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1. Introduction

Delay differential equations model problems in several domains, including biosciences, material
science, and medicine [1, 2]. Differential-difference equations are differential equations in which the
system’s evolution depends on both the system’s historical context and its present state. A differential
equation that consists of at least one shift term and whose highest-order derivative is multiplied by
a small perturbation parameter is known as a singularly perturbed differential-difference equation.
Singularly perturbed differential difference equations (SPDDEs) generally lead to solutions exhibiting
boundary layers, and as the perturbation parameter goes to zero, the smoothness of the solution
deteriorates.

The initial developments on the asymptotic analysis of singularly perturbed differential-difference
equations have emerged from the articles by Lange and Miura [3, 4]. The numerical explorations in
this field can be found in [5], where the authors Kadalbajoo and Sharma have presented a ε-uniform
numerical scheme comprising of a standard upwind finite difference operator on a fitted piecewise
uniform mesh for a class of boundary value problems of singularly perturbed differential-difference
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equations with small shifts. In [6], the authors Kadalbajoo et al. developed a fitted operator and a fitted
mesh finite difference method for a class of singularly perturbed difference-difference equations, the
fitted mesh method being ε-uniform convergent of second order. Kadalbajoo and Ramesh [7] proposed
a hybrid numerical method on Shishkin mesh for solving a singularly perturbed delay differential
equation, wherein the solutions were compared with those obtained by using a simple upwind scheme
and a midpoint upwind scheme. Sirisha et al. [8] presented a mixed finite difference method for
singularly perturbed differential-difference equations with mixed shifts via domain decomposition on
a constant mesh. Woldaregay and Duressa [9] presented a numerical scheme for singularly perturbed
differential-difference equations with mixed small shifts by using the exponentially fitted operator finite
difference method, and in [10] they applied an exponentially finite difference method to a singularly
perturbed boundary value problem. Ranjan and Prasad [11] used an exponentially fitted three-term
finite difference technique to approximate the solution of a singularly perturbed differential equation
with small shifts. Kumar and Kadalbajoo [12] constructed a piecewise uniform mesh for solving
singularly perturbed differential-difference equations with small shifts.

Jain [13] introduced the spline function approximation and shown that they are the consistency
relations for the fundamental equations in discrete mechanics. Kadalbajoo and Bawa [14] proposed
a variable mesh difference scheme for singularly perturbed boundary value problems using splines,
and the method is shown to be quadratically convergent. Kadalbajoo and Patidar [15, 16] applied
spline techniques such as spline in compression and spline in tension to singularly perturbed two-point
boundary value problems. Aziz and Khan [17] studied a spline method for second-order singularly
perturbed boundary value problems, and the convergence of the method is shown to be dependent on
the choice of the parameters. Mohanty and Jha [18] applied the variable mesh method using spline
in compression for singularly perturbed two-point singular boundary value problems. Mohanty and
Arora [19] applied tension spline on a non-uniform mesh for singularly perturbed two-point singular
boundary value problems with significant first derivatives. Chakravarthy et al. [20, 21] presented
the numerical solution using spline in compression and spline in tension on a uniform mesh for
second-order singularly perturbed delay differential equations. Ravi Kanth and Murali [22] presented
a numerical technique for solving singularly perturbed nonlinear delay differential equations by the
method of Spline in compression. The quasilinearization technique is applied in converting the
nonlinear equation into a sequence of linear equations.

The aforementioned publications illustrate the implementation of spline methods for various types
of singularly perturbed boundary value problems and motivate us in exploring the feasibility of
constructing non-polynomial spline methods for solving singularly perturbed boundary value problems
with mixed shifts. In the present paper, we constructed numerical methods using spline in compression,
spline in tension and adaptive spline on a fitted mesh, and a comparative study is performed on the
results. This method ensures a consistent level of accuracy regardless of the perturbation parameter
and achieves reliable convergence.

The content of this paper is organized as follows: In Section 2, we introduce the problem under
consideration and some properties of the solution. In Section 3, we discuss the mesh construction
strategy for the problem. Section 4 is devoted to the proposed methods for the problem. In Section 5,
we discuss the convergence of the proposed methods. In Section 6, we present the numerical results
for test problems, and finally the conclusions follow in Section 7.
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2. Statement of the problem

Consider the general boundary value problem (BVP) for SPDDE containing both types of shifts:

εy′′(x) + a(x)y′(x) + α(x)y(x − δ) + ω(x)y(x) + β(x)y(x + η) = f (x) (2.1)

for x ∈ (0, 1), 0 < ε � 1, subject to the interval and boundary conditions

y(x) =

φ(x); x ∈ [−δ, 0]
χ(x); x ∈ [1, 1 + η]

(2.2)

where 0 < ε � 1 is the perturbation parameter, a(x), α(x), ω(x), β(x), f (x), φ(x), and χ(x) are smooth
functions, and δ is the delay (negative shift) parameter and η is the advance (positive shift) parameter.
As δ, η < ε, for a(x) − δα(x) + ηβ(x) > 0 and α(x) + ω(x) + β(x) < 0 ∀ x ∈ [0, 1], the solution exhibits
a boundary layer near x = 0, while for a(x) − δα(x) + ηβ(x) < 0 and α(x) + ω(x) + β(x) < 0, the
solution exhibits a boundary layer near x = 1. Here we assume that α(x) ≤ M1, β(x) ≤ M2, and
α(x) +ω(x) + β(x) ≤ −M < 0. The function y(x) being continuous in [0, 1] and differentiable in (0, 1),
satsifying (2.1) and (2.2), provides a smooth solution for (2.1) and (2.2).

Since the solution of y(x) of (2.1) and (2.2) is sufficiently differentiable, we expand the terms y(x−δ)
and y(x − η) using Taylor series to obtain:

y(x − δ) ≈ y(x) − δy′(x) +
δ2

2
y′′(x) + O(δ3),

y(x + η) ≈ y(x) + ηy′(x) +
η2

2
y′′(x) + O(η3).

(2.3)

On substituting Eq (2.3) in Eq (2.1), the modified form of the Eq (2.1) is

L (Υ(x)) = µΥ′′(x) + p(x)Υ′(x) + q(x)Υ(x) = r(x), 0 ≤ x ≤ 1 (2.4)

subject to the conditions
Υ(0) = φ(0) = φ0,

Υ(1) = χ(1) = χ1.
(2.5)

where Υ(x) ≈ y(x), µ(x) = ε + α(x) δ
2

2 + β(x) η
2

2 , p(x) = a(x) − δα(x) + ηβ(x),
q(x) = α(x) + ω(x) + β(x) and r(x) = f (x).

2.1. Some properties of the solution

We show that the operator L follows the minimum principle for the continuous problem Eq (2.4):

Lemma 1. Let Υ(x) be a smooth function, with Υ(0) ≥ 0,Υ(1) ≥ 0, then for x ∈ [0, 1], Υ(x) ≥ 0,
whenever L (Υ(x)) ≤ 0 for x ∈ (0, 1).

Proof. For proof of this lemma, the reader can refer to [5]. �

The bound for the solution of the continuous problem (2.4) is given in the following lemma:
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Lemma 2. Let Υ(x) be the solution of (2.4) and (2.5), then, ‖Υ‖ ≤M −1‖r‖ + max(|φ0|, |χ1|) , ‖.‖ being
the l∞ norm ‖Υ‖ = maxs∈[0,1] |Υ(s)|.

Proof. For proof of this lemma, the reader can refer to [5]. �

Lemma 1 guarantees the uniqueness of the solutions of (2.4) and (2.5), and the existence of the
solution is guaranteed as the given problem is linear. Also, the boundedness to the solution of the
problem is implied by Lemma 2. Also, the bounds for the solutions of (2.4) and (2.5) and their
derivatives are given in the following lemma.

Lemma 3. Considering Υ(x) to be the solution of (2.4) and (2.5), we have
||Υ(k)|| ≤ 2kC

(
2ε + δ2M1 + η2M2

)−k
for k = 1, 2, 3.

Proof. For proof of this lemma, the reader can refer to [5]. �

Theorem 1. Let Υ(x) be the solution of (2.4) and (2.5), and let Υ(x) = Υr(x)+Υs(x) , where the regular
component Υr(x) satisfies

|Υr(x)| ≤ M
[
1 + exp

(
−

p(x)
µ

)]
|Υk

r(x)| ≤ M
[
1 + (µ)2−k exp

(
−

p(x)
µ

)]
and the singular component Υs(x)satisfies

|Υk
s(x)| ≤ M(µ)−k exp

(
−

p(x)
µ

)
where 0 ≤ k ≤ 3.

Proof. For proof of this theorem, the reader can refer to [5]. �

3. Mesh construction

In this section, we discuss the mesh generation for the numerical solution of the singularly perturbed
BVP (2.4) and (2.5).

The case when the boundary layer occurs at the left end of the domain D = [0, 1], it is divided into
two subdomains D1 and D2 such that D = D1 ∪ D2 = [0, τ]∪ [τ, 1], where τ is the transition parameter
that is closer to x = 0, and is defined by

τ = min
{

1
2
, ετ0 ln(N)

}
(3.1)

where N is the number of mesh points in the domain D = [0, 1] and τ0 ≥
1
|M |

. It is clear that τ = 1
2 ,

the mesh is uniform; otherwise, the mesh condenses near the left boundary. It is assumed that N = 2m,
where m ≥ 2 is an integer, which guarantees that there is at least one point in the boundary layer

AIMS Mathematics Volume 9, Issue 10, 26403–26434.



26407

region. So, we consider equal number of mesh points in each subdomain and uniform partition over
each subdomain with mesh points xi, as defined by

xi =

ih1 for 0 ≤ i ≤ N
2

τ + (i − N
2 )h2 for N

2 < i ≤ N
(3.2)

where h1 = 2τ
N and h2 =

2(1−τ)
N on the domains D1 and D2 respectively.

Similarly, in the case when the boundary layer occurs at the right end of the solution domain D, we
divide into subdomains D∗1 and D∗2 such that D = D∗1 ∪ D∗2 = [0, 1 − τ] ∪ [1 − τ, 1], where τ is so-called
the transition parameter and is located near the point x = 1. We consider equal number of grid points
in each subdomain and uniform partition over each subdomain with grid points xi, as defined by

xi =

ih2 for 0 ≤ i ≤ N
2

1 − τ + (i − N
2 )h1 for N

2 < i ≤ N
. (3.3)

Now we show that L satisfies the discrete minimum principle:

Lemma 4. If the mesh function Υ(xi) satisfying Υ(x0) ≥ 0,Υ(xN) ≥ 0, then Υ(xi) ≥ 0, 0 ≤ xi ≤ 1, for
L (Υ(xi)) ≤ 0, 0 < xi < 1.

Proof. Let 0 ≤ z̄k ≤ 1 be such that Υ(z̄k) = minx∈[0,1] Υ(xi), and assuming that Υ(z̄k) < 0, clearly
z̄k < {0, 1}. Hence Υ′(z̄k) = 0 and Υ′′(z̄k) ≥ 0.
Now we have L (Υ(z̄k)) = µ(z̄k)Υ′′(z̄k) + p(xi)Υ′(z̄k)) + q(xi)Υ(z̄k) > 0, which is a contradiction to our
assumption that Υ(z̄k) < 0. Therefore, Υ(z̄k) ≥ 0 and hence Υ(xk) ≥ 0 ∀xi ∈ [0, 1]. �

Lemma 5. Let Υi be any mesh function such that Υ0 = ΥN = 0. Then, for all 0 ≤ i ≤ N, ‖Υ j‖ ≤

M −1 max
1≤ j≤N−1

|L (Υ j)|.

Proof. Let us introduce two mesh functions υ̂i
± defined by

υ̂±i = M −1 max
1≤ j≤N−1

‖L (Υ j)‖ ± Υi

υ̂±0 = M −1 max
1≤ j≤N−1

‖L (Υ j)‖ ± Υ0

≥ 0, since Υ0 = 0,
υ̂±N = M −1 max

1≤ j≤N−1
‖L (Υ j)‖ ± ΥN

≥ 0, since Υ0 = 0

and for 1 ≤ i ≤ N − 1
υ̂±i = µ(xi)Υ′′(xi) + p(xi)Υ′(xi) + q(xi)Υ(xi)

= q(xi)M −1 max
1≤ j≤N−1

‖L (Υ j)‖ ±L (Υi)

≥ 0, since q(xi)M −1 ≤ −1.

Therefore, by the discrete minimum principle, we have υ̂±i ≥ 0 ∀i, 0 ≤ i ≤ N, which gives the required
estimate. �
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Lemma 6.

e−M(1−xi)/
(
ε+ δ2

2 M1+
η2
2 M2

)
≤

N∏
j=i+1

1 +
Mh j

ε + δ2

2 M1 +
η2

2 M2


−1

for each i.

Proof.

e−Mh j/
(
ε+ δ2

2 M1+
η2
2 M2

)
=

(
eMh j/

(
ε+ δ2

2 M1+
η2
2 M2

))−1

≤

1 +
Mh j

ε + δ2

2 M1 +
η2

2 M2


−1

.

The above inequality is true for each j. Now we multiply these inequalities for j = i + 1, ...,N, and we
obtain

e−M(1−xi)/
(
ε+ δ2

2 M1+
η2
2 M2

)
≤

N∏
j=i+1

1 +
Mh j

ε + δ2

2 M1 +
η2

2 M2


−1

.

Hence the result. �

Lemma 7. For i = 0, 1, ...,N, we set

Ri =

i∏
j=1

1 +
Mh j

ε + δ2

2 M1 +
η2

2 M2


then for i = 0, 1, ...,N − 1, we have

L Ri ≥
C

max{ε + δ2

2 M1 +
η2

2 M2, hi}
Ri.

Proof. It is easy to verify that

Ri − Ri−1

hi
=

M

ε + δ2

2 M1 +
η2

2 M2

Ri−1.

Now

L Ri =
−2(ε + δ2

2 αi− 1
2

+
η2

2 βi− 1
2
)M(Ri − Ri−1)

(hi + hi+1)(ε + δ2

2 M1 +
η2

2 M2)
+

(ai− 1
2
− δαi− 1

2
+ ηβi− 1

2
)MRi−1

(ε + δ2

2 M1 +
η2

2 M2)

=

MRi

ai− 1
2
− δαi− 1

2
+ ηβi− 1

2
−

2Mhi(ε+ δ2
2 αi− 1

2
+
η2
2 βi− 1

2
)

(hi+hi+1)(ε+ δ2
2 M1+

η2
2 M2)


ε + δ2

2 M1 +
η2

2 M2 +Mhi

from which the result follows. �

Lemma 8. There exists a constant C such that

N∏
j=i+1

1 +
Mh j

ε + δ2

2 M1 +
η2

2 M2


−1

≤ CN−4(1−i/N)

for N/2 ≤ i ≤ N.
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Proof. suppose N/2 ≤ i ≤ N. By [23]

N∏
j=i+1

1 +
Mh j

ε + δ2

2 M1 +
η2

2 M2


−1

≤ e−M(1−xi)/(Mh+ε+ δ2
2 M1+

η2
2 M2)

= e−4(N−i)N−1 ln N/(1+4N−1 ln N)

= N−4(N−i)N−1/(1+4N−1 ln N)

= N−4(1−i/N)N16(i−1/N)N−1 ln N/(1+4N−1 ln N).

It is easy to verify that N16(i−1/N)N−1 ln N/(1+4N−1 ln N) is bounded for any N ≥ 2 from which the result
follows. �

4. Numerical methods

In this section, we present non-polynomial spline methods for solving the boundary value
problems (2.4) and (2.5).

4.1. Spline in compression

The spline in compression S ∆(x) satisfies in [xi−1, xi] the differential equation

S ′′∆(x) + ψS ∆(x) =
(xi − x)

hi

(
S ′′∆(xi−1) + ψS ∆(xi−1)

)
+

(x − xi−1)
hi

(
S ′′∆(xi) + ψS ∆(xi)

)
(4.1)

where S ∆(xi) = Υi, ψ > 0, hi = xi − xi−1.
Solving (4.1) as a second-order differential equation, we obtain

S ∆(x) = A cos
√
ψx + B sin

√
ψx +

(
x − xi−1

hi

) (
S ′′

∆
(xi) + ψS ∆(xi)

ψ

)
+

(
xi − x

hi

) (
S ′′

∆
(xi−1) + ψS ∆(xi−1)

ψ

)
.

(4.2)

Applying the interpolating conditions at xi−1 and xi; S ∆(xi−1) = Υi−1, S ∆(xi) = Υi, S ′′∆(xi) = Mi, and
setting λi =

√
ψhi, we obtain the interpolating constants A and B and hence

S ∆(x) = −
h2

i

λ2
i sin λi

[
Mi sin

(
λi(x − xi−1)

hi

)
+ Mi−1 sin

(
λi(xi − x)

hi

)]
+

h2
i

λ2
i

[
(x − xi−1)

hi

(
Mi +

λ2
i

h2
i

Υi

)
+

(xi − x)
hi

(
Mi−1 +

λ2
i

h2
i

Υi−1

)]
.

(4.3)

Differentiating (4.3) and taking x→ xi, we obtain

S ′(x−i ) =
Υi − Υi−1

hi
+

hi

λ2
i

[
(1 − λi cot λi)Mi +

(
−1 +

λi

sin λi

)
Mi−1

]
.
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Considering the interval (xi, xi+1) and similarly we obtain

S ′(x+
i ) =

Υi+1 − Υi

hi
−

hi

λ2
i

[
(1 − λi cot λi)Mi +

(
−1 +

λi

sin λi

)
Mi+1

]
.

Equating the left and right hand dertivatives at xi, we obtain

Υi − Υi−1

hi
+

hi

λ2
i

[
(1 − λi cot λi)Mi +

(
−1 +

λi

sin λi

)
Mi−1

]
=

Υi+1 − Υi

hi
−

hi

λ2
i

[
(1 − λi cot λi)Mi +

(
−1 +

λi

sin λi

)
Mi+1

]
.

(4.4)

This leads to a tridiagonal system

Υi−1 − 2Υi + Υi+1 = h2
i (λMi−1 + 2λMi + λMi+1) (4.5)

where λ = 1
λ2

i

[
λi

sin λi
− 1

]
and λ = 1

λ2
i
[1 − λi cot λi].

The consistency relation for (4.5) may be expressed as λi
2 = tan(λi

2 ), whose smallest positive root is

λi ≈ 8.986818916, which leads to the equation λ + λ = 1
2 .

To obtain an approximation for Υ′i and Υ′′i , we use the Taylor series approximation for Υ about xi

as:

Υ(xi+1) = Υi+1 ≈ Υi + hi+1Υ
′
i +

h2
i+1

2
Υ′′i (4.6)

Υ(xi−1) = Υi−1 ≈ Υi − hiΥ
′
i +

h2
i

2
Υ′′i . (4.7)

Solving (4.6) and (4.7) for Υ′i and Υ′′i , we will obtain

Υ′i =
Υi+1 + Υi−1

hi+1 + hi
(4.8)

Υ′′i =
2

hihi+1(hi + hi+1)
[hi+1Υi−1 − (hi + hi+1)Υi + hiΥi+1] . (4.9)

Using the above approximations (4.8) and (4.9) in Υ′i+1 = Υ′i + hi+1Υ
′′
i and Υ′i−1 = Υ′i − hiΥ

′′
i , we obtain

Υ′i+1 =
1

hi(hi + hi+1)
[(2hi+1 − hi)Υi−1 − 2(hi + hi+1)Υi + 3hiΥi+1] (4.10)

Υ′i−1 =
1

hi+1(hi + hi+1)
[−3hi+1Υi−1 + 2(hi + hi+1)Υi + (hi+1 − 2hi)Υi+1] . (4.11)

We write Eq (2.4) as

µ(xi)Υ′′(xi) = µiMi = r(xi) − p(xi)Υ′(xi) − q(xi)Υ(xi). (4.12)

Now we rewrite Eq (4.5) as

µi(Υi−1 − 2Υi + Υi+1) = h2
i (λµiMi−1 + 2λµiMi + λµiMi+1). (4.13)
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Substituting (4.12) in (4.13) and using the approximations (4.8), (4.10), and (4.11), we obtain the
following tridiagonal scheme:

EiΥi−1 + FiΥi + GiΥi+1 = Hi , i = 1, 2, · · · ,N − 1, (4.14)

where

Ei =
µi

h2
i

+
2λpi+1hi+1

hi(hi + hi+1)
−

λpi+1

hi + hi+1
−

2λpi

hi + hi+1
−

3λpi−1

hi + hi+1
+ λqi−1,

Fi =
−2µi

h2
i

−
2λpi+1

hi
+ 2λqi +

2λpi−1

hi+1
,

Gi =
µi

h2
i

+
3λpi+1

hi + hi+1
+ λqi+1 +

2λpi

hi + hi+1
+

λpi−1

hi + hi+1
−

2λpi−1hi

hi+1(hi + hi+1)
,

Hi = λri−1 + 2λri + λri+1.

Using the Thomas algorithm, we can solve the above tri-diagonal scheme (4.14) subject to the boundary
conditions (2.5).

4.2. Spline in tension

The spline in tension S ∆(x) in [xi−1, xi] satisfies the differential equation

S ′′∆(x) − ψS ∆(x) =
(xi − x)

hi
(Mi−1 − ψΥi−1) +

(x − xi−1)
hi

(Mi − ψΥi) (4.15)

where ψ > 0 is a tension factor, S ∆(xi) = Υi , S ′
∆
(xi) = mi, S ′′

∆
(xi) = Mi, hi = xi − xi−1.

Solving (4.15) as a second-order differential equation, we obtain

S ∆(x) = Ae
√
ψx + Be−

√
ψx −

(
x − xi−1

hi

) (
Mi − ψΥi

ψ

)
−

(
xi − x

hi

) (
Mi−1 − ψΥi−1

ψ

)
. (4.16)

Applying the interpolating conditions at xi−1 and xi and setting Λi =
√
ψhi, we obtain the interpolating

constants A and B, and hence

S ∆(x) =
h2

i

Λ2
i sinh Λi

[
Mi−1 sinh

(
Λi(xi − x)

hi

)
+ Mi sinh

(
Λi(x − xi−1)

hi

)]
+

(
Υi−1 −

h2
i

Λ2
i

Mi−1

) (
xi − x

hi

)
+

(
Υi −

h2
i

Λ2
i

Mi

) (
x − xi−1

hi

)
.

(4.17)

Differentiating (4.17) and taking x→ xi, we obtain

S ′(x−i ) =
Υi − Υi−1

hi
+

hi

Λ2
i

[(
1 −

Λi

sinh Λi

)
Mi−1 + (−1 + Λi coth Λi)Mi

]
.

Considering the interval (xi, xi+1) and similarly, we obtain

S ′(x+
i ) =

Υi+1 − Υi

hi
+

hi

Λ2
i

[
(1 − Λi coth Λi) Mi +

(
−1 +

Λi

sinh Λi

)
Mi+1

]
.
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Equating the left and right hand dertivatives at xi, we have

Υi − Υi−1

hi
+

hi

Λ2
i

[(
1 −

Λi

sinh Λi

)
Mi−1 + (−1 + Λi coth Λi)Mi

]
=

Υi+1 − Υi

hi
+

hi

Λ2
i

[
(1 − Λi coth Λi) Mi +

(
−1 +

Λi

sinh Λi

)
Mi+1

]
.

(4.18)

This leads to a tridiagonal system

Υi−1 − 2Υi + Υi+1 = h2
i (Λ1Mi−1 + 2Λ2Mi + Λ1Mi+1) (4.19)

where Λ1 = 1
Λ2

i

[
1 − Λi

sinh Λi

]
and Λ2 = 1

Λ2
i
[Λi coth Λi − 1].

We rewrite the Eq (4.19) as

µi(Υi−1 − 2Υi + Υi+1) = h2
i (Λ1µiMi−1 + 2Λ2µiMi + Λ1µiMi+1). (4.20)

Substituting (4.12) in (4.20) and using the approximations (4.8), (4.10), and (4.11), we obtain the
following tridiagonal linear system:

EiΥi−1 + FiΥi + GiΥi+1 = Hi , i = 1, 2, · · · ,N − 1, (4.21)

where
Ei =

µi

h2
i

+
2Λ1 pi+1hi+1

hi(hi + hi+1)
−

Λ1 pi+1

hi + hi+1
−

2Λ2 pi

hi + hi+1
−

3Λ1 pi−1

hi + hi+1
+ Λ1qi−1,

Fi =
−2µi

h2
i

−
2Λ1 pi+1

hi
+ 2Λ2qi +

2Λ1 pi−1

hi+1
,

Gi =
µi

h2
i

+
3Λ1 pi+1

hi + hi+1
+ Λ1qi+1 +

2Λ2 pi

hi + hi+1
+

Λ1 pi−1

hi + hi+1
−

2Λ1 pi−1hi

hi+1(hi + hi+1)
,

Hi = Λ1ri−1 + 2Λ2ri + Λ1ri+1.

Using the Thomas algorithm, we can solve the above tri-diagonal scheme (4.21) subject to the boundary
conditions (2.5).

4.3. Adaptive spline

The function S ∆(x), which we call adaptive spline, satisfies the following differential equation:

ΘS ′′∆(x) − ψS ′∆(x) =
(xi − x)

hi
(ΘMi − ψmi) +

(xi − x)
hi

(ΘMi−1 − ψi−1) . (4.22)

Solving (4.22) and using interpolatory constraints S ∆(xi−1) = Υi−1, S ∆(xi) = Υi, we obtain

S ∆(x) =Ai + Bie2qzi −
h2

i

8ν3
i

[
2ν2

i z2
i + 2νizi + 1

] (
Mi −

2νi

hi
mi

)
+

h2
i

8ν3
i

[
2ν2

i (1 − z2
i ) + 2νi(1 − zi) + 1

] (
Mi−1 −

2νi

hi
mi−1

) (4.23)
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where νi =
ψhi
2Θ

, zi = x−xi−1
hi

and Θ, ψ are constants.

Ai(e2νi − 1) = − Υi + Υi−1e2νi +
h2

i

8ν3
i

[
(2ν2

i + 2νi + 1) − e2νi
] [

Mi −
2νi

hi
mi

]
−

h2
i

8ν3
i

[
(2ν2

i − 2νi + 1)e2νi − 1
] [

Mi−1 −
2νi

hi
mi−1

] (4.24)

Bi(e2νi − 1) = Υi − Υi−1 −
h2

i

4ν2
i

[
(νi + 1)

(
Mi −

2νi

hi
mi

)
+ (νi − 1)

(
Mi−1 −

2νi

hi
mi−1

)]
. (4.25)

The function S ∆(x) on the interval [xi, xi+1] is obtained by replacing i with i + 1 (4.23).
Applying the conditions of continuity to the first or second derivative of S ∆(x) at xi, we obtain the

following relationship:(
(2ν2

i + 2νi + 1)e−2νi − 1
) [

Mi+1 −
2νi

hi
mi+1

]
+(

(2ν2
i − 2νi − 2)e−2νi + (2ν2

i − 2νi + 2)
) [

Mi −
2νi

hi
mi

]
+

(
−2ν2

i + 2νi + 1 + e−2νi
) [

Mi−1 −
2νi

hi
mi−1

]
= −

8ν3
i

h2
i

[
Υi+1e−2νi − (e−2νi + 1)Υi + Υi−1

] (4.26)

which simplifies to the following form of tridiagonal system:

Υi−1 − 2Υi + Υi+1 = h2
i (A3Mi−1 + (A1 + A4)Mi + A2Mi+1). (4.27)

Some additional relations for the adaptive spline are listed as follows:

(i) mi−1 = −hi(A1Mi−1 + A2Mi) + Υi−Υi−1
hi

(ii) mi = hi(A3Mi−1 + A4Mi) + Υi−Υi−1
hi

(iii) Mi−1 = 2νi
ςihi

[
−(A4mi−1 + A2mi) + B1(Υi−Υi−1

hi
)
]

(iv) Mi = 2νi
ςihi

[
(A3mi−1 + A4mi) + B2(Υi−Υi−1

hi
)
]

where ςi = νicothνi−1
2νi

,
A1 = 1

4 (1 + 2ςi) +
ςi
2νi

, A2 = 1
4 (1 − 2ςi) −

ςi
2νi

, A3 = 1
4 (1 + 2ςi) −

ςi
2νi

and
A4 = 1

4 (1 − 2ςi) +
ςi
2νi

, B1 = 1
2 (1 − 2ςi), B2 = −1

2 (1 + 2ςi).
In the limiting case, when νi → 0, we have
ςi = 0, ςi

νi
= 1

6 , A1 = 1
3 , A2 = 1

6 , A3 = 1
6 , A4 = 1

3 , B1 = 1
2 , B2 = −1

2
and the spline function (4.23) reduces to the cubic spline.

By introducing the parameter µi, we rewrite Eq (4.27) as

µi(Υi−1 − 2Υi + Υi+1) = h2
i (A3µiMi−1 + (A1 + A4)µiMi + A2µiMi+1). (4.28)

Substituting (4.12) in (4.28) and using the approximations (4.8), (4.10), and (4.11), we obtain the
tridiagonal linear system of the form:

EiΥi−1 + F iΥi + GiΥi+1 = Hi , i = 1, 2, · · · ,N − 1, (4.29)
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where
Ei =

µi

h2
i

+
2A2 pi+1hi+1

hi(hi + hi+1)
−

A2 pi+1

hi + hi+1
−

(A1 + A4)pi

hi + hi+1
−

3A3 pi−1

hi + hi+1
+ A3qi−1,

F i = −
2µi

h2
i

−
2A2 pi+1

hi
+ (A1 + A4)qi +

2A3 pi−1

hi+1
,

Gi =
µi

h2
i

+
3A2 pi+1

hi + hi+1
+ A2qi+1 +

(A1 + A4)pi

hi + hi+1
+

A3 pi−1

hi + hi+1
−

2A3 pi−1hi

hi+1(hi + hi+1)
,

Hi = A2ri−1 + (A1 + A4)ri + A3ri+1.

Using the Thomas algorithm, we can solve the above tri-diagonal scheme (4.29) subject to the boundary
conditions (2.5).

5. Convergence analysis

Here we perform the convergence analysis for the scheme described in Section 4.1.
Writing the tri-diagonal system Eq (4.14) in matrix-vector form, we obtain

AΥ = C + T (hi) (5.1)

in which A = [mi, j], 1 ≤ i, j ≤ N − 1, is a tri-diagonal matrix of order N − 1, with

mi,i−1 = µi +
2hihi+1λpi+1

hi + hi+1
−

h2
i λpi+1

hi + hi+1
−

2h2
i λpi

hi + hi+1
−

3h2
i λpi−1

hi + hi+1
+ h2

i λqi−1

mi,i = −2µi − 2hiλpi+1 + 2h2
i λqi +

2h2
i λpi−1

hi+1

mi,i+1 = µi +
3h2

i λpi+1

hi + hi+1
+ h2

i λqi+1 +
2h2

i λpi

hi + hi+1
+

h2
i λpi−1

hi + hi+1
−

2h3
i λpi−1

hi+1(hi + hi+1)

and C = (di) is a column vector with di = h2
i (λri−1 + 2λri + λri+1) with i = 1, 2, · · · ,N − 1 with

T (hi) = O(h3
i ).

We also have
AῩ − T (hi) = C (5.2)

where (Ῡ) = (Ῡ0, Ῡ1, · · · , ῩN)T and T (hi) = (T0(hi),T1(hi), · · · ,TN(hi))T denote the actual solution and
the local truncation error, respectively.

From Eqs (5.1) and (5.2), we obtain

A(Ῡ − Υ) = T (hi). (5.3)

Thus the error equation is
AE = T (hi) (5.4)

where E = Ῡ − Υ = (eo, e1, e2, · · · , eN)T . Let |p(x)| ≤ c1,|q(x)| ≤ c2 and [mi, j] is the (i, j)th element of
the matrix A. Then we have

|mi,i+1| ≤

µi +
3h2

i λc1

hi + hi+1
+ h2

i λc2 +
2h2

i λc1

hi + hi+1
+

h2
i λc1

hi + hi+1
−

2h3
i λc1

hi+1(hi + hi+1)
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|mi,i−1| ≤

µi +
2hihi+1λc1

hi + hi+1
−

h2
i λc1

hi + hi+1
−

2h2
i λc1

hi + hi+1
−

3h2
i λc1

hi + hi+1
+ h2

i λc2

 .
For sufficiently small hi, we have

|mi,i+1| ≤ µi , 0, i = 1, 2, · · · ,N − 2.

|mi,i−1| ≤ µi , 0, i = 1, 2, · · · ,N − 1.

Hence the matrix is irreducible [24].
Let the ith row elements’ sum of matrix A be S i, then we have

S i =

N−1∑
j=1

mi, j = −µi +
2hihi+1λpi+1

hi + hi+1
−

h2
i λpi+1

hi + hi+1
−

2h2
i λpi

hi + hi+1
−

3h2
i λpi−1

hi + hi+1

+ h2
i λqi−1 − 2hiλpi+1 + 2h2

i λqi +
2h2

i λpi−1

hi+1
, for i = 1

S i =

N−1∑
j=1

mi, j = −µi − 2hiλpi+1 + 2h2
i λqi +

2h2
i λpi−1

hi+1
+

3h2
i λpi+1

hi + hi+1
+ h2

i λqi+1

+
2h2

i λpi

hi + hi+1
+

h2
i λpi−1

hi + hi+1
−

2h3
i λpi−1

hi+1(hi + hi+1)
, for i = N − 1

S i =

N−1∑
j=1

mi, j =
2hihi+1λpi+1

hi + hi+1
+

2h2
i λpi+1

hi + hi+1
−

2h2
i λpi−1

hi + hi+1
− 2hiλpi+1 +

2h2
i λpi−1

hi+1

−
2h3

i λpi−1

hi+1(hi + hi+1)
+ h2

i λqi−1 + 2h2
i λqi + h2

i λqi+1, for i = 2, 3, · · · ,N − 2.

Let c1∗ = min |p(x)|, c∗1 = max |p(x)|, c2∗ = min |q(x)|, c∗2 = max |q(x)| and h =
N−1
max

i=1
{hi, hi+1} so that

0 < c1∗ ≤ c1 ≤ c∗1, 0 < c2∗ ≤ c2 ≤ c∗2.
Then for a given h, the matrix A is irreducible and monotone ([24, 25]).
From (5.3), we have

max
i
|Υ̂i − Υi| ≤ ‖A−1‖max

i
|T (hi)|. (5.5)

At the end points i = 0 and N, the above inequality holds, and for 1 ≤ i ≤ N − 1, we have

T (hi) = λh2qΥ′′i (ζ̂) +
3λ
4

h2 pΥ′′′i (ζ̂) +
2λ
3

h2 pΥ′′′i (ζ̂) (5.6)

where ζ̂ ∈ (xi−1, xi).
Since the mesh is piecewise uniform with step difference h, from (5.5) and (5.6), we obtain

max
1≤i≤N−1

|Υ̂i − Υi| ≤ Mh2Υ′′′(ζ̂). (5.7)

Also, we have from [26]

‖A−1‖ ≤ max
1≤i≤N−1

{|Fi| − (|Ei| + |Gi|)}−1 ≤ Mh ≤ M (5.8)
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as 0 < h < 1.
Using (5.7) and (5.8) in (5.5), we obtain

max
1≤i≤N−1

|Υ̂i − Υi| ≤ Mh2Υ′′′i (ζ̂). (5.9)

For a left layer problem, let the fine mesh points for the inside layer region be x1, · · · , xN/2, and the
coarse mesh points in the outer region be xN/2+1, · · · , xN−1. Further Υr(x) and Υs(x) are the regular
and the singular components of the numerical solution. Then, using (5.2) along with (3.1) and h1, h2

into (5.9) and Theorem 1, we obtain

max
1≤i≤N−1

|Υ̂r,i − Υr,i| ≤ M

N−2 ln2 N
[
1 + µ−1 exp

(
−

p(xN/2)
µ

)]
; x1, · · · , xN/2

N−2
[
1 + µ−1 exp

(
−

p(xN−1)
µ

)]
; xN/2+1, · · · , xN−1.

(5.10)

Similarily,

max
1≤i≤N−1

|Υ̂s,i − Υs,i| ≤ M

N−2 ln2 N
[
µ−3 exp

(
−

p(xi0 )
µ

)]
; x1, · · · , xN/2

N−2
[
µ−3 exp

(
−

p(xN−1)
µ

)]
; xN/2+1, · · · , xN−1.

(5.11)

The above results (5.10) and (5.11) can be concluded as

Theorem 2. a(x), α(x), ω(x), β(x), f (x), φ(x), and χ(x) be sufficiently smooth functions so that Υ(x) ∈
C3[0, 1]. Let Υi, i = 0(1)N be the approximate solution of (2.4), obtained using the fitted mesh finite
difference method (4.14) with the conditions (2.5). Then, there is a constantM independent of ε and
the mesh size such that

sup
0<ε<<1

max
1≤i≤N−1

|Υ̂i − Υi| ≤ MN−2 ln2 N.

6. Numerical results

To check the efficiency of the methods described in Sections 4.1–4.3, four test problems of SPDDEs
are solved, of which two problems are of left end boundary layer type and the other two are right layer
problems.

The double mesh principle is used for finding the maximum absolute errors, which is given by the
formula:

EN = max
0≤i≤N

|ΥN
i − Υ2N

2i |

and the numerical rate of convergence for the considered problems is calculated by the following
formula:

RN =
log|EN/E2N |

log2
.

The numerical techniques outlined in Sections 4.1–4.3 are applied to the test problems, and the
maximum absolute errors and the numerical rate of convergence are evaluated. The numerical results
are tabulated for a spectrum of values of δ and η, smaller than ε for all the test problems. The findings
are displayed in Tables 1–8. Also, the ε-uniform maximum absolute errors EN for various values of the
mesh parameter N and for ε ∈ {20, 2−1, · · · 2−20} is compared for each method described in Section 4 in
Table 9. The numerical work illustrates the efficiency of the methods and is also consistent with those
in literature. Graphs illustrating the influence of the shift parameters on the solution of the problem are
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depicted in Figures 1–8. The relationship between the error EN and the number of mesh points N for
the considered examples is plotted in Figures 9–12. These plots illustrate the efficiency of the methods
presented in Sections 4.1–4.3.

Example 1. εy′′(x)+y′(x)−2y(x−δ)+y(x)−y(x+η) = −1, y(x) = 1;−δ ≤ x ≤ 0, y(x) = 1, 1 ≤ x ≤ 1+η.

Example 2. εy′′(x) + 2.5y′(x) − 2exy(x − δ) − y(x) − xy(x + η) = 1, y(x) = 1;−δ ≤ x ≤ 0, y(x) = 1, 1 ≤
x ≤ 1 + η.

Example 3. εy′′(x)−y′(x)−2y(x−δ)+y(x)−2y(x+η) = 0, y(x) = 1;−δ ≤ x ≤ 0, y(x) = −1, 1 ≤ x ≤ 1+η.

Example 4. εy′′(x) − (1 + ex2
)y′(x) − xy(x − δ) + x2y(x) − (1 − e−x)y(x + η) = 1, y(x) = 1;−δ ≤ x ≤

0, y(x) = −1, 1 ≤ x ≤ 1 + η.

Figure 1. Numerical solution for Example 1 with ε = 10−1 and δ = 0.5ε using spline in
tension method (4.2).

Figure 2. Numerical solution for Example 1 with ε = 10−3 and η = 0.5ε using spline in
tension method (4.2).
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Figure 3. Numerical solution for Example 2 with ε = 10−6 and δ = 0.5ε using spline in
compression method (4.1).

Figure 4. Numerical solution for Example 2 with ε = 10−1 and η = 0.5ε using spline in
compression method (4.1).
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Figure 5. Numerical solution for Example 3 with ε = 10−3 and δ = 0.5ε using spline in
tension method (4.2).

Figure 6. Numerical solution for Example 3 with ε = 10−1 and η = 0.5ε using spline in
tension method (4.2).
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Figure 7. Numerical solution for Example 4 with ε = 10−6 and δ = 0.5ε using adaptive
spline method (4.3).

Figure 8. Numerical solution for Example 4 with ε = 10−1 and η = 0.5ε using adaptive
spline method (4.3).
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Figure 9. Log-log plot for Example 1 in spline in compression method (4.1).

Figure 10. Log-log plot for Example 2 in spline in tension method (4.2).

Figure 11. Log-log plot for Example 3 in adaptive spline method (4.3).
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Figure 12. Log-log plot for Example 4 in spline in tension method (4.2).
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Table 1. Maximum absolute errors for Example 1 when δ = 0.5ε, η = 0.5ε.

ε ↓ N → 26 27 28 29 210

Spline in Compression

20 1.8810E-05 4.7012E-06 1.1752E-06 2.9378E-07 7.3558E-08
2−2 8.8134E-05 2.2013E-05 5.5034E-06 1.3758E-06 3.4391E-07
2−4 8.1525E-04 2.0374E-04 5.0827E-05 1.2700E-05 3.1750E-06
2−6 6.3743E-03 2.0907E-03 6.7481E-04 1.6755E-04 4.1846E-05
2−8 5.5897E-03 1.7562E-03 5.2179E-04 1.4793E-04 5.6396E-05
2−10 5.3611E-03 1.6560E-03 4.7654E-04 1.3067E-04 6.5446E-05
2−12 5.3586E-03 1.6328E-03 6.7996E-04 2.9124E-04 1.0985E-04
2−14 5.3838E-03 1.6564E-03 7.6895E-04 3.6697E-04 1.6921E-04
2−16 5.3742E-03 1.6938E-03 8.1807E-04 3.9078E-04 1.9067E-04
2−18 5.3681E-03 1.9998E-03 8.4126E-04 4.0919E-04 1.9697E-04
2−20 5.3663E-03 2.0949E-03 9.9648E-04 4.1920E-04 2.0463E-04

Spline in Tension with λ = 1
12 , λ = 5

12

20 8.9357E-06 2.2334E-06 5.5837E-07 1.3959E-07 3.4897E-08
2−2 5.2069E-05 1.3006E-05 3.2517E-06 8.1288E-07 2.0322E-07
2−4 6.6675E-04 1.6661E-04 4.1572E-05 1.0390E-05 2.5974E-06
2−6 5.9734E-03 1.9667E-03 6.3616E-04 1.5799E-04 3.9461E-05
2−8 5.4387E-03 1.7092E-03 5.0668E-04 1.4326E-04 5.7942E-05
2−10 5.2786E-03 1.6330E-03 4.7061E-04 1.3258E-04 6.5979E-05
2−12 5.2529E-03 1.6148E-03 6.7202E-04 2.8937E-04 1.0942E-04
2−14 5.2535E-03 1.6181E-03 7.5928E-04 3.6485E-04 1.6870E-04
2−16 5.2494E-03 1.6225E-03 7.8994E-04 3.8808E-04 1.9012E-04
2−18 5.2474E-03 1.6213E-03 8.0063E-04 3.9742E-04 1.9618E-04
2−20 5.2469E-03 1.6205E-03 8.0129E-04 4.0121E-04 1.9932E-04

Adaptive Spline with A1 = 1
3 , A2 = 1

6 , A3 = 1
6 , A4 = 1

3 .

20 1.3861E-05 3.4652E-06 8.6625E-07 2.1656E-07 5.4140E-08
2−2 7.0099E-05 1.7509E-05 4.3762E-06 1.0940E-06 2.7350E-07
2−4 7.4096E-04 1.8518E-04 4.6200E-05 1.1545E-05 2.8862E-06
2−6 6.1737E-03 2.0287E-03 6.5548E-04 1.6277E-04 4.0653E-05
2−8 5.5144E-03 1.7327E-03 5.1425E-04 1.4560E-04 5.7167E-05
2−10 5.3196E-03 1.6445E-03 4.7358E-04 1.3162E-04 6.5712E-05
2−12 5.2989E-03 1.6236E-03 6.7599E-04 2.9031E-04 1.0964E-04
2−14 5.3072E-03 1.6336E-03 7.6395E-04 3.6591E-04 1.6896E-04
2−16 5.3011E-03 1.6430E-03 8.0093E-04 3.8936E-04 1.9040E-04
2−18 5.2977E-03 1.6408E-03 8.1588E-04 4.0178E-04 1.9654E-04
2−20 5.2967E-03 1.6393E-03 8.1569E-04 4.0768E-04 2.0121E-04
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Table 2. Rate of convergence for Example 1 when δ = 0.5ε, η = 0.5ε.

ε ↓ N → 26 27 28 29 210

Spline in Compression

20 2.0004E+00 2.0001E+00 2.0001E+00 1.9978E+00 2.0019E+00
2−2 2.0013E+00 2.0000E+00 2.0001E+00 2.0001E+00 1.9973E+00
2−4 2.0005E+00 2.0031E+00 2.0008E+00 2.0000E+00 2.0001E+00
2−6 1.6083E+00 1.6314E+00 2.0099E+00 2.0014E+00 2.0004E+00
2−8 1.6703E+00 1.7509E+00 1.8185E+00 1.3913E+00 1.0370E+00
2−10 1.6948E+00 1.7970E+00 1.8667E+00 9.9754E-01 9.9931E-01
2−12 1.7145E+00 1.2639E+00 1.2233E+00 1.4066E+00 1.7334E+00
2−14 1.7005E+00 1.1071E+00 1.0672E+00 1.1168E+00 1.2182E+00
2−16 1.6658E+00 1.0500E+00 1.0658E+00 1.0353E+00 1.0600E+00
2−18 1.4246E+00 1.2492E+00 1.0398E+00 1.0548E+00 1.0190E+00
2−20 1.3571E+00 1.0720E+00 1.2492E+00 1.0346E+00 1.0492E+00

Spline in Tension with λ = 1
12 , λ = 5

12

20 2.0004E+00 1.9999E+00 2.0000E+00 2.0000E+00 2.0000E+00
2−2 2.0012E+00 1.9999E+00 2.0001E+00 2.0000E+00 2.0000E+00
2−4 2.0007E+00 2.0028E+00 2.0004E+00 2.0001E+00 2.0000E+00
2−6 1.6028E+00 1.6283E+00 2.0096E+00 2.0013E+00 2.0004E+00
2−8 1.6700E+00 1.7541E+00 1.8225E+00 1.3060E+00 1.0384E+00
2−10 1.6926E+00 1.7949E+00 1.8277E+00 1.0067E+00 1.0039E+00
2−12 1.7018E+00 1.2648E+00 1.2156E+00 1.4030E+00 1.7230E+00
2−14 1.6990E+00 1.0916E+00 1.0573E+00 1.1128E+00 1.2162E+00
2−16 1.6939E+00 1.0384E+00 1.0254E+00 1.0294E+00 1.0580E+00
2−18 1.6945E+00 1.0180E+00 1.0105E+00 1.0185E+00 1.0152E+00
2−20 1.6950E+00 1.0160E+00 9.9797E-01 1.0092E+00 1.0151E+00

Adaptive Spline with A1 = 1
3 , A2 = 1

6 , A3 = 1
6 , A4 = 1

3 .

20 2.0000E+00 2.0001E+00 2.0000E+00 2.0000E+00 2.0001E+00
2−2 2.0013E+00 2.0003E+00 2.0001E+00 2.0000E+00 2.0000E+00
2−4 2.0005E+00 2.0029E+00 2.0007E+00 2.0000E+00 2.0000E+00
2−6 1.6056E+00 1.6299E+00 2.0097E+00 2.0014E+00 2.0004E+00
2−8 1.6702E+00 1.7525E+00 1.8205E+00 1.3487E+00 1.0377E+00
2−10 1.6937E+00 1.7960E+00 1.8472E+00 1.0022E+00 1.0016E+00
2−12 1.7065E+00 1.2641E+00 1.2194E+00 1.4048E+00 1.7282E+00
2−14 1.6999E+00 1.0965E+00 1.0620E+00 1.1148E+00 1.2172E+00
2−16 1.6900E+00 1.0366E+00 1.0406E+00 1.0321E+00 1.0590E+00
2−18 1.6909E+00 1.0080E+00 1.0220E+00 1.0316E+00 1.0168E+00
2−20 1.6920E+00 1.0070E+00 1.0006E+00 1.0187E+00 1.0271E+00
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Table 3. Maximum absolute errors for Example 2 when δ = 0.5ε, η = 0.5ε.

ε ↓ N → 26 27 28 29 210

Spline in Compression

20 1.5614E-04 3.9022E-05 9.7534E-06 2.4384E-06 6.0959E-07
2−2 8.9441E-04 2.2270E-04 5.5620E-05 1.3902E-05 3.4755E-06
2−4 5.9742E-03 2.0030E-03 6.6444E-04 1.6564E-04 4.1380E-05
2−6 4.5574E-03 1.3529E-03 5.0802E-04 2.5037E-04 1.2186E-04
2−8 6.0144E-03 2.3338E-03 7.5164E-04 3.0400E-04 1.5216E-04
2−10 7.5601E-03 3.4084E-03 1.4917E-03 5.8945E-04 1.9272E-04
2−12 8.2372E-03 3.8447E-03 1.8076E-03 8.4357E-04 3.7223E-04
2−14 9.2374E-03 4.0756E-03 1.9366E-03 9.3023E-04 4.4902E-04
2−16 9.9542E-03 4.6066E-03 2.0265E-03 9.7163E-04 4.7182E-04
2−18 1.0142E-02 4.9653E-03 2.3046E-03 1.0104E-03 4.8662E-04
2−20 1.0190E-02 5.0593E-03 2.4842E-03 1.1532E-03 5.0446E-04

Spline in Tension with λ = 1
12 , λ = 5

12

20 1.1725E-04 2.9305E-05 7.3245E-06 1.8312E-06 4.5778E-07
2−2 7.4143E-04 1.8464E-04 4.6116E-05 1.1529E-05 2.8820E-06
2−4 5.5515E-03 1.8808E-03 6.2760E-04 1.5647E-04 3.9089E-05
2−6 4.2226E-03 1.2665E-03 5.4144E-04 2.6088E-04 1.2573E-04
2−8 5.5417E-03 2.2204E-03 7.2415E-04 3.1155E-04 1.5415E-04
2−10 6.9397E-03 3.2824E-03 1.4610E-03 5.8199E-04 1.9090E-04
2−12 7.4112E-03 3.6615E-03 1.7752E-03 8.3563E-04 3.7028E-04
2−14 7.5140E-03 3.7951E-03 1.8776E-03 9.2200E-04 4.4700E-04
2−16 7.5305E-03 3.8198E-03 1.9195E-03 9.5035E-04 4.6972E-04
2−18 7.5337E-03 3.8215E-03 1.9255E-03 9.6516E-04 4.7804E-04
2−20 7.5344E-03 3.8214E-03 1.9248E-03 9.6666E-04 4.8393E-04

Adaptive Spline with A1 = 1
3 , A2 = 1

6 , A3 = 1
6 , A4 = 1

3 .

20 1.3661E-04 3.4123E-05 8.5293E-06 2.1323E-06 5.3307E-07
2−2 8.1790E-04 2.0367E-04 5.0868E-05 1.2714E-05 3.1783E-06
2−4 5.7630E-03 1.9419E-03 6.4602E-04 1.6105E-04 4.0235E-05
2−6 4.3902E-03 1.3098E-03 5.2471E-04 2.5562E-04 1.2379E-04
2−8 5.7777E-03 2.2771E-03 7.3790E-04 3.0777E-04 1.5315E-04
2−10 7.2327E-03 3.3453E-03 1.4763E-03 5.8572E-04 1.9181E-04
2−12 7.7767E-03 3.7447E-03 1.7914E-03 8.3960E-04 3.7125E-04
2−14 7.8796E-03 3.9117E-03 1.9029E-03 9.2610E-04 4.4801E-04
2−16 7.8874E-03 3.9363E-03 1.9612E-03 9.5891E-04 4.7076E-04
2−18 7.8874E-03 3.9336E-03 1.9672E-03 9.8189E-04 4.8129E-04
2−20 7.8873E-03 3.9320E-03 1.9644E-03 9.8338E-04 4.9126E-04
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Table 4. Rate of convergence for Example 2 when δ = 0.5ε, η = 0.5ε.

ε ↓ N → 26 27 28 29 210

Spline in Compression

20 2.0004E+00 2.0003E+00 2.0000E+00 2.0000E+00 2.0000E+00
2−2 2.0058E+00 2.0014E+00 2.0003E+00 2.0000E+00 2.0000E+00
2−4 1.5766E+00 1.5920E+00 2.0041E+00 2.0010E+00 2.0003E+00
2−6 1.7521E+00 1.4131E+00 1.0208E+00 1.0388E+00 1.0523E+00
2−8 1.3657E+00 1.6346E+00 1.3060E+00 9.9853E-01 1.0027E+00
2−10 1.1493E+00 1.1922E+00 1.3395E+00 1.6129E+00 1.2906E+00
2−12 1.0993E+00 1.0888E+00 1.0995E+00 1.1803E+00 1.3321E+00
2−14 1.1805E+00 1.0735E+00 1.0579E+00 1.0508E+00 1.0937E+00
2−16 1.1116E+00 1.1847E+00 1.0605E+00 1.0422E+00 1.0258E+00
2−18 1.0304E+00 1.1074E+00 1.1896E+00 1.0540E+00 1.0343E+00
2−20 1.0101E+00 1.0262E+00 1.1071E+00 1.1929E+00 1.0507E+00

Spline in Tension with λ = 1
12 , λ = 5

12

20 2.0004E+00 2.0003E+00 2.0000E+00 2.0000E+00 2.0000E+00
2−2 2.0056E+00 2.0014E+00 2.0000E+00 2.0001E+00 2.0000E+00
2−4 1.5615E+00 1.5834E+00 2.0040E+00 2.0010E+00 2.0002E+00
2−6 1.7372E+00 1.2260E+00 1.0534E+00 1.0531E+00 1.0569E+00
2−8 1.3195E+00 1.6165E+00 1.2168E+00 1.0151E+00 1.0109E+00
2−10 1.0801E+00 1.1678E+00 1.3279E+00 1.6081E+00 1.2685E+00
2−12 1.0173E+00 1.0445E+00 1.0871E+00 1.1743E+00 1.3292E+00
2−14 9.8545E-01 1.0153E+00 1.0260E+00 1.0445E+00 1.0906E+00
2−16 9.7925E-01 9.9279E-01 1.0142E+00 1.0166E+00 1.0225E+00
2−18 9.7923E-01 9.8886E-01 9.9642E-01 1.0136E+00 1.0119E+00
2−20 9.7940E-01 9.8938E-01 9.9363E-01 9.9822E-01 1.0133E+00

Adaptive Spline with A1 = 1
3 , A2 = 1

6 , A3 = 1
6 , A4 = 1

3 .

20 2.0013E+00 2.0002E+00 2.0000E+00 2.0000E+00 2.0000E+00
2−2 2.0057E+00 2.0014E+00 2.0004E+00 2.0001E+00 2.0000E+00
2−4 1.5693E+00 1.5878E+00 2.0040E+00 2.0010E+00 2.0003E+00
2−6 1.7450E+00 1.3197E+00 1.0375E+00 1.0461E+00 1.0546E+00
2−8 1.3433E+00 1.6257E+00 1.2615E+00 1.0069E+00 1.0068E+00
2−10 1.1124E+00 1.1801E+00 1.3338E+00 1.6105E+00 1.2795E+00
2−12 1.0543E+00 1.0638E+00 1.0933E+00 1.1773E+00 1.3306E+00
2−14 1.0103E+00 1.0396E+00 1.0390E+00 1.0476E+00 1.0922E+00
2−16 1.0027E+00 1.0051E+00 1.0323E+00 1.0264E+00 1.0241E+00
2−18 1.0037E+00 9.9969E-01 1.0025E+00 1.0286E+00 1.0201E+00
2−20 1.0043E+00 1.0012E+00 9.9825E-01 1.0013E+00 1.0268E+00
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Table 5. Maximum absolute errors for Example 3 when δ = 0.5ε, η = 0.5ε.

ε ↓ N → 26 27 28 29 210

Spline in Compression

20 7.4209E-05 1.8555E-05 4.6383E-06 1.1595E-06 2.8988E-07
2−2 2.6475E-04 6.6137E-05 1.6532E-05 4.1328E-06 1.0332E-06
2−4 2.2048E-03 5.4819E-04 1.3686E-04 3.4205E-05 8.5503E-06
2−6 1.6223E-02 5.2834E-03 1.6952E-03 4.2087E-04 1.0517E-04
2−8 1.4750E-02 4.8312E-03 1.5329E-03 4.6074E-04 1.2810E-04
2−10 1.4386E-02 4.7405E-03 1.5276E-03 4.7532E-04 1.3956E-04
2−12 1.4292E-02 4.7143E-03 1.5229E-03 4.7861E-04 1.4660E-04
2−14 1.4268E-02 4.7072E-03 1.5211E-03 4.7847E-04 1.4735E-04
2−16 1.4262E-02 4.7053E-03 1.5205E-03 4.7834E-04 1.4737E-04
2−18 1.4260E-02 4.7048E-03 1.5203E-03 4.7829E-04 1.4736E-04
2−20 1.4260E-02 4.7047E-03 1.5203E-03 4.7826E-04 1.4735E-04

Spline in Tension with λ = 1
12 , λ = 5

12

20 3.5760E-05 8.9381E-06 2.2345E-06 5.5863E-07 1.3965E-07
2−2 1.5326E-04 3.8284E-05 9.5692E-06 2.3922E-06 5.9805E-07
2−4 1.6953E-03 4.2263E-04 1.0548E-04 2.6372E-05 6.5921E-06
2−6 1.4857E-02 4.8524E-03 1.5576E-03 3.8682E-04 9.6666E-05
2−8 1.4474E-02 4.7406E-03 1.5066E-03 4.5711E-04 1.3085E-04
2−10 1.4390E-02 4.7370E-03 1.5251E-03 4.7431E-04 1.3990E-04
2−12 1.4367E-02 4.7333E-03 1.5276E-03 4.7959E-04 1.4679E-04
2−14 1.4361E-02 4.7319E-03 1.5276E-03 4.8004E-04 1.4773E-04
2−16 1.4360E-02 4.7316E-03 1.5275E-03 4.8005E-04 1.4780E-04
2−18 1.4359E-02 4.7315E-03 1.5275E-03 4.8005E-04 1.4781E-04
2−20 1.4359E-02 4.7314E-03 1.5275E-03 4.8004E-04 1.4780E-04

Adaptive Spline with A1 = 1
3 , A2 = 1

6 , A3 = 1
6 , A4 = 1

3 .

20 5.4881E-05 1.3716E-05 3.4287E-06 8.5719E-07 2.1430E-07
2−2 2.0871E-04 5.2192E-05 1.3045E-05 3.2610E-06 8.1524E-07
2−4 1.9498E-03 4.8540E-04 1.2117E-04 3.0288E-05 7.5710E-06
2−6 1.5538E-02 5.0677E-03 1.6264E-03 4.0384E-04 1.0092E-04
2−8 1.4611E-02 4.7855E-03 1.5193E-03 4.5859E-04 1.2928E-04
2−10 1.4387E-02 4.7386E-03 1.5263E-03 4.7474E-04 1.3962E-04
2−12 1.4329E-02 4.7236E-03 1.5252E-03 4.7909E-04 1.4668E-04
2−14 1.4314E-02 4.7194E-03 1.5243E-03 4.7925E-04 1.4754E-04
2−16 1.4310E-02 4.7183E-03 1.5240E-03 4.7919E-04 1.4758E-04
2−18 1.4309E-02 4.7181E-03 1.5239E-03 4.7916E-04 1.4758E-04
2−20 1.4309E-02 4.7180E-03 1.5239E-03 4.7915E-04 1.4758E-04

AIMS Mathematics Volume 9, Issue 10, 26403–26434.



26428

Table 6. Rate of convergence for Example 3 when δ = 0.5ε, η = 0.5ε.

ε ↓ N → 26 27 28 29 210

Spline in Compression

20 1.9998E+00 2.0001E+00 2.0000E+00 2.0000E+00 1.9999E+00
2−2 2.0011E+00 2.0001E+00 2.0001E+00 2.0000E+00 2.0000E+00
2−4 2.0079E+00 2.0020E+00 2.0005E+00 2.0001E+00 2.0000E+00
2−6 1.6185E+00 1.6400E+00 2.0100E+00 2.0006E+00 2.0006E+00
2−8 1.6103E+00 1.6561E+00 1.7342E+00 1.8467E+00 1.7264E+00
2−10 1.6015E+00 1.6338E+00 1.6843E+00 1.7680E+00 1.9785E+00
2−12 1.6001E+00 1.6302E+00 1.6699E+00 1.7070E+00 1.7694E+00
2−14 1.5998E+00 1.6298E+00 1.6686E+00 1.6992E+00 1.7294E+00
2−16 1.5998E+00 1.6297E+00 1.6684E+00 1.6986E+00 1.7259E+00
2−18 1.5998E+00 1.6297E+00 1.6684E+00 1.6985E+00 1.7256E+00
2−20 1.5998E+00 1.6297E+00 1.6685E+00 1.6985E+00 1.7256E+00

Spline in Tension with λ = 1
12 , λ = 5

12

20 2.0003E+00 2.0000E+00 2.0000E+00 2.0000E+00 1.9992E+00
2−2 2.0011E+00 2.0003E+00 2.0001E+00 2.0000E+00 2.0000E+00
2−4 2.0041E+00 2.0024E+00 1.9999E+00 2.0002E+00 2.0000E+00
2−6 1.6144E+00 1.6394E+00 2.0096E+00 2.0006E+00 2.0006E+00
2−8 1.6103E+00 1.6538E+00 1.7207E+00 1.8046E+00 1.9139E+00
2−10 1.6030E+00 1.6351E+00 1.6850E+00 1.7614E+00 1.9282E+00
2−12 1.6019E+00 1.6315E+00 1.6714E+00 1.7081E+00 1.7689E+00
2−14 1.6017E+00 1.6312E+00 1.6700E+00 1.7002E+00 1.7305E+00
2−16 1.6016E+00 1.6311E+00 1.6699E+00 1.6995E+00 1.7267E+00
2−18 1.6016E+00 1.6311E+00 1.6699E+00 1.6995E+00 1.7265E+00
2−20 1.6016E+00 1.6311E+00 1.6699E+00 1.6995E+00 1.7264E+00

Adaptive Spline with A1 = 1
3 , A2 = 1

6 , A3 = 1
6 , A4 = 1

3 .

20 2.0004E+00 2.0001E+00 2.0000E+00 2.0000E+00 2.0004E+00
2−2 1.9996E+00 2.0004E+00 2.0001E+00 2.0000E+00 2.0000E+00
2−4 2.0061E+00 2.0021E+00 2.0002E+00 2.0002E+00 2.0000E+00
2−6 1.6164E+00 1.6397E+00 2.0098E+00 2.0006E+00 2.0006E+00
2−8 1.6103E+00 1.6552E+00 1.7281E+00 1.8268E+00 1.9612E+00
2−10 1.6023E+00 1.6345E+00 1.6848E+00 1.7656E+00 1.9567E+00
2−12 1.6010E+00 1.6309E+00 1.6707E+00 1.7076E+00 1.7696E+00
2−14 1.6007E+00 1.6305E+00 1.6693E+00 1.6997E+00 1.7300E+00
2−16 1.6007E+00 1.6304E+00 1.6692E+00 1.6991E+00 1.7263E+00
2−18 1.6007E+00 1.6304E+00 1.6692E+00 1.6990E+00 1.7260E+00
2−20 1.6007E+00 1.6304E+00 1.6692E+00 1.6990E+00 1.7260E+00
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Table 7. Maximum absolute errors for Example 4 when δ = 0.5ε, η = 0.5ε.

ε ↓ N → 26 27 28 29 210

Spline in Compression

20 2.1409E-04 5.3492E-05 1.3371E-05 3.3426E-06 8.3566E-07
2−2 2.4625E-03 6.1193E-04 1.5295E-04 3.8222E-05 9.5546E-06
2−4 1.8032E-02 6.0309E-03 1.9736E-03 4.9120E-04 1.2274E-04
2−6 1.6844E-02 5.5738E-03 1.7374E-03 4.7951E-04 1.2498E-04
2−8 1.6571E-02 5.5462E-03 1.8009E-03 5.5139E-04 1.5101E-04
2−10 1.6461E-02 5.5261E-03 1.8035E-03 5.6688E-04 1.7244E-04
2−12 1.6382E-02 5.5106E-03 1.8021E-03 5.6773E-04 1.7483E-04
2−14 1.6363E-02 5.4928E-03 1.7991E-03 5.6766E-04 1.7497E-04
2−16 1.6360E-02 5.4886E-03 1.7945E-03 5.6693E-04 1.7497E-04
2−18 1.6360E-02 5.4881E-03 1.7935E-03 5.6574E-04 1.7480E-04
2−20 1.6360E-02 5.4881E-03 1.7934E-03 5.6546E-04 1.7451E-04

Spline in Tension with λ = 1
12 , λ = 5

12

20 8.3380E-05 2.0846E-05 5.2112E-06 1.3028E-06 3.2570E-07
2−2 1.7497E-03 4.3512E-04 1.0881E-04 2.7195E-05 6.7981E-06
2−4 1.6272E-02 5.4611E-03 1.7876E-03 4.4502E-04 1.1122E-04
2−6 1.6341E-02 5.4210E-03 1.7037E-03 4.8628E-04 1.2196E-04
2−8 1.6388E-02 5.4906E-03 1.7840E-03 5.4715E-04 1.5224E-04
2−10 1.6375E-02 5.4969E-03 1.7950E-03 5.6442E-04 1.7173E-04
2−12 1.6346E-02 5.4928E-03 1.7959E-03 5.6602E-04 1.7438E-04
2−14 1.6339E-02 5.4848E-03 1.7947E-03 5.6613E-04 1.7459E-04
2−16 1.6339E-02 5.4829E-03 1.7925E-03 5.6579E-04 1.7460E-04
2−18 1.6338E-02 5.4828E-03 1.7920E-03 5.6522E-04 1.7452E-04
2−20 1.6338E-02 5.4827E-03 1.7920E-03 5.6508E-04 1.7438E-04

Adaptive Spline with A1 = 1
3 , A2 = 1

6 , A3 = 1
6 , A4 = 1

3 .

20 1.4872E-04 3.7165E-05 9.2902E-06 2.3225E-06 5.8063E-07
2−2 2.1059E-03 5.2351E-04 1.3088E-04 3.2708E-05 8.1764E-06
2−4 1.7150E-02 5.7458E-03 1.8806E-03 4.6811E-04 1.1698E-04
2−6 1.6591E-02 5.4963E-03 1.7192E-03 4.8193E-04 1.1484E-04
2−8 1.6479E-02 5.5182E-03 1.7923E-03 5.4903E-04 1.5131E-04
2−10 1.6419E-02 5.5113E-03 1.7992E-03 5.6563E-04 1.7206E-04
2−12 1.6368E-02 5.5020E-03 1.7989E-03 5.6686E-04 1.7460E-04
2−14 1.6355E-02 5.4899E-03 1.7969E-03 5.6688E-04 1.7478E-04
2−16 1.6354E-02 5.4870E-03 1.7938E-03 5.6639E-04 1.7478E-04
2−18 1.6353E-02 5.4867E-03 1.7931E-03 5.6556E-04 1.7466E-04
2−20 1.6354E-02 5.4867E-03 1.7930E-03 5.6537E-04 1.7446E-04
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Table 8. Rate of convergence for Example 4 when δ = 0.5ε, η = 0.5ε.

ε ↓ N → 26 27 28 29 210

Spline in Compression

20 2.0008E+00 2.0002E+00 2.0001E+00 2.0000E+00 2.0000E+00
2−2 2.0087E+00 2.0003E+00 2.0006E+00 2.0001E+00 2.0000E+00
2−4 1.5801E+00 1.6116E+00 2.0064E+00 2.0007E+00 2.0005E+00
2−6 1.5955E+00 1.6817E+00 1.8573E+00 1.9399E+00 7.4174E-01
2−8 1.5791E+00 1.6228E+00 1.7076E+00 1.8684E+00 1.7986E+00
2−10 1.5747E+00 1.6155E+00 1.6697E+00 1.7170E+00 1.8269E+00
2−12 1.5718E+00 1.6125E+00 1.6664E+00 1.6992E+00 1.7348E+00
2−14 1.5748E+00 1.6103E+00 1.6641E+00 1.6979E+00 1.7267E+00
2−16 1.5757E+00 1.6128E+00 1.6624E+00 1.6961E+00 1.7261E+00
2−18 1.5757E+00 1.6136E+00 1.6645E+00 1.6945E+00 1.7247E+00
2−20 1.5758E+00 1.6136E+00 1.6652E+00 1.6962E+00 1.7235E+00

Spline in Tension with λ = 1
12 , λ = 5

12

20 1.9999E+00 2.0001E+00 2.0000E+00 2.0000E+00 2.0000E+00
2−2 2.0076E+00 1.9996E+00 2.0005E+00 2.0001E+00 2.0000E+00
2−4 1.5751E+00 1.6112E+00 2.0061E+00 2.0005E+00 2.0005E+00
2−6 1.5918E+00 1.6699E+00 1.8088E+00 1.9953E+00 1.2196E+00
2−8 1.5776E+00 1.6219E+00 1.7051E+00 1.8456E+00 2.0904E+00
2−10 1.5748E+00 1.6146E+00 1.6692E+00 1.7166E+00 1.8229E+00
2−12 1.5734E+00 1.6128E+00 1.6658E+00 1.6986E+00 1.7348E+00
2−14 1.5748E+00 1.6117E+00 1.6645E+00 1.6972E+00 1.7262E+00
2−16 1.5753E+00 1.6130E+00 1.6636E+00 1.6962E+00 1.7256E+00
2−18 1.5753E+00 1.6133E+00 1.6647E+00 1.6954E+00 1.7249E+00
2−20 1.5753E+00 1.6134E+00 1.6650E+00 1.6962E+00 1.7243E+00

Adaptive Spline with A1 = 1
3 , A2 = 1

6 , A3 = 1
6 , A4 = 1

3 .

20 2.0006E+00 2.0002E+00 2.0000E+00 2.0000E+00 2.0000E+00
2−2 2.0081E+00 2.0000E+00 2.0005E+00 2.0001E+00 2.0000E+00
2−4 1.5776E+00 1.6113E+00 2.0062E+00 2.0006E+00 2.0005E+00
2−6 1.5939E+00 1.6767E+00 1.8348E+00 2.0692E+00 8.4768E-01
2−8 1.5783E+00 1.6224E+00 1.7069E+00 1.8594E+00 1.9163E+00
2−10 1.5749E+00 1.6150E+00 1.6694E+00 1.7170E+00 1.8261E+00
2−12 1.5728E+00 1.6128E+00 1.6661E+00 1.6989E+00 1.7348E+00
2−14 1.5749E+00 1.6112E+00 1.6644E+00 1.6975E+00 1.7265E+00
2−16 1.5755E+00 1.6130E+00 1.6632E+00 1.6962E+00 1.7259E+00
2−18 1.5756E+00 1.6135E+00 1.6647E+00 1.6951E+00 1.7249E+00
2−20 1.5756E+00 1.6135E+00 1.6651E+00 1.6963E+00 1.7240E+00
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Table 9. The ε-uniform errors EN for methods in Sect. 4, for ε ∈ {20, 2−1, · · · 2−20}.

N → 26 27 28 29 210

Example 1

Spline in Compression 5.3663E-03 2.0949E-03 9.9648E-04 4.1920E-04 2.0463E-04
Spline in Tension 5.2469E-03 1.6205E-03 8.0129E-04 4.0121E-04 1.9932E-04
Adaptive Spline 5.2967E-03 1.6393E-03 8.1569E-04 4.0768E-04 2.0121E-04

Example 2

Spline in Compression 1.0190E-02 5.0593E-03 2.4842E-03 1.1532E-03 5.0446E-04
Spline in Tension 7.5344E-03 3.8214E-03 1.9248E-03 9.6666E-04 4.8393E-04
Adaptive Spline 7.8873E-03 3.9320E-03 1.9644E-03 9.8338E-04 4.9126E-04

Example 3

Spline in Compression 1.4260E-02 4.7047E-03 1.5203E-03 4.7826E-04 1.4735E-04
Spline in Tension 1.4359E-02 4.7314E-03 1.5275E-03 4.8004E-04 1.4780E-04
Adaptive Spline 1.4309E-02 4.7180E-03 1.5239E-03 4.7915E-04 1.4758E-04

Example 4

Spline in Compression 1.6360E-02 5.4881E-03 1.7934E-03 5.6546E-04 1.7451E-04
Spline in Tension 1.6338E-02 5.4827E-03 1.7920E-03 5.6508E-04 1.7438E-04
Adaptive Spline 1.6354E-02 5.4867E-03 1.7930E-03 5.6537E-04 1.7446E-04

7. Discussion and conclusions

In this paper, we proposed fitted mesh numerical methods for solving singularly perturbed boundary
value problems of second-order ordinary differential equations with mixed shifts. The shifts that are
smaller than the perturbation parameter are approximated using Taylor series and non-polynomial
splines, namely, the spline in compression, the spline in tension, and the adaptive spline are applied to
the Shishkin mesh. The methods presented are analyzed for convergence and shown to be first-order
convergent. Numerical computations are carried out on two test problems that exhibit layer behavior
on the left of the underlying interval and two right-layer problems. The maximum absolute errors and
rates of convergence are tabulated, which show the first-order uniform rate of convergence. Graphs
are plotted for the test problems for different values of the perturbation and shift parameters. From the
figures, the effect of the shifts on the boundary layer behavior of the solution of the problems can be
observed. As the shifts increase in magnitude, the thickness of the layer decreases for the left-layer
problems, while for the right-layer problems, it increases. The methods presented in this paper have
been found to be almost equally efficient in achieving ε-uniform convergence and the numerical rate of
convergence. Hence, it can be concluded that the presented methods provide considerable advantage
for solving singularly perturbed linear second-order boundary value problems with mixed shifts.
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