This paper deals with the new Fujita type results for Cauchy problem of a quasilinear parabolic differential inequality with both a source term and a gradient dissipation term. Specially, nonnegative weights may be singular or degenerate. Under the assumption of slow decay on initial data, we prove the existence of second critical exponents $ \mu^{*} $, such that the nonexistence of solutions for the inequality occurs when $ \mu < \mu^{*} $.
Citation: Xiaomin Wang, Zhong Bo Fang. New Fujita type results for quasilinear parabolic differential inequalities with gradient dissipation terms[J]. AIMS Mathematics, 2021, 6(10): 11482-11493. doi: 10.3934/math.2021665
This paper deals with the new Fujita type results for Cauchy problem of a quasilinear parabolic differential inequality with both a source term and a gradient dissipation term. Specially, nonnegative weights may be singular or degenerate. Under the assumption of slow decay on initial data, we prove the existence of second critical exponents $ \mu^{*} $, such that the nonexistence of solutions for the inequality occurs when $ \mu < \mu^{*} $.
[1] | H. Fujita, On the blowing up of solutions to the Cauchy problem for $u_{t}-\Delta u = u^{1+\alpha}$, J. Fac. Sci., Univ. Tokyo Sect. IA Math., 13 (1966), 109–123. |
[2] | K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Jpn. Acad., 49 (1973), 503–505. |
[3] | F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Isr. J. Math., 28 (1981), 29–40. |
[4] | P. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities, Electron. J. Differ. Eq., 20 (2001), 1–19. |
[5] | E. Mitidieri, S. I. Pokhozhaev, Fujita type theorems for quasilinear parabolic inequalities with nonlinear gradient, Dokl. Math., 66 (2002), 187–191. |
[6] | Z. B. Fang, L. Xu, Liouville theorems for a singular parabolic differential inequality with a gradient term, J. Inequal. Appl., 2014 (2014), 62. doi: 10.1186/1029-242X-2014-62 |
[7] | R. Filippucci, S. Lombardi, Fujita type results for parabolic inequalities with gradient terms, J. Differ. Eq., 268 (2020), 1873–1901. doi: 10.1016/j.jde.2019.09.026 |
[8] | R. E. Mitidieri, S. I. Pohozaev, Nonexistence of positive solutions for quasilinear elliptic problems on $\mathbb{R}^{N}$, P. Steklov. I. Math., 227 (1999), 186–216. |
[9] | R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal-Theor., 70 (2008), 2903–2916. |
[10] | R. Filippucci, Quasilinear elliptic systems in $\mathbb{R}^{N}$ with multipower forcing terms depending on the gradient, J. Differ. Eq., 255 (2013), 1839–1866. doi: 10.1016/j.jde.2013.05.026 |
[11] | T. Y. Lee, W. M. Ni, Global existence, large time behavior and life span on solutions of a semilinear parabolic Cauchy problem, T. Am. Math. Soc., 333 (1993), 365–378. |
[12] | C. L. Mu, Y. H. Li, Y. Wang, Life span and a new critical exponent for a quasilinear degenerate parabolic equation with slow decay initial values, Nonlinear Anal-Real., 11 (2008), 198–206. |
[13] | Y. Zheng, Z. B. Fang, New critical exponents, large time behavior, and life span for a fast diffusive p-Laplacian equation with nonlocal source, Z. Angew. Math. Phys., 70 (2019), 1–17. doi: 10.1007/s00033-018-1046-2 |
[14] | J. G. Yang, C. X. Yang, S. N. Zheng, Second critical exponent for evolution p-Laplacian equation with weighted source, Math. Comput. Model., 56 (2012), 247–256. doi: 10.1016/j.mcm.2011.12.036 |
[15] | P. Zheng, C. Mu, Global existence, large time behavior, and life span for a degenerate parabolic equation with inhomogeneous density and source, Z. Angew. Math. Phys., 65 (2014), 471–486. doi: 10.1007/s00033-013-0337-x |