| ≤ L1|u − v|

and
|k(t, u) − k(t, v)| ≤ L2|u − v|

for all t ∈ J and u, v ∈ R.
(A2) There exists a function h ∈ L1(J,R) such that

|g(t, u)| ≤ h(t), t ∈ J

for all u ∈ R.

Lemma 3.1. Suppose that a, b, c are real constants with a + b , 0. Then for any v ∈ L1(J,R), the
function u is a solution of the boundary value problem

CDα

0+

[u(t) − k(t, u(t))
f (t, u(t))

]
= v(t), 0 < α ≤ 1, t ∈ J, (3.1)
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and
a
[u(t) − k(t, u(t))

f (t, u(t))

]
t=0

+ b
[u(t) − k(t, u(t))

f (t, u(t))

]
t=T

= c, (3.2)

if and only if u satisfies the integral equation

u(t) = f (t, u(t))
( 1
Γ(α)

∫ t

0
(t − s)α−1v(s)ds

+
1

a + b

(
c −

b
Γ(α)

∫ T

0
(T − s)α−1v(s)ds

))
+ k(t, u(t)), t ∈ J. (3.3)

Proof. Let u be a solution of the problem (3.1) and (3.2). Applying the Riemann-Liouville fractional
integral Iα0+ on both sides of (3.1), by Lemma 2.2, then we obtain

u(t) − k(t, u(t))
f (t, u(t))

= Iα0+v(t) + c̃,

for some c̃ ∈ R. Consequently, the general solution of (3.1) is

u(t) = k(t, u(t)) + f (t, u(t))
(

1
Γ(α)

∫ t

0
(t − s)α−1v(s)ds + c̃

)
.

Substituting t = 0 and t = T in the above equality implies

u(0) − k(0, u(0))
f (0, u(0))

= c̃,

u(T ) − k(T, u(T ))
f (T, u(T ))

=
1

Γ(α)

∫ T

0
(T − s)α−1v(s)ds + c̃.

By (3.2), then we have

ac̃ +
b

Γ(α)

∫ T

0
(T − s)α−1v(s)ds + bc̃ = c,

that is

c̃ =
1

a + b

(
c −

b
Γ(α)

∫ T

0
(T − s)α−1v(s)ds

)
.

Therefore, (3.3) holds.
Conversely, suppose that u satisfies the equation (3.3). Applying the Caputo fractional operator of

the order α on both sides of (3.3), then (3.1) is satisfied. Thus, substituting t = 0 and t = T in (3.1)
implies

u(0) − k(0, u(0))
f (0, u(0))

=
1

a + b

(
c −

b
Γ(α)

∫ T

0
(T − s)α−1v(s)ds

)
,

u(T ) − k(T, u(T ))
f (T, u(T ))

=
1

Γ(α)

∫ T

0
(T − s)α−1v(s)ds +

1
a + b

(
c −

b
Γ(α)

∫ T

0
(T − s)α−1v(s)ds

)
.

Then,

a
[u(t) − k(t, u(t))

f (t, u(t))

]
t=0

+ b
[u(t) − k(t, u(t))

f (t, u(t))

]
t=T
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=
a

a + b

(
c −

b
Γ(α)

∫ T

0
(T − s)α−1v(s)ds

)
+

b
Γ(α)

∫ T

0
(T − s)α−1v(s)ds

+
b

a + b

(
c −

b
Γ(α)

∫ T

0
(T − s)α−1v(s)ds

)
= c.

Hence, (3.2) also holds.
Now we will give the following existence theorem for the boundary value problem (1.1).

Theorem 3.1. Suppose that (A1) and (A2) hold. Furthermore, if

L1

(
Tα

Γ(α + 1)
‖h‖L1

(
1 +

|b|
|a + b|

)
+
|c|
|a + b|

)
+ L2 < 1, (3.4)

then the boundary value problem (1.1) has a solution defined on J.

Proof. Set U = C(J,R) and define a subset S of U by

S = {u ∈ U | ‖u‖ ≤ N},

where

N =
F0

(
Tα

Γ(α+1)‖h‖L1

(
1 + |b|

|a+b|

)
+ |c|
|a+b|

)
+ K0

1 − L1

(
Tα

Γ(α+1)‖h‖L1

(
1 + |b|

|a+b|

)
+ |c|
|a+b|

)
− L2

,

F0 = supt∈J | f (t, 0)| and K0 = supt∈J |k(t, 0)|.
Clearly, S is a closed, convex and bounded subset of the Banach space U. By Lemma 3.1, the

boundary value problem (1.1) is equivalent to the nonlinear integral equation

u(t) = f (t, u(t))
( 1
Γ(α)

∫ t

0
(t − s)α−1g(s, u(s))ds

+
1

a + b

(
c −

b
Γ(α)

∫ T

0
(T − s)α−1g(s, u(s))ds

))
+ k(t, u(t)), t ∈ J. (3.5)

Define three operators A, C : U → U and B : S → U by

Au(t) = f (t, u(t)), t ∈ J, (3.6)

Bu(t) =
1

Γ(α)

∫ t

0
(t − s)α−1g(s, u(s))ds

+
1

a + b

(
c −

b
Γ(α)

∫ T

0
(T − s)α−1g(s, u(s))ds

)
, t ∈ J, (3.7)

and
Cu(t) = k(t, u(t)), t ∈ J. (3.8)

Then the equation (3.5) is transformed into the operator equation as

u(t) = Au(t)Bu(t) + Cu(t), t ∈ J.
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Next, we prove the operators A, B and C satisfy all the conditions of Lemma 2.3.
Firstly, we prove that A is a Lipschitz operator on U with the Lipschitz constant L1. Let u, v ∈ U.

Then by (A1),

|Au(t) − Av(t)| = | f (t, u(t)) − f (t, v(t))| ≤ L1|u(t) − v(t)| ≤ L1‖u − v‖,

for all t ∈ J. Taking supremum over t, then we have

‖Au − Av‖ ≤ L1‖u − v‖,

for all u, v ∈ U. This shows that A is a Lipschitz operator on U with the Lipschitz constant L1.
Similarly, it can be implied that C is also a Lipschitz operator on U with the Lipschitz constant L2.

Next, we prove B is a compact and continuous operator on S into U. Firstly, we prove B is
continuous on S . Let {un} be a sequence in S converging to a point u ∈ S . Then by the Lebesgue
dominated convergence theorem,

lim
n→∞

Bun(t)

= lim
n→∞

(
1

Γ(α)

∫ t

0
(t − s)α−1g(s, un(s))ds +

1
a + b

(
c −

b
Γ(α)

∫ T

0
(T − s)α−1g(s, un(s))ds

))
= lim

n→∞

1
Γ(α)

∫ t

0
(t − s)α−1g(s, un(s))ds + lim

n→∞

1
a + b

(
c −

b
Γ(α)

∫ T

0
(T − s)α−1g(s, un(s))ds

)
=

1
Γ(α)

∫ t

0
(t − s)α−1g(s, u(s))ds +

1
a + b

(
c −

b
Γ(α)

∫ T

0
(T − s)α−1g(s, u(s))ds

)
= Bu(t)

for all t ∈ J. This shows that B is a continuous operator on S .
Next we prove B is a compact operator on S . It is enough to show that B(S ) is a uniformly bounded

and equicontinuous set in U. On the one hand, let u ∈ S be arbitrary. Then by (A2),

|Bu(t)| =

∣∣∣∣∣∣ 1
Γ(α)

∫ t

0
(t − s)α−1g(s, u(s))ds +

1
a + b

(
c −

b
Γ(α)

∫ T

0
(T − s)α−1g(s, u(s))ds

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
Γ(α)

∫ t

0
(t − s)α−1g(s, u(s))ds

∣∣∣∣∣∣ +

∣∣∣∣∣∣ 1
a + b

(
c −

b
Γ(α)

∫ T

0
(T − s)α−1g(s, u(s))ds

)∣∣∣∣∣∣
≤

1
Γ(α)

∫ t

0
(t − s)α−1 |g(s, u(s))| ds +

|b|
|a + b|Γ(α)

∫ T

0
(T − s)α−1|g(s, u(s))|ds +

|c|
|a + b|

≤
1

Γ(α)

∫ t

0
(t − s)α−1 |h(s)| ds +

|b|
|a + b|Γ(α)

∫ T

0
(T − s)α−1|h(s)|ds +

|c|
|a + b|

≤
Tα

Γ(α + 1)
‖h‖L1 +

|b|Tα

|a + b|Γ(α + 1)
‖h‖L1 +

|c|
|a + b|

≤
Tα

Γ(α + 1)
‖h‖L1

(
1 +

|b|
|a + b|

)
+
|c|
|a + b|

,

for all t ∈ J. Taking supremum over t,

‖Bu‖ ≤
Tα

Γ(α + 1)
‖h‖L1

(
1 +

|b|
|a + b|

)
+
|c|
|a + b|
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for all u ∈ S . This shows that B is uniformly bounded on S .
On the other hand, let t1, t2 ∈ J. Then for any u ∈ S , we get

|Bu(t1) − Bu(t2)| =

∣∣∣∣∣∣ 1
Γ(α)

∫ t1

0
(t1 − s)α−1g(s, u(s))ds −

1
Γ(α)

∫ t2

0
(t2 − s)α−1g(s, u(s))ds

∣∣∣∣∣∣
≤

Tα

Γ(α + 1)

∣∣∣∣ ∫ t1

t2
|g(s, u(s))|ds

∣∣∣∣
≤

Tα

Γ(α + 1)

∣∣∣∣ ∫ t1

t2
h(s)ds

∣∣∣∣
=

Tα

Γ(α + 1)
|p(t1) − p(t2)|,

where p(t) =
∫ t

0
h(s)ds. Since the function p is continuous on compact J, it is uniformly continuous.

Hence, for ε > 0, there exists a δ > 0 such that

|t1 − t2| < δ⇒ |Bu(t1) − Bu(t2)| < ε,

for all t1, t2 ∈ J and u ∈ S . This shows that B(S ) is an equicontinuous set in U. Now the set B(S ) is
uniformly bounded and equicontinuous set in U, so it is compact by Arzela-Ascoli Theorem. Thus, B
is a and compact operator on S .

Next, we show that (c) of Lemma 2.3 is satisfied. Let u ∈ U and v ∈ S be arbitrary such that
u = AuBv + Cu. Then, by assumption (A1), we have

|u(t)| ≤ |Au(t)||Bv(t)| + |Cu(t)|

= | f (t, u(t))|
∣∣∣∣ 1
Γ(α)

∫ t

0
(t − s)α−1g(s, v(s))ds

+
1

a + b

(
c −

b
Γ(α)

∫ T

0
(T − s)α−1g(s, v(s))ds

)∣∣∣∣ + |k(t, u(t))|

≤ [| f (t, u(t)) − f (t, 0)| + | f (t, 0)|]

·

(
Tα

Γ(α + 1)
‖h‖L1

(
1 +

|b|
|a + b|

)
+
|c|
|a + b|

)
+ |k(t, u(t)) − k(t, 0)| + |k(t, 0)|

≤ [L1|u(t)| + F0]
(

Tα

Γ(α + 1)
‖h‖L1

(
1 +

|b|
|a + b|

)
+
|c|
|a + b|

)
+ L2|u(t)| + K0.

Thus, we get

|u(t)| ≤
F0

(
Tα

Γ(α+1)‖h‖L1

(
1 + |b|

|a+b|

)
+ |c|
|a+b|

)
+ K0

1 − L1

(
Tα

Γ(α+1)‖h‖L1

(
1 + |b|

|a+b|

)
+ |c|
|a+b|

)
− L2

.

Taking supremum over t,

‖u‖ ≤
F0

(
Tα

Γ(α+1)‖h‖L1

(
1 + |b|

|a+b|

)
+ |c|
|a+b|

)
+ K0

1 − L1

(
Tα

Γ(α+1)‖h‖L1

(
1 + |b|

|a+b|

)
+ |c|
|a+b|

)
− L2

= N.
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This shows that (c) of Lemma 2.3 is satisfied.
Finally, we obtain

M = ‖B(S )‖ = sup{‖B(u)‖ : u ∈ S } ≤
(

Tα

Γ(α + 1)
‖h‖L1

(
1 +

|b|
|a + b|

)
+
|c|
|a + b|

)
,

and so,

L1M + L2 ≤ L1

(
Tα

Γ(α + 1)
‖h‖L1

(
1 +

|b|
|a + b|

)
+
|c|
|a + b|

)
+ L2 < 1.

Thus, all the conditions of Lemma 2.3 are satisfied and hence the operator equation AuBu + Cu = u
has a solution in S . Therefore, the boundary value problem (1.1) has a solution defined on J.

Remark 3.1. Some existence results were given for the boundary value problem (1.1):

(I) with k ≡ 0, and f ≡ 1 by Benchohra et al. in [17];
(II) with α = 1, a = 1, and b = 0 by Dhage in [22];

(III) with α = 1, k ≡ 0, and f ≡ 1 by Tisdell in [25].

4. An example

In this section, we will present an example to illustrate the main results.
Example 4.1 Consider the following boundary value problem

CD
1
2
0+

[u(t)− 1
8 sin u(t)
√

u2(t)+1

]
= cos u(t), t ∈ J = [0, 1],[u(t)− 1

8 sin u(t)
√

u2(t)+1

]
t=0

+
[u(t)− 1

8 sin u(t)
√

u2(t)+1

]
t=1

= 1
4 ,

(4.1)

where α = 1
2 , T = 1, k(t, u(t)) = 1

8 sin u(t), f (t, u(t)) =
√

u2(t) + 1, g(t, u(t)) = cos u(t), a = b = 1 with
a + b , 0, and c = 1

4 .
Let L1 = 1, L2 = 1

8 , h(t) ≡ 1. Then hypotheses (A1) and (A2) hold. Since

L1

(
Tα

Γ(α + 1)
‖h‖L1

(
1 +

|b|
|a + b|

)
+
|c|
|a + b|

)
+ L2 =

1
Γ(1

2 + 1)

(
1 +

1
2

)
+

1
8

+
1
8
< 1.

Hence, (3.4) holds. Therefore, by Theorem 3.1, the boundary value problem (4.1) has a solution.

5. Conclusion

In this paper, we have studied the solvability for the boundary value problem (1.1) of nonlinear
fractional differential equations with mixed perturbations of the second type. We have presented an
existence theorem for the boundary value problem (1.1) of nonlinear fractional differential equations
with mixed perturbations of the second type under mixed Lipschitz and Carathéodory conditions due
to the fixed point theorem in Banach algebra due to Dhage. The main results have been well illustrated
with the help of an example. Our results in this paper have been extended and improved some well-
known results.
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