Citation: Massimiliano Giona, Luigi Pucci. Hyperbolic heat/mass transport and stochastic modelling - Three simple problems[J]. Mathematics in Engineering, 2019, 1(2): 224-251. doi: 10.3934/mine.2019.2.224
[1] | Wang L, Li B (2008) Phononics gets hot. Phys World 21: 27-29. |
[2] | Maldovan M (2013) Sound and heat revolutions in phononics. Nature 503: 209-217. doi: 10.1038/nature12608 |
[3] | Li N, Ren J, Wang L, et al. (2012) Colloquium: Phononics: manipulating heat flow with electronic analogs and beyond. Rev Mod Phys 84: 1045-1066. doi: 10.1103/RevModPhys.84.1045 |
[4] | Straughan B (2011) Heat waves, Springer, New York. |
[5] | Sellitto A, Cimmelli VA, Jou D (2016) Mesoscopic Theories of Heat Transport in Nanosystems, Springer, Heidelberg. |
[6] | Cattaneo C (1948) Sulla conduzione del calore. Atti Sem Mat Fis Univ Modena 3: 83-101. |
[7] | Cattaneo C (1958) Sur une forme de l'equation de la chaleur eliminant le paradoxe s'une propagation instantanee. Compt Rendu Acad Sci 247: 431-433. |
[8] | Bubnov VA (1976) Wave concepts in the theory of heat. Int J Heat Mass Tran 19: 175-184. doi: 10.1016/0017-9310(76)90110-1 |
[9] | Glass DE, Özisik MN, Vick B (1985) Hyperbolic heat conduction with surface radiation. Int J Heat mass Tran 28: 1823-1830. doi: 10.1016/0017-9310(85)90204-2 |
[10] | Joseph DD, Preziosi L (1989) Heat waves, Rev Mod Phys 61: 41-72. |
[11] | Guyer RA, Krumhansl JA (1966) Solution of the Linearized Phonon Boltzmann Equation. Phys Rev 148: 766-778. doi: 10.1103/PhysRev.148.766 |
[12] | Guyer RA, Krumhansl JA (1966) Thermal Conductivity, Second Sound, and Phonon Hydrodynamic phenomena in Nonmetallic Crystals. Phys Rev 148: 778-788. doi: 10.1103/PhysRev.148.778 |
[13] | Jou D, Cimmelli VA (2016) Constitutive equations for heat conduction in nanosystems and nonequilibrium processes: an overview. Communications in Applied and Industrial Mathematics 7: 196-222. doi: 10.1515/caim-2016-0014 |
[14] | Jou D, Cimmelli VA, Sellitto A (2012) Nonlocal heat transport with phonons and electrons: Application to metallic nanowires. Int J Heat Mass Tran 55: 2338-2344. doi: 10.1016/j.ijheatmasstransfer.2012.01.033 |
[15] | Guo Y, Jou D, Wang M (2017) Macroscopic heat transport equations and heat waves in nonequilibrium states. Physica D: Nonlinear Phenomena 342: 24-31. doi: 10.1016/j.physd.2016.10.005 |
[16] | Camera-Roda G, Sarti GC (1990) Mass Transport with Relaxation in Polymers. AIChE J 36: 851-860. doi: 10.1002/aic.690360606 |
[17] | Edwards DA, Cohen DS (1995) A Mathematical Model for a Dissolving Polymer. AIChE J 41: 2345-2355. doi: 10.1002/aic.690411102 |
[18] | Ferreira JA, de Oliveira P, da Silva PM, et al. (2014) Molecular Transport in Viscoelastic Materials: Mechanistic Properties and Chemical Affinities. SIAM J Appl Math 74: 1598-1614. doi: 10.1137/140954027 |
[19] | Ferreira JA, Grassi M, Gudino E, et al. (2015) A new look to non-Fickian diffusion. Appl Math Model 39: 194-204. doi: 10.1016/j.apm.2014.05.030 |
[20] | Ferreira JA, Naghipoor J, de Oliveira P (2016) A coupled non-Fickian model of a cardiovascular drug delivery system. Math Med Biol 33: 329-357. doi: 10.1093/imammb/dqv023 |
[21] | Müller I, Ruggeri T (1993) Extended Thermodynamics, Springer-Verlag, New York. |
[22] | de Groot SR, Mazur P (1984) Non-Equilibrium Thermodynamics, Dover Publ. Inc. New York. |
[23] | Jou D, Casas-Vazquez J, Lebon G (2010) Extended Irreversible Thermodynamics, Springer, New York. |
[24] | Jou D, Casas-Vazquez J, Lebon G (1988) Extended Irreversible Thermodynamics, Rep Prog Phys 51: 1105-1179. |
[25] | Jou D, Casas-Vazquez J, Lebon G (1999) Extended Irreversible Thermodynamics revisited (1988-1998). Rep Prog Phys 62: 1035-1142. doi: 10.1088/0034-4885/62/7/201 |
[26] | Körner C, Bergmann HW (1998) The physical defects of the hyperbolic heat conduction equation. Appl Phys A 67: 397-401. doi: 10.1007/s003390050792 |
[27] | Struchtrup H (2005) Macroscopic Transport Equations for Rarefied Gas Flows, Springer, Berlin. |
[28] | Giona M, Brasiello A, Crescitelli S (2016) Generalized Poisson-Kac processes: basic properties and implications in extended thermodynamics and transport. J Non-Equil Thermody 41: 107-114. |
[29] | Giona M, Brasiello A, Crescitelli S (2017) Stochastic foundations of undulatory transport phenomena: generalized Poisson-Kac processes - part I basic theory. J Phys A 50: 335002. doi: 10.1088/1751-8121/aa79d4 |
[30] | Giona M, Brasiello A, Crescitelli S (2017) Stochastic foundations of undulatory transport phenomena: generalized Poisson-Kac processes - part II Irreversibility, norms and entropies. J Phys A 50: 335003. doi: 10.1088/1751-8121/aa79c5 |
[31] | Giona M, Brasiello A, Crescitelli S (2017) Stochastic foundations of undulatory transport phenomena: generalized Poisson-Kac processes - part III extensions and applications to kinetic theory and transport. J Phys A 50: 335004. doi: 10.1088/1751-8121/aa79d6 |
[32] | Kac M (1956) Some Stochastic Problems in Physics and Mathematics, Socony Mobil Oil Company Colloquium Lectures. |
[33] | Kac M (1974) A stochastic model related to the telegrapher's equation. Rocky MT J Math 4: 497-510. |
[34] | Gardiner CW (1997) Handbook of Stochastic Methods, Springer-Verlag, Berlin. |
[35] | Falconer K (2003) Fractal Geometry, J Wiley & Sons, Chichister. |
[36] | Giona M (2018) Covariance and spinorial statistical description of simple relativistic stochastic kinematics, in preparation. |
[37] | Rosenau P (1993) Random walker and the telegrapher's equation: A paradigm of a generalized hydrodynamics. Phys Rev E 48: R655-R657. doi: 10.1103/PhysRevE.48.R655 |
[38] | Brasiello A, Crescitelli S, Giona M (2016) One-dimensional hyperbolic transport: positivity and admissible boundary conditions derived from the wave formulation. Physica A 449: 176-191. doi: 10.1016/j.physa.2015.12.111 |
[39] | Zhukovsky K (2016) Violation of the maximum principle and negative solutions with pulse propagation in Guyer-Krumhansl model. Int J Heat Mass Tran 98: 523-529. doi: 10.1016/j.ijheatmasstransfer.2016.03.021 |
[40] | Zhukovsky K (2017) Exact negative solutions for Guyer-Krumhansl type equation and the maximum principle violation. Entropy 19: 440. doi: 10.3390/e19090440 |
[41] | Giona M (2017) Relativistic analysis of stochastic kinematics. Phys Rev E 96: 042133. doi: 10.1103/PhysRevE.96.042133 |
[42] | Weiss G (1994) Aspects and Applications of the Random Walk, North-Holland, Amsterdam. |
[43] | Metzler R, Klafter J (2000) The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339: 1-77. doi: 10.1016/S0370-1573(00)00070-3 |
[44] | Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous diffusion by fractional dynamics. J Phys A 37: R161-R208. doi: 10.1088/0305-4470/37/31/R01 |
[45] | Oldham KB, Spanier J (2006) The Fractional Calculus, Dover Publ. Inc., Mineola. |
[46] | Criado-Sancho M, Lebot JE (1993) On the admissible values of the heat flux in hyperbolic heat transport. Phys Lett A 177: 323-326. doi: 10.1016/0375-9601(93)90008-N |
[47] | Camacho J (1995) Third law of thermodynamics and maximum heat flux. Phys Lett A 202: 88-90. doi: 10.1016/0375-9601(95)00325-W |
[48] | Polyanin AD (2002) Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC, Boca Raton. |
[49] | Kolesnik AD, Ratanov N (2013) Telegraph Processes and Option Pricing, Springer, Heidelberg. |
[50] | Ghizzetti A, Ossicini A (1971) Trasformate di Laplace e Calcolo Simbolico, UTET, Torino. |
[51] | Leveque A (1928) Les lois de la transmission de chaleur par convection. Annales des Mines 13: 201-299. |
[52] | Giona M, Adrover A, Cerbelli S, et al. (2009) Laminar dispersion at high éclet numbers in finite-length channels: Effects of the near-wall velocity profile and connection |
[53] | Marin E, Vaca-Oyola LS, Delgado-Vasallo O (2016) On thermal waves' velocity: some open questions in thermal waves' physics. Rev Mex Fis E 62: 1-4. |
[54] | Kolesnik AD, Turbin AF (1998) The equation of symmetric Markovian random evolution in a plane, Stoch Proc Appl 75: 67-87. |
[55] | Kolesnik AD (2001) Weak Convergence of a Planar Random Evolution to the Wiener process. J Theor Probab 14: 485-494. doi: 10.1023/A:1011167815206 |
[56] | Kolesnik AD, Pinsky MA (2011) Random Evolutions are Driven by the Hyperparabolic Operators. J Stat Phys 142: 828-846. doi: 10.1007/s10955-011-0131-0 |