The notions of completeness and compactness play important role in classical functional analysis. The main purpose of this paper is to generalize these notions to the setting of fuzzifying bornological linear spaces. At first, the concepts of fuzzifying Cauchy sequences and fuzzifying completeness are introduced and some interesting properties of them are studied. The relationships among fuzzifying completeness, separation axiom and fuzzifying bornological closed set are discussed. Then the notions of fuzzifying compactness and precompactness are presented, several properties of them are discussed. Particularly, it is demonstrated that a subset is fuzzifying bornological compact if and only if it is fuzzifying bornological precompact and bornological complete.
Citation: Zhenyu Jin, Conghua Yan. Fuzzifying completeness and compactness in fuzzifying bornological linear spaces[J]. AIMS Mathematics, 2022, 7(9): 16706-16718. doi: 10.3934/math.2022916
The notions of completeness and compactness play important role in classical functional analysis. The main purpose of this paper is to generalize these notions to the setting of fuzzifying bornological linear spaces. At first, the concepts of fuzzifying Cauchy sequences and fuzzifying completeness are introduced and some interesting properties of them are studied. The relationships among fuzzifying completeness, separation axiom and fuzzifying bornological closed set are discussed. Then the notions of fuzzifying compactness and precompactness are presented, several properties of them are discussed. Particularly, it is demonstrated that a subset is fuzzifying bornological compact if and only if it is fuzzifying bornological precompact and bornological complete.
[1] | M. Abel, A. Šostak, Towards the theory of $L$-bornological spaces, Iran. J. Fuzzy Syst., 8 (2011), 19–28. https://dx.doi.org/10.22111/ijfs.2011.233 doi: 10.22111/ijfs.2011.233 |
[2] | G. Beer, S. Naimpally, J. Rodrígues-Lopés, $S$-topologies and bounded convergences, J. Math. Anal. Appl., 339 (2008), 542–552. https://doi.org/10.1016/j.jmaa.2007.07.010 doi: 10.1016/j.jmaa.2007.07.010 |
[3] | G. Beer, S. Levi, Gap, excess and bornological convergence, Set-Valued Anal., 16 (2008), 489–506. https://doi.org/10.1007/s11228-008-0086-8 doi: 10.1007/s11228-008-0086-8 |
[4] | G. Beer, S. Levi, Pseudometrizable bornological convergence is Attouch-Wets convergence, J. Convex Anal., 15 (2008), 439–453. |
[5] | G. Birkhoff, Lattice theory, American Mathematical Society, 1995. |
[6] | A. Caserta, G. Di Maio, L. Holá, Arzelá's theorem and strong uniform convergence on bornologies, J. Math. Anal. Appl., 371 (2010), 384–392. https://doi.org/10.1016/j.jmaa.2010.05.042 doi: 10.1016/j.jmaa.2010.05.042 |
[7] | A. Caserta, G. Di Maio, Lj. D. R. Kočinac, Bornologies, selection principles and function spaces, Topol. Appl., 159 (2012), 1847–1852. https://doi.org/10.1016/j.topol.2011.04.025 doi: 10.1016/j.topol.2011.04.025 |
[8] | A. Di Concilio, C. Guadagni, Bornological convergences and local proximity spaces, Topol. Appl., 173 (2014), 294–307. https://doi.org/10.1016/j.topol.2014.06.005 doi: 10.1016/j.topol.2014.06.005 |
[9] | V. Gregori, J. Miñana, D. Miravet, Fuzzy partial metric spaces, Int. J. Gen. Syst., 48 (2019), 260–279. https://doi.org/10.1080/03081079.2018.1552687 doi: 10.1080/03081079.2018.1552687 |
[10] | H. Hogle-Nled, Bornology and functional analysis, North-Holland Publishing Company, 1977. |
[11] | S. T. Hu, Boundedness in a topological space, J. Math. Pure. Appl., 28 (1949), 287–320. |
[12] | S.T. Hu, Introduction to general topology, Holden-Day, 1966. |
[13] | Z. Jin, C. Yan, Induced $L$-bornological vector spaces and $L$-Mackey convergence, J. Intell. Fuzzy Syst., 40 (2021), 1277–1285. https://doi.org/10.3233/JIFS-201599 doi: 10.3233/JIFS-201599 |
[14] | Z. Jin, C. Yan, Fuzzifying bornological linear spaces, J. Intell. Fuzzy Syst., 42 (2022), 2347–2358. https://doi.org/10.3233/JIFS-211644 doi: 10.3233/JIFS-211644 |
[15] | A. Lechicki, S. Levi, A. Spakowski, Bornological convergence, J. Math. Anal. Appl., 297 (2004), 751–770. https://doi.org/10.1016/j.jmaa.2004.04.046 doi: 10.1016/j.jmaa.2004.04.046 |
[16] | H. Y. Li, F. G. Shi, Degrees of fuzzy compactness in L-fuzzy topological spaces, Fuzzy Set. Syst., 161 (2010), 988–1001. https://doi.org/10.1016/j.fss.2009.10.012 doi: 10.1016/j.fss.2009.10.012 |
[17] | R. Meyer, Smooth group representations on bornological vector spaces, B. Sci. Math., 128 (2004), 127–166. https://doi.org/10.1016/j.bulsci.2003.12.002 doi: 10.1016/j.bulsci.2003.12.002 |
[18] | A. M. Meson, F. Vericat, A functional approach to a topological entropy in bornological linear spaces, J. Dyn. Syst. Geom. The., 3 (2005) 45–54. https://doi.org/10.1080/1726037X.2005.10698487 |
[19] | S. Oscag, Bornologies and bitopological function spaces, Filomat, 27 (2013), 1345–1349. https://doi.org/10.2298/FIL1307345O doi: 10.2298/FIL1307345O |
[20] | B. Pang, F. G. Shi, Degrees of compactness in $(L, M)$-fuzzy convergence spaces and its applications, Fuzzy Set. Syst., 251 (2014), 1–22. https://doi.org/10.1016/j.fss.2014.05.002 doi: 10.1016/j.fss.2014.05.002 |
[21] | J. Paseka, S. Solovyov, M. Stehlík, On the category of lattice-valued bornological vector spaces, J. Math. Anal. Appl., 419 (2014), 138–155. https://doi.org/10.1016/j.jmaa.2014.04.033 doi: 10.1016/j.jmaa.2014.04.033 |
[22] | J. Paseka, S. Solovyov, M. Stehlík, Lattice-valued bornological systems, Fuzzy Set. Syst., 259 (2015), 68–88. https://doi.org/10.1016/j.fss.2014.09.006 doi: 10.1016/j.fss.2014.09.006 |
[23] | B. Pang, F. Shi, Strong inclusion orders between $L$-subsets and its applications in $L$-convex spaces, Quaest. Math., 41 (2018), 1021–1043. https://doi.org/10.2989/16073606.2018.1436613 doi: 10.2989/16073606.2018.1436613 |
[24] | D. Qiu, Fuzzifying topological linear spaces, Fuzzy Set. Syst., 147 (2004), 249–272. https://doi.org/10.1016/j.fss.2003.10.024 doi: 10.1016/j.fss.2003.10.024 |
[25] | A. Sostak, I. Uljane, $L$-valued bornologies on powersets, Fuzzy Set. Syst., 294 (2016), 93–104. https://doi.org/10.1016/j.fss.2015.07.016 doi: 10.1016/j.fss.2015.07.016 |
[26] | Y. Liu, D. Zhang, Lowen spaces, J. Math. Anal. Appl., 241 (2000), 30–38. https://doi.org/10.1006/jmaa.1999.6586 doi: 10.1006/jmaa.1999.6586 |