A system of singularly perturbed initial value problems with weak constrained conditions on the coefficients is considered. First the system of second-order singularly perturbed problems is transformed into a system of first-order singularly perturbed problems with integral terms, which facilitates the subsequent stability and a posteriori error analyses. Then a hybrid difference method with the use of interpolating quadrature rules is utilized to approximate the transformed system. Next a posteriori error analysis for the discretization scheme on an arbitrary mesh is presented. A solution-adaptive algorithm based on a posteriori error estimation is devised to generate a posteriori mesh and obtain approximation solution. Finally numerical experiments show a uniform convergence behavior of second-order for the scheme, which improves the previous results and achieves the optimal convergence order under the given discrete scheme.
Citation: Zhongdi Cen, Jian Huang, Aimin Xu. A posteriori mesh method for a system of singularly perturbed initial value problems[J]. AIMS Mathematics, 2022, 7(9): 16719-16732. doi: 10.3934/math.2022917
A system of singularly perturbed initial value problems with weak constrained conditions on the coefficients is considered. First the system of second-order singularly perturbed problems is transformed into a system of first-order singularly perturbed problems with integral terms, which facilitates the subsequent stability and a posteriori error analyses. Then a hybrid difference method with the use of interpolating quadrature rules is utilized to approximate the transformed system. Next a posteriori error analysis for the discretization scheme on an arbitrary mesh is presented. A solution-adaptive algorithm based on a posteriori error estimation is devised to generate a posteriori mesh and obtain approximation solution. Finally numerical experiments show a uniform convergence behavior of second-order for the scheme, which improves the previous results and achieves the optimal convergence order under the given discrete scheme.
[1] | Z. Cen, A. Xu, A. Le, L. B. Liu, A uniformly convergent hybrid difference scheme for a system of singularly perturbed initial value problems, Int. J. Comput. Math., 97 (2020), 1058–1086. https://doi.org/10.1080/00207160.2019.1605063 doi: 10.1080/00207160.2019.1605063 |
[2] | Z. Gajić, M. T. Lim, Optimal control of singularly perturbed linear systems and applications, New York: CRC Press, 2001. https://doi.org/10.1201/9780203907900 |
[3] | M. W. Derstine, H. M. Gibbs, F. A. Hopf, D. L. Kaplan, Bifurcation gap in a hybrid optical system, Phys. Rev. A, 26 (1982), 3720–3722. https://doi.org/10.1103/PhysRevA.26.3720 doi: 10.1103/PhysRevA.26.3720 |
[4] | M. Cakir, E. Cimen, I. Amirali, G. M. Amiraliyev, Numerical treatment of a quasilinear initial value problem with boundary layer, Int. J. Comput. Math., 93 (2016), 1845–1859. https://doi.org/10.1080/00207160.2015.1076805 doi: 10.1080/00207160.2015.1076805 |
[5] | S. Kumar, M. Kumar, Parameter-robust numerical method for a system of singularly perturbed initial value problems, Numer. Algor., 59 (2012), 185–195. https://doi.org/10.1007/s11075-011-9483-4 doi: 10.1007/s11075-011-9483-4 |
[6] | Z. Cen, A. Xu, A. Le, A second-order hybrid finite difference scheme for a system of singularly perturbed initial value problems, J. Comput. Appl. Math., 234 (2010), 3445–3457. https://doi.org/10.1016/j.cam.2010.05.006 doi: 10.1016/j.cam.2010.05.006 |
[7] | L. B. Liu, Y. Chen, An adaptive moving grid method for a system of singularly perturbed initial value problems, J. Comput. Appl. Math., 274 (2015), 11–22. https://doi.org/10.1016/j.cam.2014.06.022 doi: 10.1016/j.cam.2014.06.022 |
[8] | H. G. Roos, M. Stynes, L. Tobiska, Numerical methods for singularly perturbed differential equations: Convection-diffusion-reaction and flow problems, Springer Science & Business Media, 2008. |
[9] | P. Das, Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems, J. Comput. Appl. Math., 290 (2015), 16–25. https://doi.org/10.1016/j.cam.2015.04.034 doi: 10.1016/j.cam.2015.04.034 |
[10] | E. H. Georgoulis, E. Hall, and C. Makridakis, An a posteriori error bound for discontinuous Galerkin approximations of convection-diffusion problems, IMA J. Numer. Anal., 39 (2019), 34–60. https://doi.org/10.1093/imanum/drx065 doi: 10.1093/imanum/drx065 |
[11] | N. Kopteva, Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem, SIAM J. Numer. Anal., 39 (2001), 423–441. https://doi.org/10.1137/S0036142900368642 doi: 10.1137/S0036142900368642 |
[12] | L. B. Liu, Y. Chen, A-posteriori error estimation in maximum norm for a strongly coupled system of two singularly perturbed convection-diffusion problems, J. Comput. Appl. Math., 313 (2017), 152–167. https://doi.org/10.1016/j.cam.2016.08.020 doi: 10.1016/j.cam.2016.08.020 |
[13] | M. I. Abbas, M. A. Ragusa, On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function, Symmetry, 13 (2021), 264. https://doi.org/10.3390/sym13020264 doi: 10.3390/sym13020264 |
[14] | A. Samadi, N. Hussain, Fixed point results for hybrid contractions in Menger metric spaces with application to integral equations, Filomat, 35 (2021), 2151–2164. https://doi.org/10.2298/FIL2107151S doi: 10.2298/FIL2107151S |
[15] | A. Zhumanazarova, Y. I. Cho, Uniform approximation to the solution of a singularly perturbed boundary value problem with an initial jump, Mathematics, 8 (2020), 2216. https://doi.org/10.3390/math8122216 doi: 10.3390/math8122216 |
[16] | Ö. Yapman, G. M. Amiraliyev, I. Amirali, Convergence analysis of fitted numerical method for a singularly perturbed nonlinear Volterra integro-differential equation with delay, J. Comput. Appl. Math., 355 (2019), 301–309. https://doi.org/10.1016/j.cam.2019.01.026 doi: 10.1016/j.cam.2019.01.026 |
[17] | J. Huang, Z. Cen, A. Xu, An improved a posteriori error estimation for a parameterized singular perturbation problem, Appl. Math. Lett., 114 (2021), 106912. https://doi.org/10.1016/j.aml.2020.106912 doi: 10.1016/j.aml.2020.106912 |
[18] | N. Kopteva, M. Stynes, A robust adaptive method for quasi-linear one-dimensional convection-diffusion problem, SIAM J. Numer. Anal., 39 (2001), 1446–1467. https://doi.org/10.1137/S003614290138471X doi: 10.1137/S003614290138471X |