Citation: Andrea Manzoni, Alfio Quarteroni, Sandro Salsa. A saddle point approach to an optimal boundary control problem for steady Navier-Stokes equations[J]. Mathematics in Engineering, 2019, 1(2): 252-280. doi: 10.3934/mine.2019.2.252
[1] | Akcelik V, Biros G, Ghattas O, et al. (2006) Parallel algorithms for PDE-constrained optimization, In: Heroux, M.A., Raghavan, P., Simon, H.D., Editors, Parallel Processing for Scientific Computing, Philadelphia: Society for Industrial and Applied Mathematics, 291–322. |
[2] | Beneš M, Kučera P, (2012) On the Navier–Stokes flows for heat-conducting fluids with mixed boundary conditions. J Math Anal Appl 389: 769–780. doi: 10.1016/j.jmaa.2011.12.017 |
[3] | Beneš M, Kučera P, (2016) Solutions to the Navier–Stokes equations with mixed boundary conditions in two-dimensional bounded domains. Math Nachr 289: 194–212. doi: 10.1002/mana.201400046 |
[4] | Berggren M, (1998) Numerical solution of a flow-control problem: vorticity reduction by dynamic boundary action. SIAM J Sci Comput 19: 829–860. doi: 10.1137/S1064827595294678 |
[5] | Biros G, Ghattas O, (2005) Parallel Lagrange–Newton–Krylov–Schur methods for PDEconstrained optimization. Part II: The Lagrange–Newton solver and its application to optimal control of steady viscous flows. SIAM J Sci Comput 27: 714–739. |
[6] | Brezzi F, (1974) On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO 2: 129–151. |
[7] | Dautray R, Lions JL, (2000) Mathematical Analysis and Numerical Methods for Science and Technology. Berlin Heidelberg: Springer-Verlag. |
[8] | Dedè L, (2007) Optimal flow control for Navier-Stokes equations: Drag minimization. Int J Numer Meth Fluids 55: 347–366. doi: 10.1002/fld.1464 |
[9] | Desai M, Ito K, (1994) Optimal controls of Navier–Stokes equations. SIAM J Control Optim 32: 1428–1446. doi: 10.1137/S0363012992224972 |
[10] | Do H, Owida AA, Morsi YS, (2012) Numerical analysis of coronary artery bypass grafts: An over view. Comput Meth Prog Bio 108: 689–705. doi: 10.1016/j.cmpb.2011.12.005 |
[11] | Elman H, Silvester D, Wathen A, (2005) Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Series in Numerical Mathematics and Scientific Computation, Oxford University Press. |
[12] | Fursikov A, Gunzburger MD, Hou L, (1998) Boundary value problems and optimal boundary control for the Navier–Stokes system: The two-dimensional case. SIAM J Control Optim 36: 852–894. doi: 10.1137/S0363012994273374 |
[13] | Fursikov A, Rannacher R, (2010) Optimal neumann control for the two-dimensional steadystate Navier-Stokes equations, In: Fursikov, A.V., Galdi, G.P., Pukhnachev, V.V., Editors, New Directions in Mathematical Fluid Mechanics: The Alexander V. Kazhikhov Memorial Volume, Basel: Birkhäuser Basel. |
[14] | Ghattas O, Bark J, (1997) Optimal control of two- and three-dimensional incompressible Navier- Stokes flows. J Comput Phys 136: 231–244. doi: 10.1006/jcph.1997.5744 |
[15] | Girault V, Raviart PA, (1986) Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Berlin and New York: Springer-Verlag. |
[16] | Gresho P, Sani R, (1998) Incompressible Flow and the Finite Element Method: Advection- Diffusion and Isothermal Laminar Flow. John Wiley & Sons. |
[17] | Guerra T, Sequeira A, Tiago J, (2015) Existence of optimal boundary control for the Navier- Stokes equations with mixed boundary conditions. Port Math 72: 267–283. doi: 10.4171/PM/1968 |
[18] | Gunzburger MD, (2003) Perspectives in Flow Control and Optimization. Series in Advances in Design and Control. Philadephia: Society for Industrial and Applied Mathematics. |
[19] | Gunzburger MD, Hou L, Svobodny T, (1992) Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J Control Optim 30: 167–181. doi: 10.1137/0330011 |
[20] | Gunzburger MD, Hou L, Svobodny TP, (1991) Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls. Math Comput 57: 123–151. doi: 10.1090/S0025-5718-1991-1079020-5 |
[21] | Gunzburger MD, Hou LS, Svobodny TP, (1991) Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls. ESAIM: Math Model Numer Anal 25: 711–748. doi: 10.1051/m2an/1991250607111 |
[22] | Gunzburger MD, Manservisi S, (1999) The velocity tracking problem for Navier-Stokes flows with bounded distributed controls. SIAM J Control Optim 37: 1913–1945. doi: 10.1137/S0363012998337400 |
[23] | Gunzburger MD, Manservisi S, (2000) Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J Numer Anal 37: 1481–1512. doi: 10.1137/S0036142997329414 |
[24] | Gunzburger MD, Manservisi S, (2000) The velocity tracking problem for Navier-Stokes flows with boundary control. SIAM J Control Optim 39: 594–634. doi: 10.1137/S0363012999353771 |
[25] | Heinkenschloss M, (1998) Formulation and analysis of a sequential quadratic programming method for the optimal Dirichlet boundary control of Navier-Stokes flow, In: Hager, W.W., |
[26] | Pardalos, P.M., Authors, Optimal Control: Theory, Algorithms, and Applications, Springer US, 178–203. |
[27] | Herzog R, Kunisch K, (2010) Algorithms for PDE-constrained optimization. GAMM Mitteilungen 33: 163–176. doi: 10.1002/gamm.201010013 |
[28] | Hinze M, Pinnau R, Ulbrich M, et al. (2009) Optimization with PDE Constraints, Series in Mathematical Modelling: Theory and Applications, Springer Netherlands. |
[29] | Hou L, Ravindran SS, (1999) Numerical approximation of optimal flow control problems by a penalty method: Error estimates and numerical results. SIAM J Sci Comput 20: 1753–1777. |
[30] | Jameson A, (1988) Aerodynamic design via control theory. J Sci Comput 3: 233–260. doi: 10.1007/BF01061285 |
[31] | Jameson A, (1995) Optimum aerodynamic design using CFD and control theory. In: Proceedings of the 12th AIAA Computational Fluid Dynamics Conference 1995, 926–949. |
[32] | Kim H, (2006) A boundary control problem for vorticity minimization in time-dependent 2D Navier-Stokes equations. Korean J Math 23: 293–312. |
[33] | Kim H, Kwon O, (2006) On a vorticity minimization problem for the stationary 2D Stokes equations. J Korean Math Soc 43: 45–63. doi: 10.4134/JKMS.2006.43.1.045 |
[34] | Koltukluoğlu T, Blanco P, (2018) Boundary control in computational haemodynamics. J Fluid Mech 847: 329–364. doi: 10.1017/jfm.2018.329 |
[35] | Kračmar S, Neustupa J, (2001) A weak solvability of a steady variational inequality of the Navier- Stokes type with mixed boundary conditions. Nonlin Anal 47: 4169–4180. doi: 10.1016/S0362-546X(01)00534-X |
[36] | Kračmar S, Neustupa J, (2018) Modeling of the unsteady flow through a channel with an artificial outflow condition by the Navier–Stokes variational inequality. Math Nachr 291: 1801–1814. doi: 10.1002/mana.201700228 |
[37] | Kučera P, Skalák Z, (1998) Local solutions to the Navier–Stokes equations with mixed boundary conditions. Acta Appl Math 54: 275–288. |
[38] | Kunisch K, Vexler B, (2007) Optimal vortex reduction for instationary flows based on translation invariant cost functionals. SIAM J Control Optim 46: 1368–1397. doi: 10.1137/050632774 |
[39] | Lassila T, Manzoni A, Quarteroni A, et al. (2013) Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty. ESAIM-Model Num 47: 1107–1131. doi: 10.1051/m2an/2012059 |
[40] | Lassila T, Manzoni A, Quarteroni A, et al. (2013) A reduced computational and geometrical framework for inverse problems in haemodynamics. Int J Numer Meth Bio 29: 741–776. doi: 10.1002/cnm.2559 |
[41] | Lei M, Archie J, Kleinstreuer C, et al. (1997) Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. J Vasc Surg 25: 637–646. doi: 10.1016/S0741-5214(97)70289-1 |
[42] | Maz'ya V, Rossmann J, (2009) Mixed boundary value problems for the stationary Navier–Stokes system in polyhedral domains. Arch Ration Mech Anal 194: 669–712. doi: 10.1007/s00205-008-0171-z |
[43] | Migliavacca F, Dubini G, (2005) Computational modeling of vascular anastomoses. Biomech Model Mechanobiol 3: 235–250. doi: 10.1007/s10237-005-0070-2 |
[44] | Prudencio EE, Byrd R, Cai XC, (2006) Parallel full space SQP Lagrange–Newton–Krylov- Sschwarz algorithms for PDE-constrained optimization problems. SIAM J Sci Comput 27: 1305– 1328. doi: 10.1137/040602997 |
[45] | Quarteroni A, Valli A, (1994) Numerical Approximation of Partial Differential Equations. Berlin- Heidelberg: Springer-Verlag. |
[46] | Sankaran S, Marsden A, (2010) The impact of uncertainty on shape optimization of idealized bypass graft models in unsteady flow. Phys Fluids 22: 121902. doi: 10.1063/1.3529444 |