Research article

A posteriori mesh method for a system of singularly perturbed initial value problems

  • Received: 09 March 2022 Revised: 25 June 2022 Accepted: 04 July 2022 Published: 12 July 2022
  • MSC : 65L10, 65L12

  • A system of singularly perturbed initial value problems with weak constrained conditions on the coefficients is considered. First the system of second-order singularly perturbed problems is transformed into a system of first-order singularly perturbed problems with integral terms, which facilitates the subsequent stability and a posteriori error analyses. Then a hybrid difference method with the use of interpolating quadrature rules is utilized to approximate the transformed system. Next a posteriori error analysis for the discretization scheme on an arbitrary mesh is presented. A solution-adaptive algorithm based on a posteriori error estimation is devised to generate a posteriori mesh and obtain approximation solution. Finally numerical experiments show a uniform convergence behavior of second-order for the scheme, which improves the previous results and achieves the optimal convergence order under the given discrete scheme.

    Citation: Zhongdi Cen, Jian Huang, Aimin Xu. A posteriori mesh method for a system of singularly perturbed initial value problems[J]. AIMS Mathematics, 2022, 7(9): 16719-16732. doi: 10.3934/math.2022917

    Related Papers:

  • A system of singularly perturbed initial value problems with weak constrained conditions on the coefficients is considered. First the system of second-order singularly perturbed problems is transformed into a system of first-order singularly perturbed problems with integral terms, which facilitates the subsequent stability and a posteriori error analyses. Then a hybrid difference method with the use of interpolating quadrature rules is utilized to approximate the transformed system. Next a posteriori error analysis for the discretization scheme on an arbitrary mesh is presented. A solution-adaptive algorithm based on a posteriori error estimation is devised to generate a posteriori mesh and obtain approximation solution. Finally numerical experiments show a uniform convergence behavior of second-order for the scheme, which improves the previous results and achieves the optimal convergence order under the given discrete scheme.



    加载中


    [1] Z. Cen, A. Xu, A. Le, L. B. Liu, A uniformly convergent hybrid difference scheme for a system of singularly perturbed initial value problems, Int. J. Comput. Math., 97 (2020), 1058–1086. https://doi.org/10.1080/00207160.2019.1605063 doi: 10.1080/00207160.2019.1605063
    [2] Z. Gajić, M. T. Lim, Optimal control of singularly perturbed linear systems and applications, New York: CRC Press, 2001. https://doi.org/10.1201/9780203907900
    [3] M. W. Derstine, H. M. Gibbs, F. A. Hopf, D. L. Kaplan, Bifurcation gap in a hybrid optical system, Phys. Rev. A, 26 (1982), 3720–3722. https://doi.org/10.1103/PhysRevA.26.3720 doi: 10.1103/PhysRevA.26.3720
    [4] M. Cakir, E. Cimen, I. Amirali, G. M. Amiraliyev, Numerical treatment of a quasilinear initial value problem with boundary layer, Int. J. Comput. Math., 93 (2016), 1845–1859. https://doi.org/10.1080/00207160.2015.1076805 doi: 10.1080/00207160.2015.1076805
    [5] S. Kumar, M. Kumar, Parameter-robust numerical method for a system of singularly perturbed initial value problems, Numer. Algor., 59 (2012), 185–195. https://doi.org/10.1007/s11075-011-9483-4 doi: 10.1007/s11075-011-9483-4
    [6] Z. Cen, A. Xu, A. Le, A second-order hybrid finite difference scheme for a system of singularly perturbed initial value problems, J. Comput. Appl. Math., 234 (2010), 3445–3457. https://doi.org/10.1016/j.cam.2010.05.006 doi: 10.1016/j.cam.2010.05.006
    [7] L. B. Liu, Y. Chen, An adaptive moving grid method for a system of singularly perturbed initial value problems, J. Comput. Appl. Math., 274 (2015), 11–22. https://doi.org/10.1016/j.cam.2014.06.022 doi: 10.1016/j.cam.2014.06.022
    [8] H. G. Roos, M. Stynes, L. Tobiska, Numerical methods for singularly perturbed differential equations: Convection-diffusion-reaction and flow problems, Springer Science & Business Media, 2008.
    [9] P. Das, Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems, J. Comput. Appl. Math., 290 (2015), 16–25. https://doi.org/10.1016/j.cam.2015.04.034 doi: 10.1016/j.cam.2015.04.034
    [10] E. H. Georgoulis, E. Hall, and C. Makridakis, An a posteriori error bound for discontinuous Galerkin approximations of convection-diffusion problems, IMA J. Numer. Anal., 39 (2019), 34–60. https://doi.org/10.1093/imanum/drx065 doi: 10.1093/imanum/drx065
    [11] N. Kopteva, Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem, SIAM J. Numer. Anal., 39 (2001), 423–441. https://doi.org/10.1137/S0036142900368642 doi: 10.1137/S0036142900368642
    [12] L. B. Liu, Y. Chen, A-posteriori error estimation in maximum norm for a strongly coupled system of two singularly perturbed convection-diffusion problems, J. Comput. Appl. Math., 313 (2017), 152–167. https://doi.org/10.1016/j.cam.2016.08.020 doi: 10.1016/j.cam.2016.08.020
    [13] M. I. Abbas, M. A. Ragusa, On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function, Symmetry, 13 (2021), 264. https://doi.org/10.3390/sym13020264 doi: 10.3390/sym13020264
    [14] A. Samadi, N. Hussain, Fixed point results for hybrid contractions in Menger metric spaces with application to integral equations, Filomat, 35 (2021), 2151–2164. https://doi.org/10.2298/FIL2107151S doi: 10.2298/FIL2107151S
    [15] A. Zhumanazarova, Y. I. Cho, Uniform approximation to the solution of a singularly perturbed boundary value problem with an initial jump, Mathematics, 8 (2020), 2216. https://doi.org/10.3390/math8122216 doi: 10.3390/math8122216
    [16] Ö. Yapman, G. M. Amiraliyev, I. Amirali, Convergence analysis of fitted numerical method for a singularly perturbed nonlinear Volterra integro-differential equation with delay, J. Comput. Appl. Math., 355 (2019), 301–309. https://doi.org/10.1016/j.cam.2019.01.026 doi: 10.1016/j.cam.2019.01.026
    [17] J. Huang, Z. Cen, A. Xu, An improved a posteriori error estimation for a parameterized singular perturbation problem, Appl. Math. Lett., 114 (2021), 106912. https://doi.org/10.1016/j.aml.2020.106912 doi: 10.1016/j.aml.2020.106912
    [18] N. Kopteva, M. Stynes, A robust adaptive method for quasi-linear one-dimensional convection-diffusion problem, SIAM J. Numer. Anal., 39 (2001), 1446–1467. https://doi.org/10.1137/S003614290138471X doi: 10.1137/S003614290138471X
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1284) PDF downloads(57) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog