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Abstract: Starting from the correspondence between the Cattaneo hyperbolic heat equation and the
stochastic formulation based on Poisson-Kac processes, that holds solely for one-dimensional spatial
models, this article analyzes three paradigmatic problems in the hyperbolic theory of heat and mass
transport. The problems considered involve unbounded, semi-bounded and bounded domains, and are
aimed at : (i) highlighting analogies and differences between the two approaches (Cattaneo vs Poisson-
Kac), (ii) addressing the role of a bounded propagation velocity in order to regularize the properties
of the solutions of heat/mass transport problems. A typical example of the latter phenomenology is
expressed by boundary-layer regulatization of interfacial fluxes. The case of transport in bounded
domains permits to pinpoint unambiguously the need of a stochastic interpretation of the transport
equation in order to unveil the occurrence of physical inconsistencies that may occur in the linear
Cattaneo hyperbolic model in some range of parameter values.
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1. Introduction

Thermal and heat transport problems have recently become a fertile and exciting field of
theoretical and applied research due to advances in phononics and in the miniaturization of
microelectromechanical systems [1,2]. New effects have been discovered (e.g. thermal rectification)
and new devices tested (thermal diodes and transistors) [3]. On equal footing, the analysis of
microscale thermal problem has questioned the application of classical phenomenological laws, such
as the Fourier law, and more generally the formulation of transport equations in out-of-equilibrium
conditions. There is enough experimental and theoretical work indicating that the classical Fourier
constitutive equation, leading to parabolic heat transport models, is not completely adequate for
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processes evolving at small length and short time scales [4, 5].

The natural physical candidate for a generalization of the Fourier law is represented by the
hyperbolic models defined by constitutive equations with memory for the heat flux. The archetype of
this class of models 1S the Cattaneo heat transfer equation [6, 7],
0T (x,1)/0t + 10°T(x,1)/0> = DV*T(x,t), where D is the thermal diffusivity, and 7 > 0 a
characteristic relaxation time, that provides the evolution of thermal fronts possessing finite
propagation velocity [8,9]. Hyperbolic transport models and heat waves have found a variety of
applications in several physical problems (second-sound in helium, phonon-assisted thermal
transport, etc.) [4,5, 10], and recently they have been extensively applied and further elaborated for
micro- and nanoscale applications [13-15]. A further generalization of the Cattaneo model is
represented by the theory developed by Guyer and Krumhansl [11, 12] based on a linearized
Boltzmann equation for phonon-assisted heat transfer.

Following parallel pathways, mass (solute) transport in polymeric systems displays
phenomenologically clear deviations for a pure Fickian behavior, referred to as “case II diffusion” in
the mass transport literature [16, 17]. The origin of this anomalous behavior stems from the swelling
of the polymeric matrix, causing the coupling between mass (solute) transport and viscoelastic stress
relaxation [18, 19]. The use of hyperbolic and Cattaneo-based models encompasses also biomedical
applications of controlled release of active principles [20].

In a more general perspective, the mathematical structure of the Cattaneo equation has been
embedded in a consistent thermodynamic theory of non-equilibrium phenomena thanks to the seminal
work by Miiller and Ruggeri [21] that is commonly referred to as “extended theory of
thermodynamics”. Extended thermodynamics generalizes the classical approach of irreversible
thermodynamics [22] by including, in the definition of the thermodynamic variables, the explicit
contribution of the fluxes that vanish in equilibrium conditions. This approach has been further
elaborated and extended by the contribution of Jou, Casas-Vazquez, Lebon, any many others [23-25].

There is however a formal bottleneck in all the hyperbolic formulations of thermodynamic and
transport models grounded on the Cattaneo equation deriving from the fact that the latter does not
preserve positivity (of the local concentrations) in space dimensions greater than one. This has been
reported in [26] by considering the Green function for the two-dimensional Cattaneo heat equation.

It should be clearly stated that this does not inficiate neither the reach of extended thermodynamic
theories nor the validity of many of the results found within this approach. Similar problems involving
the deprecated occurrence of negative density values arise in the application of Grad’s 13 moment
expansion, and are ultimately a consequence of the approximations (essentially a truncated power-
series expansion) underlying these approaches [27]. However, the positivity issue remains as a standing
problem requiring a formal solution in the development of the theory.

Recently, in order to overcome the positivity issue, a stochastic approach to hyperbolic transport
problems has been proposed, applicable in any space dimension, via the concept of Generalized
Poisson-Kac (GPK) processes [28-31]. These developments originate from the work by Mark Kac
that in a series of lectures, (dated 1956 and subsequently reprinted in 1974), showed that the
one-dimensional Cattaneo equation represents the evolution equation for the probability density
function associated with a simple stochastic differential equation driven by Poissonian
fluctuations [32,33]. The trajectories of the process introduced by Kac are almost everywhere smooth,
contrarily to Wiener fluctuations, usually considered in statistical physics, that are characterized by
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almost nowhere differential trajectories possessing fractal character [34,35]. The transport equations
originating for GPK theory are indeed hyperbolic and involve only the first-order derivatives with
respect to time and space coordinates, but require a vector-valued system of partial probability density
functions [28-31]. This vector-valued description of the concentration, parametrized with respect to
the state of the stochastic perturbation, physically corresponds to a spinorial description of the
concentration fields [36], and is conceptually similar to the 4-wave formulation of the Dirac’s
equation compared to its non-relativistic counterpart (the Schrodinger equation). It is convenient to
refer to it as the “partial-wave formulation” of a hyperbolic transport problem possessing finite
propagation velocity (see Section 2). The importance of this kind of models has been envisaged by
Rosenau in an illuminating article on kinetic theory [37].

Albeit the stochastic theory indicates that the original Cattaneo equation and the stochastic partial-
wave formulation are equivalent in one spatial dimension (see Section 2 for details), there are indeed
subtle issues that arise whenever transport problems in bounded domains (intervals) are considered,
associated with the setting of proper boundary conditions accounting for the wave-like propagation of
the partial concentration waves [38]. While the Cattaneo model admits a stochastic explanation, at
least for one-dimensional spatial problems, the Guyer-Krumhansl model does not correspond to any
underlting stochastic dynamics, and even in one-dimensional problems the associated Green function
may attain negative values [39,40]. For this reason this model and its generalizations are not considered
in the present work.

Due to the practical interest in the development of hyperbolic transport models at nanoscale, and
their theoretical relevance (as only a hyperbolic model can be relativistically covariant, i.e., consistent
with the space-time structure emerging from special relativity [21, 41]), this article analyzes the
mathematical description and some physical implications of the partial wave representation of
hyperbolic transport models of heat and mass transport, focusing on the physical advantages of this
approach compared with the classical one based exclusively on the evolution of the overall
concentration/temperature and on the connection between finite propagation and the flux regularity.
One-dimensional paradigmatic problems are considered, since only in this case the partial-wave
representation can be compared with the corresponding Cattaneo equation for the overall
concentration/temperature field (see Section 5).

It should be mentioned that some of the results obtained may have also some interest in the
formulation of transport equations (continuous hydrodynamic limit) of anomalous transport
processes, e.g. derived from the Continuous Time Random Walk paradigm [42—44], as they suggest
that the stochastic spinorial (partial-wave) description of a process may capture finer details that
cannot be enucleated when solely the evolution equation for the overall concentration is considered.

The article is organized as follows. Section 2 defines the setting of the problem and the different
representations of a linear hyperbolic transport equation in one spatial dimension, based either on the
Cattaneo equation for the overall concentration or on the partial-wave formulation derived from the
undelying stochastic dynamics. Section 3 develops the closed-form expression for the spinorial Green
function in the partial-wave representation. Section 4 analyzes heat transport problems arising from
boundary layer theory in order to show how the occurrence of a finite propagation velocity regularizes
the behavior of interfacial fluxes still maintaining the long-term large-distance properties that can be
derived from the corresponding parabolic models. Finally, Section 5 addresses the simplest conceivable
problem in heat transport: the stationary temperature distribution in a material slab kept at two different
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temperatures at the endpoints. Albeit its apparent ‘’triviality”, the analysis of this problem is physically
enlightning, as it indicates the relevance of the partial-wave formulation, and the possible occurrence
of negative temperature values in particular (and extreme) situations, that cannot be revealed using an
approach exclusively based on the overall concentration (temperature) fields. The case of boundary
conditions on the fluxes, corresponding in parabolic schemes to the Neumann boundary conditions,
has been analyzed in [38] within the partial-wave formulation of hyperbolic transport models. The
analysis is not repeated here and the reader is referred to [38] for details.

2. Setting of the problem

Consider the simplest stochastic motion X(#) possessing finite propagation velocity b, defined by
the evolution equation
dx(t) = b(=1)*"V dt (2.1)

where b > 0 is a constant velocity, and y(¢, 1) a Poisson process characterized by the transition rate
A > 0. This is the classical model proposed by M. Kac in order to derive the telegraphers’ equation
from stochastic grounds [33].

Its statistical description involves two partial probability densities p.(x,f) where
p=(x,t) = Prob [X(t) € (x,x +dx), (=1 = J_rl], (henceforth X(#) denotes the stochastic process at
time ¢ and x(¢) a realization of it), that are solutions of the hyperbolic system of equations

ops(x0) _ _ Op(x0) _

T = b ox /1[17+(x,l) p_(x,t)]

oD D ) ety - pon)] e2)
ot Ox

By analogy, it is possible to infer from this class of stochastic dynamics undulatory transport models
for mass, momentum and energy [31]. Throughout this article we refer mainly to the heat transfer case,
but the analysis of mass transport problems would be completely analogous.

Eq. (2.2) suggests that a one-dimensional heat-transfer model possessing finite propagation velocity,
and fulfilling the positivity requirement (the temperature, viewed as absolute temperature, cannot attain
negative values) would require two scalar fields 7', (x, t) and T_(x, t) possessing the physical dimension
of temperature and evolving according to eq. (2.2), i.e.,

) 08D i o= To(xn)]
ot o0x

GT,(X, t) - b 6T,(X, t) +1 [T+(X, t) _ T_(.x, t)] (23)
ot Ox

with the same meaning for b and A as above. The system’s temperature is the sum of these two fields
T(x,t) =T (x,0) +T_(x,1) 2.4)

It should be stressed that the physical meaning of the two temperatures 7.(x, ) corresponds to the
temperatures associated with the two disjoint particle sub-ensembles characterized by a positive (“+”)

66 9

or negative (“-”) orientation of the local velocity at time ¢ and position x, respectively. As eq. (2.2)

Mathematics in Engineering Volume 1, Issue 2, 224-251.



228

represents the evolution of two waves moving in opposite directions and recombining with each other
at rate A, the two fields T.(x, ) will be simply referred to as the “partial heat waves”.
Considering absolute temperatures expressed in Kelvin, it follows that

T.(x,t)>0 (2.5)

that henceforth will be referred to as the positivity requirement for the two partial heat waves. With
reference to the waves T.(x, 1), the local heat flux J,(x, 7) is defined by the equation

Jox,0) = b [T (x,t) = T_(x,1)] (2.6)

Alternatively, given T'(x, t) and J,(x, 1), the two partial waves can be simply recovered from the relations

1 J,(x,t
n@g:—TmnilLl 2.7)
2 b
The temperature 7'(x, 7) is a solution of the balance equation
0T (x,1) 0J,(x,1)
=— 2.8
ot ox 2:8)
where the heat flux is defined by the constitutive equation
1 dJy(x,1) 0T (x,1)
2 e D =D (29)

where Dy = b*/2 A that, in a heat-conduction problem, corresponds to the ratio k/p c,, where k is the
thermal conductivity, p the density and c, the specific heat at constant pressure. In order to keep strict
the analogy with mass transfer problems, stemming from the mathematically equivalent formulation
of the Fourier and Fick equations for conductive/diffusive fluxes, we have defined the heat flux J,(x, 1)
in eq. (2.6) in a rather uncoventional way, namely as the classical heat flux divided by p ¢,. Equation
(2.9) corresponds to a constitutive equation of Cattaneo type, and from eqgs. (2.8)-(2.9) it follows that
T(x, 1) is a solution of the Cattaneo equation

1 0°T T ’T
_(9 (x,t)+6 (x,t):DOG (x,0)

2.10
21 0 ot o2 (2.10)
Alternatively, one can explicit the heat flux from eq. (2.9), namely

' dT(x,0

J(x,0) = e J,(x,0)= Dy f -0y T 0)
0 0x
oT (x,t
= ¢ J,(x,0) = D(1) * 0 (2.11)
X

where 7. = 1/2 A, the symbol “+” indicates convolution with respect to the time variable from time

t = 0 to the actual time ¢, and D(f) = Dye 7. With this notation, the temperature field is also a
solution of the equation

T 2T 0J,(x,0

D _ gy PTCD _ poiyr, 941 0)

ot ox? ox

(2.12)
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that is formally analogous to the convolution-type equation used for describing anomalous transport
problems using fractional operators (Riemann-Liouville derivatives) [43—45].

Therefore, T'(x, t) can be viewed as a solution of each of the three equations (2.3)-(2.4), (2.10) and
(2.12), that are mathematically equivalent. We refer to eqs. (2.3)-(2.4) as the Poisson-Kac formulation,
to eq. (2.10) as the Cattaneo formulation and to eq. (2.12) as the memory kernel formulation of one and
the same heat transfer problem. The mathematical equivalence between these three formulations for the
evolution equation of the temperature profile 7'(x, t) does not mean that the solutions of the three above
mentioned problems should be physically equivalent. This apparent paradox becomes conceptually
clear if one considers that any balance equation is complemented with a system of initial and boundary
conditions that defines a particular solution uniquely. The way initial and boundary conditions are
expressed depends significantly on the choice of the primitive quantities used to formalize a transport
problem. Let us give an elementary example, as regards the initial conditions.

In the Poisson-Kac formulation of the problem, the basic (primitive) quantities are the two partial
heat waves T.(x, t), and the initial conditions are simply the values attained by these two fields at = 0

T.(x,0) =T.o(x) 20 (2.13)

where T, 0(x) are arbitrary non-negative functions of the position x. Egs. (2.13) define uniquely the
overall initial temperature 7' (x, 0) and the initial heat flux J,(x, 0) via egs. (2.4) and (2.6)

In the Cattaneo formulation, it is natural to express the initial condition in two ways: either (i) by
fixing the initial temperature profile 7'(x, 0) = T(x) and the initial heat flux J,(x,0) = Jo(x), or (ii) by
imposing the initial temperature 7'(x, 0), and its time-derivative at t = 0, 9T (x,1)/0t|,-, = Bo(x). In the
latter case, the initial heat flux can be derived from eq. (2.8) as

J (x,0) = J,(x%,0) - f 00(&) dé (2.14)

where x* is some reference position. The initial flux J,(x, 0) is unambiguously defined in the case of
unbounded propagation, i.e., x € (—o0, 00), as regularity conditions at infinity dictate limy_,o J,4(x,0) =
0, so that, setting x* = —oo, eq. (2.14) becomes

Jo(x,0) = —f 00(&) dé (2.15)

However, the situation is different in bounded domains x € (0, L), where e.g. the heat balance equation
is equipped at the boundaries with Dirichlet-type conditions. In this case, 6y(x) defines the initial flux
J4(x,0) modulo an additive constant equal to the value of the flux at some point x* € [0, L].

As regards the boundary conditions, each transport formulation implies some natural setting of the
boundary conditions. For example, in the Poisson-Kac formulation, this implies to fix the values either
of T.(x,t), of T_(x,0) or of the superposition of the partial waves at the endpoints of the intervals,
enforcing the positivity requirements. Such a setting provides a simple and elegant interpretation of
apparently strange physical phenomenologies arising in the solution of the Cattaneo equation such as
the occurrence of the maximum-flux condition [46,47], as addressed in [38].

With respect to all the other formulations, the Poisson-Kac description, involving the system of two
partial waves 7. (x, t) enforces a more stringent physical condition on the temperature field, namely that
both T.(x, r) should be greater than zero (positivity requirement) and not solely the overall temperature

T (x,t) +T_(x,1) >0 (2.16)
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as in the Cattaneo or in the memory-kernel formulation. The effect of this more restrictive requirement
will become clear in Section 5, in connection with the simplest problem of stationary heat conduction
in a finite domain.

3. Green functions for the Poisson-Kac formulation

In this Section, we consider the propagation of the Poisson-Kac equations (2.2) over the real line,
X € (—o0,00), and the representation of the Green functions for the partial probability waves p.(x, ?).
This is apparently a rather simple problem, as the Green function for the Cattaneo equation 2.10) is
known [48, 49]. Nevertheless, this problem presents some interesting physical issues, by considering
that the fundamental solution for the Cattaneo equation involves the initial values for p(x, ) and its
time derivative dp(x, t)/0t, and some technical problems arise when this information is transferred into
the partial-wave representation.

In point of fact, the latter (partial-wave) representation is physically interesting from several points
of view:

e it enables a fully local description of the transport problem, in that solely the values of p.(x, 1)
and p_(x,?) at any initial time instant ¢ = #, are needed in order to predict its future evolution.
Conversely, in the Cattaneo formulation one need to specify p(x, ty) and dp(x, t)/0t|,=,,, namely
its first-order time derivative;

e imbedding Poisson-Kac processes in the Minkowski space-time of special relativity (in the
present case when only a single spatial coordinate is considered), the partial probability waves
transform as probabilistic spinorial quantities [36], and the associated Green function can be
therefore referred to as the spinorial Green functions of the problem.

By considering that the spinorial Green function has never been explicited and physically discussed, it
justifies the content of the present Section.

In deriving the analytical expression for the spinorial Green function G(x,t), we refer to the
probabilistic notation, namely p.(x, 1), p(x,t) = p,(x,1) + p_(x,t) and J(x,1) = b [p.(x,1) — p_(x,1)].
The transposition to a heat-transfer problem, simply requires the substitution of p.(x, ) with T.(x, 1).

Consider the Cattaneo formulation associated with the Poisson-Kac process (2.1)-(2.2) for x € R,
namely eq. (2.10) with T'(x, #) substituted by p(x, 1), equipped with the initial conditions

op(x,1)

p(x,0) = f(x), pra g(x) (3.1

and with regularity conditions at infinity. The general solution of this problem admits a closed-form
solution [48]

p(x, 1) = Ki(x, 1) * f(x) + Kax, 1) * g(x) (3.2)
where “*” indicates here convolution with respect to the spatial coordinate, h(x) * k(x) = f_ O:o h(x —
&) k(&) dé = k(x) = h(x), and the kernels K (x, 1), h = 1,2 are defined in the Appendix.

Since dp(x,t)/dt = —0J(x,1)/0x, where J(x, 1) is the probability flux, the initial conditions (3.1) can
be expressed in terms of the partial waves as

dpP(x)  dpl(x)
dx dx

(3.3)

fx) = plx) + pl(x), gx)=b [
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In deriving the second eq. (3.3), the extension of the balance equation at t = 0" = lim,_,o &, € > 0 has
been enforced, i.e., dp(x,1)/0tl—+ = —0J(x,1)/0xl;=o+ = —b [Op+(x,1)/0x — Op_(x,1)/dx],_y. From
the regularity at infinity, that holds strictly in the present case, as the kernels possess compact support,
it follows that the probability flux J(x, 7) can be expressed as

Jouf) = fap(”’t) . (3.4)

[ [ EOED peae- [y [ TEUED ey

and consequently the flux J(x, ) attains the convolutional expression

J(x, 1) = Hi(x, 1) * f(x) + Hao(x, 1) * g(x) (3.5)
where « 5%
Ho(x, 1) = —f %dn h=1,2 (3.6)

Substituting the expression for f(x), g(x) in terms of the initial condition for the partial waves pY(x) it

follows that 0 0
dp’(x) _ dp;(x)
dx dx

and analogously for J(x,7) in eq. (3.5). Consider a generic convolutional integral involving the spatial
derivative of the initial profile of the partial probability waves. Enforcing regularity at infinity, it
follows that

d 0
Ko, 1) ) _ f Kox -0 %P

dx
_ f wp‘i@d& f Mp‘l(f)df
BRY: ~  Ox

0K (x, 1)

- Do
=~y P (3.8)

and the evolution equations for p(x, f) and J(x, t) can be expressed as a spatial convolution of the initial
concentration p°(x) = p%(x) + p°(x) and of the initial flux J°(x) = b [pY(x) — p°(x)] as

pCx, 1) = Ki(x, 1) % [ pLx) + p20)| + b Ko, 1) =

(3.7)

= 0| TK(x - €) p°(€)]
Q- [ ; ¢

p(-x’ t) _ 7<1 (.X,', t) _67(2()6’ t)/a-x % po(x) (3 9)
Jx,n )\ Hi(x,t) —0Ha(x,1)/0x JO(x) '
The expression for —9H,(x, t)/dx is straightforward since
67_(2()6', t) 0 67(2(77’ l) 6(](2()(:’ t)
 ox  Ox f o ot (3.10)

and is explicitly reported in the Appendix. In turn, it is much more cumbersome to derive the expression
for H(x, ) starting from its definition (3.6). For this reason, it is suitable to follow a more “physically
oriented” approach to this problem.
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To begin with, observe that the flux J(x, 7) satisfies the same equation as p(x, ), i.e.,
0 J(x,1) 0J(x,1) O J(x,1)
+24 =D,
or o1 O o
Next, consider two transport problems, differing from each other in the initial conditions, as depicted
in Figure 1:

(3.11)

e Case (1): Symmetric initial conditions for the partial probability waves, i.e.,

o0(x)

plx) = pl(x) = > (3.12)
which implies
P’ =6x), =0 (3.13)
e Case (2): Antisymmetric initial conditions for the partial probability waves, i.e.,
o(x
plx) = =pl(x) = % (3.14)
and therefore, .
Pw=0, I lgx) = 5(x) (3.15)
Case (1) Case (2)
_M + ‘+
p2(z) = d(z)/2 || p(z) = d(z)/2 pi(z) = d(z)/2
o &

A 4

Figure 1. Pictorial representation of the initial conditions in terms of the partial waves p?(x)
and of the concentration/flux fields p(x,0), J(x,0), for the two problems considered in the
main text.

Let p®V(x,1) and p®(x,1) be the solutions of the two above defined problems, and J®(x,f) the
associated fluxes. From eq. (3.9) it follows that

pP(x, 1) = Ki(x, 1) (3.16)
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In the antisymmetric case, the solution p'®(x, 1) is nothing but the normalized flux J!(x, f)/b associated
with Case (1). This follows from the fact that J(x, 1) is a solution of the same equation, and that eq.
(3.15) are the initial conditions for the flux in Case (1). Therefore,

JO, 0 W 0K (x, 1) . 9K (x, 1)

PPn="— - [P + p° ()| = - - (3.17)
But from eq. (3.9), substituting the initial conditions for Case (1), one obtains that
JV(x, 1) = H(x, 1) (3.18)
From eqs. (3.17)-(3.18) the expression for H,(x, t) follows
H(x, 1) = —b° % (3.19)

Therefore, expressing p(x, t) and J(x, t) in terms of the partial waves p.(x, t), eq. (3.9) takes the form

( P+(x, 1)+ p_(x, 1) ) _ ( K _bach/ax )*( p?-(x) + Pg(x) ) (3.20)

p+(,)=p-(x,t) |\ =b3K/0x  3/0 P = p2(x)

in which the matrix-valued kernel is expressed in terms of /K (x, #) and of the first derivatives of 7 (x, ).
In eq. (3.20) the functional dependence of the kernels on x and ¢ has been omitted, for lightening
the notation. Expliciting with respect to p.(x,?), the spinorial Green function G(x, ¢) for the partial
probability waves,

0
P =Gl i’ b= DD (] ean

follows

(3.22)

G(X, t) _ %( 7(1 — 2b8x‘K2 + (9;7(2 7(1 - 8[7(2 )

7(1 - (9,7(2 7(1 +2b (%ﬂ(z + 8t7(2

where 0,7G = 0K, (x,1)/0x, 0,9 = 0K (x, t)/0t. Performing the algebraic manipulations, and using
the expressions for the kernels and their derivatives reported in the Appendix, a compact expression for
G(x, 1) can be derived: the spinorial Green function G(x, t) is the superposition of two contributions,

G(x, 1) = GOx, 1) + G9(x, 1) (3.23)

where G (x, t) is an impulsive kernel,

1l 0x—=b1) 0
© Y
G x,t)=e ( 0 S(x+ b 1) ) (3.24)
and G'“(x, 1) is the continuous, compactly supported part,
, Ae (t+x/b)1,(12)/z Iy(12)
© — ht— ! 0 3.25
6 = St (e 52
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where z = /1> — x2/b?, and n(¢) is the Heaviside step function, n(¢) = 1 for & > 0 and n(¢) = 0 for
¢ <0.

Expressed with respect to the partial probability waves, the spinorial Green function G(x,?) is
represented by a symmetric matrix attaining a very compact form. Modulo the prefactor
A(x,t) = de (bt — |x|)/(2 b), the diagonal entries G(lc)1 (x,0), G(Zf)z(x, 1) can be expressed in terms of a
single function G(x,t; b, 1) = (t + x/b)I;(1z)/z, depending on the parameters b and A characterizing
the stochastic process,

G\\(x,0) = A(x, D G(x,1;b,0),  G3)(x,1) = A(x, 1) G(x, 1; b, 1) (3.26)

where only the sign of the velocity +b changes. This is related to the fact that p,(x,?) represents a
forwardly propagating wave, while p_(x, t) propagates backward in space. As a consequence of this,
p+(x, 1) admits solely an impulsive contribution centered at x = b ¢, while the Dirac-delta impulse for
p_(x,1)is located at x = —b t.

0 10 20 30 40
t

Figure 2. Amplitudes of the impulsive contributions g..(¢) vs ¢ of the spinorial Green function
at Dy = 1, p%(x) = p°(x) = 6(x)/2, for several values of b. Symbols represent the results
of stochastic simulations (open symbols refer to g,(¢), filled symbols to g_(¢)), lines the
expressions g.(f) = e~*!/2, deriving from the theory, where A = b*/2 D,. Line (a) and (O,
m): b = 0.1, line (b) and (o, ®): b = 0.5, line (c) and (A, A): b =1, line (d) and (v, ¥): b = 2,
line (e) and (¢, ¢): b = 10.

The analytical expressions (3.21)-(3.25) obtained for p.(x, ) can be compared with the stochastic
simulations of the random-walk process (2.1). In the simulations, an ensemble of N, = 5 X 109
particles is considered, initially located at x = 0, and evolving in space according to eq. (2.1). As
initial condition for the stochastic perturbation, let p° = Prob [(—I)V(O’ﬁ) = 1] and p° = 1 — p), which
imply that p.(x,0) = p" 6(x).

To begin with, consider balanced initial conditions, namely 1_92 = p° = 1/2, setting Dy = 1 and
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varying b. From eqs. (3.21)-(3.25) the partial-wave profiles are given in this case by the expressions

-At -At

> o(xFbt)+ 15

Pty =& ) hidz)

(b1 —|x) [(r £2 + I z)] (3.27)

Let g.(7) be the amplitudes of the impulsive contributions for the two partial waves. Figure 2 depicts the
time evolution of g.(¢) for several values of b obtained from stochastic simulations (symbols) compared
with the analytical result that predicts g.(f) = e*/2. Since Dy = 1 a.u. is kept fixed, different values of

b determine different A’s, i.e., g.(f) = exp(=b? t/2 Dy)/2, and therefore the relaxation of the impulsive
contribution is faster for higher velocities b.

g 015 | i
¥ H
BT =g
5 e 3
& 005 | <
0 1
1 -05 05 1
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= 008 =
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4 006 | g
X 004t 5
Q g Q
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8 -4 0 4 8 g - 0
x (c) x (d)

Figure 3. Continuous component of the spatial profiles of p(x,f) and of its partial waves
p(x,1) for b = 1, Dy = 1 a.u., starting from the balanced impulsive condition p%(x) =
p°(x) = 6(x)/2 Lines represent the graphs of the analytical expressions (3.21), (3.23), (3.25),
symbols the stochastic simulation results. Lines (a) and (O) refer to p(x, ), lines (b) and (o)
to p.(x, 1), lines (c) and (e) to p_(x, ). Panels (a) to (d) correspond to increasing time instants
t=1, 4,8, 20, respectively.

Figure 3 reports the comparison of the continuous (smooth) part of the partial-wave profiles and
of the overall density p(x, ), in the balanced case obtained from stochastic simulations (symbols) and
from the analytical expressions (3.21), (3.23), (3.25) at several time instants. An analogous plot is
reported in Figure 4 in the unbalanced case where 1_)3 =1,p" =0.
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Figure 4. Continuous component of the spatial profiles of p(x,?) and of its partial waves
p+(x,t)forb = 1, Dy = 1 a.u., starting from the unbalanced impulsive condition pY(x) = §(x),
p%(x) = 0. Lines represent the graphs of the analytical expressions (3.21), (3.23), (3.25),
symbols the stochastic simulation results. Lines (a) and (O) refer to p(x, ), lines (b) and (o)
to p.(x, 1), lines (c) and (e) to p_(x, ). Panels (a) to (d) correspond to increasing time instants
t=1, 4,8, 20, respectively.

In both cases the agreement between stochastic simulations and the analytical expression is
excellent, and the small fluctuations at short time scales (panels (a) in Figures 3-4) derive from the
relatively small number N, of particles considered in the stochastic simulations.

4. Regularization of boundary-layer problems

In this Section we consider simple boundary-layer problems approached within the hyperbolic
model described in Section 2, in order to show that the constraint of a finite propagation velocity,
characteristic of eq. (2.3), regularizes the singularities often appearing in boundary-layer analysis
associated with the interfacial fluxes.

Consider the conduction problem eq. (2.3) on the semi-infinite line x € (0, o), filled with a material
phase at rest, characterized by the thermal diffusivity Dy, and assume the presence of an interface (wall)

at x = 0. Without loss of generality, suppose to shift the temperatures so that the initial temperature is
equal to zero,

T(x,0)=T.(x,0)=T_(x,0)=0 4.1)
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while the wall temperature at x = 0 is kept constant at a given value 7 > 0,
T70,0)=T.0,0)+T-(0,1) =T 4.2)
This problem can be conveniently approached in the Laplace domain, indicating with s the Laplace

variable, and with a “hat”, f(s) the Laplace transform of a function f(¢) of time ¢, f(s) = L[f(?)].
From eqgs. (2.8)-(2.9) one obtains

dJ(x, -
M = —sT(x,s)
dx
dT (x, s) s 24\ —
p = - (ﬁ + ﬁ) Jy(x, ) 4.3)

where T(x, s) and Z](x, s) are the Laplace transforms of T'(x,7) and J,(x, 1), respectively. It follows
from eq. (4.3) that T'(x, s) satisfies the second-order equation

T (x, 5) B s

N 2 172
e HOVICONTOE (l% - D—O) (4.4)

where Dy = b?/2 A is the thermal diffusivity. Taking into account the regularity conditions at infinity
(x — o0), and enforcing the boundary condition (4.2), the Laplace transform of the normalized thermal
profile g(x,t) = T(x,t)/T, is given by

1 1 x p\ b
-~ - ex _ i | - = 4.5
q(x,s) Se S exp[ b \/(S+2DO) 4D(2) 4.5)
Considering that [50]
I c Vi — a?
L [e‘“ V(”C)z_cz] =e"0(t—a)+ ace‘”—( — ) nt - a) (4.6)
—a

where, as in the previous Section, 77(€) is the Heaviside step function, /;(¢) the modified Bessel function
of the first kind and order 1, and @ = x/b, ¢ = b*/2 D, = 4, it follows from eqs. (4.5)-(4.6) that

1 t I (A T2 — Xx?/D?
g, 1) = e VP n(t — x/b) + % nt—x/by | e ( )

x/b \/Tz - )Cz/b2

Figure 5 panels (a) and (b) depict the normalized thermal front g(x, ) vs x at several time instants
obtained from (4.7) at two different values of the propagation velocity: b = 1 a.u. (panel a), and b = 10
a.u. (panel b), keeping fixed Dy = 1 a.u.

dr 4.7)
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g{x.t)

qix.t)

gix.t)

Figure 5. Spatial evolution of the normalized thermal front g(x,?) = T(x,1)/Ty vs x at
Dy = 1. The arrows indicate increasing time instants # = 1,2, ..., 10. Panels (a) and (b) refer
to the Poisson-Kac (Cattaneo) solution (4.7) at b = 1 and b = 10, respectively. Line (a) in
panel (a) depicts the envelope of the temperature values at the moving front edge x*(r) = bt.
Panel (c) depicts the Kac-limit solution associated with the parabolic model (4.8).

Observe that the Poisson-Kac (Cattaneo) model is characterized by a discontinuity of temperature
profile at the moving front edge x*(f) = bt, since from eq. (4.7) it follows that g(x*, ) = lim,_, g(x* —
g) = e/ = X200 g > (), while g(x%,1) = lim,_oq(x* + &) = 0. This edge discontinuity can
be clearly observed from the data at lower values of b (such as » = 1 in panel (a)), and decreases
exponentially as the front propagates. Panel (c) in figure 5 corresponds to the Kac-limit solution of the
Poisson-Kac (Cattaneo) model when b, A — oo, keeping fixed the group Dy = b*/2 A, that provides the
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classical parabolic model
AT (x,1) T (x,1)
=D,
ot Ox?
equipped with the same initial and boundary conditions, that in the present case is given by T'(x, ) =
Ty erfc(x/2 v Dyt), where erfc(¢) is the complementary error function of argument &.
Next, consider the interfacial flux. From the second equation (4.3) and from (4.5) it follows that

(4.8)

~ T
T (%, 8) = ——— ¥ (4.9)
52 s
Vi T o,

so that the Laplace transform of the normalized interfacial flux jo(¢) = J,(0,7)/T) is given by

Jols) = (4.10)

ﬂ + 5 b
bz DO JS"‘ZDO 4D2

the inverse Laplace transform of which takes the expression [50]

jot) = be 2P0 [ b 4.11)

2 Dy '
where [)(£) is the modified Bessel function of the first kind and order 0. Let us comment the physical
properties underlying these expressions.

e Since p(0) = 1, it follows from eq. (4.11) that
Jo(t =0) = J,(0,0)=bT, (4.12)

1.e., the interfacial flux in a transport model possessing finite propagation velocity is always a
smooth and bounded function of time, even at t = 0. Divergence of Jy(t = 0) can occur only if
one let b — oo, such as in the Kac limit of the model leading to the parabolic heat equation (4.8).
In point of fact, the interfacial flux deriving from the solution of the parabolic transport model is

expressed by
Dy

Jo() = | — (4.13)
nt

and displays the characteristic power-law singularity jo(z) ~ ¢~'/? for t — 0.
e From the asymptotic expansion of the Bessel function for large arguments & >> 1,
I(€) = &5 [1 + O(1/&)] | \J2 &, one obtains for b*t/2 Dy > 1,

D 2D
Jo(®) = \/n—g [1 +O(th°)] (4.14)

implying that, for any values of D, and b, the long-time scaling behaviour of the interfacial flux
coincides with that of the corresponding parabolic transport model. This phenomenon is depicted
in Figure 6.
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e In a heat transport model possessing finite propagation velocity the invariant rescaling, T(x, 1) =
#(x/ \t) characterizing the parabolic limit (4.8) does not hold true, other than in the asymptotic
limit, i.e., for large time scales.

10?
~ 10!
3
10°
-1
10 ' '
107 107 107! 10!
t

Figure 6. Normalized interfacial flux jy(z) vs t (at x = 0) for the Poisson-Kac (Cattaneo)
model, eq. (4.11) at Dy = 1. Line (a) refers to b = 1, line (b) to b = 10, line (c) to b = 100,
line (d) to the Kac-limit (parabolic transport model), eq. (4.13).

The regularization effects induced by a finite propagation velocity, shown above with the aid of a
simple example, arise also for more general boundary-layer problems. Indeed this is a generic property,
dictated by the fact that the fluxes in this class of models are necessarily bounded due to the constitutive
equation (2.6) whenever the the initial temperature field 7'(x,# = 0) is bounded and the boundary-
conditions are non-singular function of time.

In higher dimensional problems, the analogy between the Cattaneo equation and stochastic models
of transport possessing finite propagation velocity breaks down [29], but the qualitative result of a flux
regularization applies also to the Generalized Poisson-Kac (GPK) formulation of the (heat) transport
equations. For details on the GPK formulation of transport models see [31].

Below, we address another classical two-dimensional problem that, under some simplifying
assumptions, involves a one-dimensional formulation of the stochastic perturbation. Consider a
two-dimensional straight channel of width W, in which a stationary velocity field v(x) = (v,(y),0) is
defined (x is the axial coordinate, and y the transversal coordinate). The inlet fluid stream enters at
constant temperature 7T;,, while the solid walls of the channel are kept at constant temperature 7.
This is the classical Leveque problem [51], that under the simplifying assuption of negligible axial
conduction, is described by the equation [52]

OT(x,y,1) OT(x,y,1) OT(x,y,1)
— =y, =D, 4.15
= n() = "5 4.15)
equipped with some initial condition 7'|,-y = T;,(x,y), and with the inlet and wall conditions
T|x:0 = TO ’ le:O,W = Tw (416)

Mathematics in Engineering Volume 1, Issue 2, 224-251.



241

In the Leveque boundary-layer problem one is mainly interested to the stationary heat flux at the solid
walls, that is related to the width of the thermal boundary layer that develops along the channel for
axial lengthscales shorther than the width of the channel itself.

The corresponding Poisson-Kac (Cattaneo) formulation of the problem involves two partial
temperature waves T.(x,y,f). This is due to basic simplifying assumption of neglecting axial
conduction, meaning that the unique source of ‘“stochasticity” is related to transversal heat
conduction. The balance equations for 7.(x, y, f) are thus given by

6T+(x, y’ t) _ 6T+(x, y’ t) 6T+(x, y’ t)
Ot - vX(y) 8x b 8y /l [T+(x’ )’, t) T_(X, y’ t)]
T (x,y,0)  _ o3 oT_(x,y,1) b OT_(x,y,1) F A [Ty f) = T-(xoy.0)]
ot 0x oy

(4.17)

We consider a shear flow, v.(y) = y, W = 20, Dy = 1 and T,, = 1, T;, = 0 a.u., and solve eqgs.
(4.17) with a finite-difference scheme in a channel possessing a length L that is much larger than
W, L = 100. From the stationary solutions 7;(x,y) = lim, . 7T.(x,y,?), the normalized wall flux
Jo(x) =b[T(x,0) = T*(x,0)]/[T,, — T;] 1s obtained, and its graph is depicted in Figure 7 for different
values of the “stochastic” velocity b. These data should be compared with the boundary-layer solution
of the parabolic eq. (4.15) that provides the classical Leveque scaling for a shear flow (i.e., for a flow
vanishing at the wall, and locally linear in the neighbourhood of y = 0),

A a -
o) ===, A= [ f el dn] (4.18)
X 0
10'
—_
ST
~
107!

Figure 7. Stationary wall flux jy(x) vs x for the Poisson-Kac transport model (4.17) in the
presence of a shear flow v,(y) = y at Dy = 1 a.u. Lines from (a) to (c) refer to increasing
values of the velocity b = 1, 3, 10, respectively. Line (d) represents the Leveque scaling
(4.18), jo(x) = A/x'/3, with A ~ 0.5383.
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Also in this case, the Poisson-Kac solution possesses the same qualitative features envisaged in the
previous boundary-layer problem, namely: (i) the finite propagation velocity regularizes the behaviour
of the flux at the interface, and (ii) the asymptotics (in the present case, the large-distance properties)
of the Poisson-Kac solution converges to that of the corresponding (limit) parabolic transport model.

5. Stationary solutions with Dirichlet conditions: positivity

Consider the simplest heat transfer model on the interval [0, L], where the temperature is kept fixed
at the endpoints at two constant values Ty, T > 0,

T(X)|x=0 = T, T(X)|= =Ty (5.1)

Without loss of generality, suppose T, > T,. From the Cattaneo and from the memory-kernel
formulations, one derives immediately that at steady-state, for sufficiently long times (t — o00),
d*T(x)/dx* = 0, thus
X
Tx)=To+TL—To) 7 (5.2)

as one would obtain by enforcing the Fourier law with a constant heat conductivity.

Let us analyze the same problem within the Poisson-Kac formulation. This formulation differs from
the other two in that, from physical reasons, a detailed positivity requirement should be enforced on
each T.(x) separately, as expressed by (2.5). Consider the Poisson-Kac heat transport model (2.3).
From the overall balance eq. (2.8) at steady state it follows that J,(x) = Jy = constant, and from eq.

(2.3) one obtains
dT.(x) dT_(x) A
= =——Jo=-B 5.3
dx dx p2 " (5-3)

where B = Jy/2 D,. Therefore,

T.(x)=A-Bx, T (x)=C-Bx 5.4)
Imposing the Dirichlet boundary conditions (5.1) to 7(x) = T,(x) + T_(x), one obtains

A+C=T, A+C-2BL=T, (5.5)

which implies that B = (Ty — T.)/2 L < 0. Consequently, the stationary profiles for 7.(x) can be
expressed as

(T, —Ty) (T, —T)y)
T =Ty-C+—x, T -(x)=C+ ——— 5.6
+(x) =T 7" (x) YA (5.6)
where C is a parameter to be determined. Before expliciting C as a function of the other physical
parameters, it is important to stress that the detailed positivity requirement reduces in the present case,

(as Ty > Ty, by hypothesis), to T.(x)|,=o > 0, and implies C >0, Ty — C > 0, i.e.,
0<C<T, (5.7)

Condition (5.7) can be interpreted as follows: there is a C*-family of solutions of the stationary partial
wave equations (2.3), parametrized with respect to the real-valued parameter C, such that, if C satisfies
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the inequalities (5.7), the resulting stationary profiles 7°.(x) satisfy the detailed positivity requirement
(2.5).

The constant C entering eqgs. (5.6) is not independent of the flux Jy, that in turn is related to 7.(x)
by Jy = b [T(x) — T_(x)]. Therefore,

To-T, Jo b
B = = T -T_ =—(Ty-2 .
N3 3Dy [T (x) (0] 2Do( 0—20) (5.8)
which returns . D D
C:—O——%T —ET] 5.9
2[ pL) ° T Lt 69
Condition C > 0 is always satisfied while, C < T, implies that
T bL
Loy ==p (5.10)
Ty Dy

This means that for any positive value of T, there exists a critical value T} of T, expressed by eq.
(5.10),i.e.,T; = Ty r*, such thatif T; > T then the stationary partial temperature waves attain negative
values.

This result can be easily derived within the Poisson-Kac formulation of the transport problem, in
which the basic quantities are the partial temperature waves 7. (x) propagating at constant velocity b
in the two opposite directions, while it is hidden within the Cattaneo and in the memory-kernel
formulations which consider exclusively the overall temperature field 7'(x, ). Of course, due to the
equivalence between these three formulations in one-dimensional spatial problems, one would in
principle derive this result from the Cattaneo formulation, by imposing as a consistency requirements
the conditions

H@i%ZO (5.11)

that corresponds to eq. (2.7). But, the positivity requirement of the quantities in eq. (5.11) cannot be
easily derived within the Cattaneo approach, as it is an intrinsic by-product of the stochastic
formulation of the process in terms of partial waves.

In order to avoid misunderstandings, it is important to stress out that the critical ratio r*, can hardly
be met in real physical experiments. The ratio r* is proportional, modulo an additive unit constant, to
the ratio of the velocity of the thermal wave b times the characteristic length of the specimen, divided
by the “thermal diffusivity” D,. For a metallic object (say brass), Dy = 3x 107 m?/s,and b = 5.5x 10°
m/s, for silicon Dy = 9.4 x 107 m?/s and b = 9.7 x 10* m/s [53]. If one consider a specimen of
length L = 1 cm, it follows that 7* > 10° in both cases. Therefore, if one side of the sample is kept at
constant temperature Ty = 1 K, the critical temperature at the other endpoints is higher than T; = 10°
K, which is approximately the order of magnitude of temperature of the convective zone of the sun, the
upper layer of the sun’s interior. Therefore, one should not be worried about the violation of positivity
requirement when using the one-dimensional Cattaneo model in real-world heat transfer experiments,
as for such high temperature differences, other physical phenomena enter into play (changes of state),
and the simple (linear) formulation of the heat transfer problem becomes meaningless.

Nevertheless, the conceptual and theoretical importance of this result is rather clear: it indicates a
criticality in the heat transport model based on the Cattaneo equation (breakdown of positivity of the
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partial temperature waves) that can be discovered only within the stochastic (partial wave) formulation
of the problem.

To give a numerical example, set Dy = L = Ty = 1 au., T, = 5 a.u. and vary the velocity
b. Figure 8 depicts the steady-state profiles above (b = 4.5, panel a) and below (b = 3.5, panel b)
the threshold b* defined by eq. (5.10). Fixing T, Ty, Dy, and L, the threshold in the velocity is
given by b* = Dy (T, — Ty — 1)/L, and negative partial temperature profiles are expected for b < b*.
In the present case b* = 4. Below the threshold b* (panel b), while the overall temperature profile
reproduces, as expected, the linear behavior ranging from 7, to 7, the partial temperature 7', (x) attains
small but negative values in the neighbourhood of x = 0. The occurrence of negative values becomes
progressively amplified as T, /T, increases above the threshold given by 1 + b L/D,,.

5

4 -

Tx), T(x), T.(x)

T(x), T.(x), T{x)

0 0z 04 06 03 1
x (b)

Figure 8. Steady-state temperature profiles at Dy = L = Ty = 1 a.u., T, = 5 a.u. for two
different values of b: b = 4.5 > b* (panel a) and b = 3.5 < b* (panel b). Lines (a) refer to
T(x), lines (b) to T.(x), lines (c) to T_(x), while horizontal lines (d) depict the threshold of
vanishing temperature values.

The time evolution of 7,(x,7) in the case b = 3.5 (i.e., above the threshold ensuring positivity)
is depicted in Figure 9. The initial condition is set uniform, 7(x,0) = Ty and 7,(x,0) = T_(x,0) =
Ty/2. The occurrence of negative values of 7. (x, ¢) stems from the recombination dynamics with the
backpropagating wave T_(x, t) originating from x = L = 1, which is characterized by the highest value
of boundary temperature 7, and appears starting from the time instant 7. = L/b > 0.2 (just before the
time instant corresponding to line (¢) in figure 9), when the effects of the backpropagating partial wave
reach the other endpoint x = 0, determining negative values of 7', (0, ¢) just to compensate the fact that
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T_(0,1) > Ty.

2.5

T.(xt)

Figure 9. Dynamic evolution of 7', (x,?), for Dy = L =Ty = 1T, =5, b = 3.5 a.u. starting
from a uniform initial temperature profile as described in the main text. Lines from (a) to (e)
refer to increasing time instants t = hAf, At =0.1,h=1,...,5.

From this analysis it follows that, in the setting of a linear hyperbolic transport scheme on an
interval, the Dirichlet boundary conditions (5.1) should be modified in order to ensure the fulfillment
of positivity requirements. The simplest way to modify eq. (5.1) is to consider

T.(x,)lx=0 = [To = T-(x, Dl=0] (5.12)

and
T_(x,0)|=r = [T — To(x,0)|5=r] (5.13)

where [£] indicates the positive truncation of its argument &, namely [£] = &n(€), where n(¢) is the
Heaviside step function, [£] = & for & > 0, [€] = O for & < 0. Observe from eqs. (5.12) that
the boundary condition at x = 0 defines the value at this endpoint of the forward propagating wave
T,(x,1), given the external temperature 7y and the value of the partial temperature deriving from the
backpropagating wave 7_(x,t) incoming from positive x-value. The same argument with reversed
orientation applies to (5.13) at the other endpoint x = L.

From eqs. (5.3) and (5.12)-(5.13) it follows that at steady state

T.(x)=T; —Bx, T (x)=T; —-B(x-1L) (5.14)

where T; and T, are the actual values of T, (x) and 7_(x) at x = 0 and x = L, respectively.

From T, > T, it follows that Jy < O which implies that T, (x) < T_(x). Therefore T, + BL-T; > 0,
and thus T, — T.(L) > 0. Therefore, T, = Ty, so that the boundary condition at x = L is of regular
Dirichlet type, namely T_|,-; = T, — T|,=1.

This means that positivity issues can arise solely in the neighborhood of x = 0, as also observed
from the graphs of the temperature profiles depicted in figures 8 and 9. Enforcing eq. (5.2), two cases
can occur:
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e cither 7p — T_(0) > 0, so that 7,(0) + T_(0) = Ty, and this occurs if condition eq. (5.10) is
satisfied. In this case the regular profile (5.2) is observed at steady state;

e or Ty — T_(0) < 0, so that 7 = 0, and correspondingly T'(0) = T; > T,. This means that the
stationary profiles of the partial temperature waves are given by

T.(x)=-Bx, T _(x)=T,+2BL-Bx (5.15)

and the value of the constant B follows from the condition

dT bl A
O g T = 21, + 2B L) (5.16)
dx b b
that implies
b1,
2 Do
B=— (5.17)
L+

so that the temperature value at x = 0% is given by

Ty
bL

Dy

T(0" = " (5.18)
In this case, the difference between the actual value of 7(0") and the value T, externally imposed

1S
T, — To(l + bD—I(;)

T -T, = (5.19)

It is rather clear the physical phenomenology originating the possible occurrence of negative values
at x = 0, or the discontinuity at x = O between reservoir temperature and the actually temperature at
x = 0". If the endpoint temperature 7 is sufficiently high, the backpropagating wave 7_(x) may attain
at x = 0 values greater then T,. From this observation, it follows that a mismatch (discontinuity) will
always arise at x = 0 if 7 = 0. Using the boundary conditions (5.12), the Poisson-Kac formulation
of the hyperbolic heat transfer would predict at x = 0 a value of temperature 7(0") expressed by eq.
(5.18). While T = 0 [K] is a limit temperature value that cannot be physically reached, the transposition
of the same problem to a mass-transport situation is physically relevant. It indicates that, in the case
of hyperbolic transport, the Dirichlet problem when one of the endpoints (x = 0) is kept at vanishing
concentration (corresponding to the case of a perfectly absorbing boundary) may not admit solution
in which the partial concentrations are strictly non negative, or better to say, it may admit a solution
satisfying the positivity requirement, by applying the modified boundary conditions (5.12)-(5.13), in
which a sudden concentration jump occurs at one boundary as predicted by eq. (5.19).

6. Concluding remarks

In this article, several prototypical problems involving heat/mass transport models possessing finite
propagation velocity (hyperbolic models) have been solved in closed form, and their physical
implications thoroughly discussed. Two qualitative results are worth of special attention.

The finite propagation velocity induces as a by-product the regularization of the associated fluxes
(in the meaning that it eliminates the singularities that may characterize the initial temporal/spatial
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scaling of the fluxes associated with a classical parabolic transport model involving Fourier/Fick
constitutive equations), still maintaining a perfectly analogous long-term behavior observed in their
parabolic counterparts. This is a nice and physically consistent result, as it indicates that the
occurrence of singularities in boundary-layer problems analyzed within the paradigm of parabolic
transport models, are essentially - to quote Miiller [21] - an artifact of the oversimplified assumption
of strictly Fickian/Fourier constitutive models at very short time scales. In principle, it would be
possible to verify experimentally this claim, although it is rather clear that any experimental
falsification of this property, would automatically question the basic assumptions of special relativity,
as with reference to the problem treated in Section 4, |J(0,7)| < ¢ Ty, where c is the velocity of light in
vacuo.

The second general observation that follows from the present analysis is that, although formally
equivalent, the Cattaneo and the Poisson-Kac (stochastic) formulation of a heat/mass transport
problem in one spatial dimension display conceptual differences when boundary value problems over
finite domains (intervals) are considered. This depends on the physical information that is implicitly
imbedded into the decomposition of a concentration field (say 7'(x, 7)), solution of a one-dimensional
Cattaneo equation, into partial concentration waves (7.(x,?)), each of which, separately, should
satisfy a physically grounded positivity requirement, 7.(x, t) > 0.

These observation can be conceptually extended to non-linear transport models and to higher
dimensional systems. In the latter case, it is sufficient to consider for the stochastic-based formulation
the generalization of the Poisson-Kac models developed in [29-31]. Of course, the connection with
the Cattaneo model in the latter case cannot be performed as the Cattaneo equation in higher
dimensions violates the positivity requirements and cannot be recovered from any stochastic model.

The extension of the analysis developed in this article for the spinorial Green function of the one-
dimensional Poisson-Kac model can be in principle extended to spatial dimensions higher than one,
starting from the mathematical works by Kolesnik [54-56] for some classes of Generalized Poisson-
Kac processes.

Appendix: Explicit representation of Green-function kernels

In this Appendix, the analytical expressions for the kernels necessary to explicit in closed form the
spinorial Green function G(x, ¢) are reviewed. Setting

= P- 2P (6.1)

the kernels K (x, 1), Ks(x, f) entering the general solution of the Cattaneo transport scheme are given
by

At —At
Kix) = S (64 b0+ 6= b0l + M;b (x4 51) — nx— boy] 12
/1 At
2e b [n(x+b1t) —n(x—b1)] I(12) (6.2)
—At
Ko(x, 1) = Z—b [n(x+bt) —n(x—b1)] Ip(1z2) (6.3)
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where 1y(z), 1;(z) are the modified Bessel functions of the first kind of order O and 1, respectively.
Consequently,

% - %ﬂt [6(x +b1) +6(x — b1)] + “;;z [n(x +b1) = n(x - b )] @
- ﬁ; Zl [n(x +b1) = n(x — bD)] Io(12) 64)
and (et e Axe I,(12)
— = 5g [6(x+bt)—6(x—bt)] - —5 [n(x+bt) —n(x—b1)] (6.5)

where the properties 1,(0) = 0, dIy(z)/dz = I;(z) have been enforced.
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