In the paper, based on Erdélyi-Kober fractional integrals ρKαχ+f and ρKαχ−f for any χ∈[a,b] with f∈Xpc(a,b), authors establish some new Hermite-Hadamard type inequalities for convex function. The obtained inequalities generalize the corresponding results for Riemann-Liouville fractional integrals by taking limits when a parameter ρ→1. As applications, the error estimations of Hermite-Hadamard type inequality are also provided.
Citation: XuRan Hai, ShuHong Wang. Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals[J]. AIMS Mathematics, 2021, 6(10): 11494-11507. doi: 10.3934/math.2021666
[1] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[2] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[3] | Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043 |
[4] | Mohamed Jleli, Bessem Samet . Nonexistence for fractional differential inequalities and systems in the sense of Erdélyi-Kober. AIMS Mathematics, 2024, 9(8): 21686-21702. doi: 10.3934/math.20241055 |
[5] | Miguel Vivas-Cortez, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor . Some new generalized $ \kappa $–fractional Hermite–Hadamard–Mercer type integral inequalities and their applications. AIMS Mathematics, 2022, 7(2): 3203-3220. doi: 10.3934/math.2022177 |
[6] | Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814 |
[7] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[8] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
[9] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[10] | Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273 |
In the paper, based on Erdélyi-Kober fractional integrals ρKαχ+f and ρKαχ−f for any χ∈[a,b] with f∈Xpc(a,b), authors establish some new Hermite-Hadamard type inequalities for convex function. The obtained inequalities generalize the corresponding results for Riemann-Liouville fractional integrals by taking limits when a parameter ρ→1. As applications, the error estimations of Hermite-Hadamard type inequality are also provided.
Fractional calculus is a field of applied mathematics and deals with derivatives and integrals of arbitrary orders (including complex orders). Although the definitions for fractional integrals are inconsistent and work in some cases but not in others, there are almost practical applications and profound impact in science, engineering, mathematics, economics, and other fields.
Suppose that (a,b) is a finite or infinite interval of the real line R, where a<b and a,b∈[−∞,+∞], and α is a complex number with Re(α)>0. Let Γ(⋅) be the Euler's gamma function given by
Γ(χ)=∫∞0τχ−1e−τdτ. |
In [20], Podlubny introduced the left-side and right-side Riemann-Liouville fractional integrals of order α of a function f as follows:
Rαa+f(χ)=1Γ(α)∫χa(χ−τ)α−1f(τ)dτ | (1.1) |
and
Rαb−f(χ)=1Γ(α)∫bχ(τ−χ)α−1f(τ)dτ, | (1.2) |
respectively, where f is a function on the interval [a,b] such that (χ−τ)α−1f(τ)∈L[a,b] for any χ∈[a,b].
In [22], Samko introduced the left-side and right-side Hadamard fractional integrals of order α of a function f as follows
Hαa+f(χ)=1Γ(α)∫χa(lnχ−lnτ)α−1f(τ)dττ | (1.3) |
and
Hαb−f(χ)=1Γ(α)∫bχ(lnτ−lnχ)α−1f(τ)dττ, | (1.4) |
respectively, where f is a function on the interval [a,b] such that (lnχ−lnτ)α−1f(τ)τ∈L[a,b] for any χ∈[a,b].
Suppose that Xpc(a,b) is the space of the complex-valued Lebesgue measurable functions f on [a,b] with ‖f‖Xpc<∞, that is
Xpc(a,b)={f:[a,b]→C|‖f‖Xpc<∞}, |
where the norm ‖f‖Xpc is
‖f‖Xpc=(∫ba|τcf(τ)|pdττ)1/pfor1≤p<∞andc∈R |
and
‖f‖X∞c=esssupa≤τ≤b[τc|f(τ)|]forp=∞andc∈R. |
In the sense of the above function space, Katugampola in [16] introduced the left-side and right-side fractional integrals of order α of a function f∈Xpc(a,b) defined by
ρKαa+f(χ)=1Γ(α)∫χa(χρ−τρρ)α−1f(τ)dττ1−ρ(ρ>0) | (1.5) |
and
ρKαb−f(χ)=1Γ(α)∫bχ(τρ−χρρ)α−1f(τ)dττ1−ρ(ρ>0), | (1.6) |
respectively.
The above fractional operators are known as Erdélyi-Kober fractional integrals in [18], or Katugampola fractional integrals in [16] or ρ−Riemann-Liouville fractional integrals in [6], which generalized fractional integrals of Riemann-Liouville and Hadamard, respectively[17]:
limρ→1[ρKαa+f(χ)]=limρ→11Γ(α)∫χa(χρ−τρρ)α−1f(τ)dττ1−ρ=1Γ(α)∫χa(χ−τ)α−1f(τ)dτ=Rαa+f(χ) | (1.7) |
and
limρ→0[ρKαa+f(χ)]=limρ→01Γ(α)∫χa(χρ−τρρ)α−1f(τ)dττ1−ρ=1Γ(α)∫χa(lnχ−lnτ)α−1f(τ)dττ=Hαa+f(χ). | (1.8) |
The similar results for right-sided fractionals integral also hold.
For more results on the fractional integrals please see [1,4,8,13,14,15,21,24] and the references therein.
For any convex function f:[a,b]→R, the following double inequalities
f(a+b2)≤1b−a∫baf(τ)dτ≤f(a)+f(b)2 | (1.9) |
are known as Hermite-Hadamard inequality[12,19].
In [5], Chen et al. established the following Hermite-Hadamard type inequalities based on the Katugampola fractional integrals.
Theorem 1.1. Suppose that f:[aρ,bρ]→R is a positive function with ρ>0 and 0≤a<b, and f∈Xpc(aρ,bρ). If f is a convex function on [a,b], then for any α>0
f(aρ+bρ2)≤ραΓ(α+1)2(bρ−aρ)α[ρKαa+f(bρ)+ρKαb−f(aρ)]≤f(aρ)+f(bρ)2, | (1.10) |
where the fractional integrals are considered for the function f(χρ) and evaluated at a and b, respectively.
Furthermore, Chen et al. also gave some right estimations of the Hermite-Hadamard type inequalities for the Katugampola fractional integrals in [5].
Theorem 1.2. Suppose that f:[aρ,bρ]→R is a differentiable function on (aρ,bρ) with ρ>0 and 0≤a<b, and f∈Xpc(aρ,bρ). If |f′| is a convex function on [aρ,bρ], then for any α>0
|f(aρ)+f(bρ)2−ραΓ(α+1)2(bρ−aρ)α[ρKαa+f(bρ)+ρKαb−f(aρ)]|≤bρ−aρ2(α+1)[|f′(aρ)|+|f′(bρ)|], | (1.11) |
where the fractional integrals are considered for the function f(χρ) and evaluated at a and b, respectively.
Theorem 1.3. Suppose that f:[aρ,bρ]→R is a differentiable function on (aρ,bρ) with ρ>0 and 0≤a<b, and f∈Xpc(aρ,bρ). If |f′| is convex on [aρ,bρ], then for any α>0
|f(aρ)+f(bρ)2−ραΓ(α+1)2(bρ−aρ)α[ρKαa+f(bρ)+ρKαb−f(aρ)]|≤bρ−aρ2(α+1)(1−12α)[|f′(aρ)|+|f′(bρ)|], | (1.12) |
where the fractional integrals are considered for the function f(χρ) and evaluated at a and b, respectively.
For more results on the convexity and Hermite-Hadamard type inequalities please see [2,7,9,10,11,23] and the references therein.
In the paper, based on Erdélyi-Kober fractional integrals ρKαχ+f(bρ) and ρKαχ−f(aρ) for any χ∈[a,b] with f∈Xpc(a,b), authors establish some new Hermite-Hadamard type inequalities for convex function. The obtained inequalities generalize the corresponding results for Riemann-Liouville fractional integrals by taking limits when a parameter ρ→1. As applications, the error estimations of Hermite-Hadamard type inequality are also provided.
Firstly, we establish Hermite-Hadamard type inequality for the Erdélyi-Kober fractional integrals ρKαχ+f(bρ) and ρKαχ−f(aρ) for any χ∈[a,b] with f∈Xpc(a,b).
Theorem 2.1. Suppose that f:[aρ,bρ]→R is a function with ρ>0 and 0≤a<b, and f∈Xpc(aρ,bρ). If f is a convex function on [aρ,bρ], then for any α>0 and any χ∈[a,b],
f(1α+1aρ+bρ2+αα+1χρ)≤ραΓ(α+1)2[ρKαχ+f(bρ)(bρ−χρ)α+ρKαχ−f(aρ)(χρ−aρ)α]≤1α+1[f(aρ)+f(bρ)2+αf(χρ)]. | (2.1) |
Proof. It easy to follow that
ραΓ(α+1)2[ρKαχ+f(bρ)(bρ−χρ)α+ρKαχ−f(aρ)(χρ−aρ)α]=ρα2[∫bχ(bρ−tρbρ−χρ)α−1tρ−1f(tρ)bρ−χρdt+∫χa(tρ−aρχρ−aρ)α−1tρ−1f(tρ)χρ−aρdt]. | (2.2) |
Making the integral transformations tρ=τρχρ+(1−τρ)bρ and tρ=(1−τρ)aρ+τρχρ respectively in (2.2), it is obtained that
ραΓ(α+1)2[ρKαχ+f(bρ)(bρ−χρ)α+ρKαχ−f(aρ)(χρ−aρ)α]=ρα2∫10τρα−1[f(τρχρ+(1−τρ)bρ)+f((1−τρ)aρ+τρχρ)]dτ. | (2.3) |
Then by the convexity of f and Jensen's inequality, we obtain
ρα2∫10τρα−1[f(τρχρ+(1−τρ)bρ)+f((1−τρ)aρ+τρχρ)]dτ≥ρα∫10τρα−1f(τρχρ+(1−τρ)aρ+bρ2)dτ≥ραf(∫10τρα−1[τρχρ+(1−τρ)aρ+bρ2]dτ∫10τρα−1dτ)∫10τρα−1dτ=f(1α+1aρ+bρ2+αα+1χρ), | (2.4) |
which completes the left inequality of Theorem 2.1.
On the another hand, by the convexity of f again, we have
ρα2∫10τρα−1[f(τρχρ+(1−τρ)bρ)+f((1−τρ)aρ+τρχρ)]dτ≤ρα2∫10τρα−1[τρf(χρ)+(1−τρ)f(bρ)+(1−τρ)f(aρ)+τρf(χρ)]dτ=ρα∫10τρα−1[τρf(χρ)+(1−τρ)f(aρ)+f(bρ)2])dτ=1α+1[f(aρ)+f(bρ)2+αf(χρ)], | (2.5) |
which completes the right inequality of Theorem 2.1.
Corollary 2.1.1. With the assumptions of Theorem 2.1 and taking χρ=aρ+bρ2, it reduces that
f(aρ+bρ2)≤2α−1ραΓ(α+1)(bρ−aρ)α[ρKαρ√aρ+bρ2+f(bρ)+ρKαρ√aρ+bρ2−f(aρ)]≤1α+1[f(aρ)+f(bρ)2+αf(aρ+bρ2)]≤f(aρ)+f(bρ)2. | (2.6) |
In particular, taking limits when χ→a and χ→b respectively in the inequality (2.1), and using the L'Hospital rule, we have the following result.
Corollary 2.1.2. With the assumptions of Theorem 2.1 and taking limits when χ→a and χ→b respectively, it reduces that
f(aρ+bρ2)≤12[f((2α+1)aρ+bρ2(α+1))+f(aρ+(2α+1)bρ2(α+1))]≤f(aρ)+f(bρ)4+ραΓ(α+1)4(bρ−aρ)α[ρKαa+f(bρ)+ρKαb−f(aρ)]≤f(aρ)+f(bρ)2. | (2.7) |
Now we give a interest equality.
Lemma 3.1. Suppose that f:[aρ,bρ]→R is differentiable on (aρ,bρ) with ρ>0 and 0≤a<b, and f∈Xpc(aρ,bρ). If the generalized fractional integrals exist, then for any α>0 and any χ∈[a,b], the equality
f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]=ρ2∫10(1−τρα)τρ−1[(bρ−χρ)f′(τρχρ+(1−τρ)bρ)−(χρ−aρ)f′((1−τρ)aρ+τρχρ)]dτ | (3.1) |
holds, where the fractional integrals are considered for the function f(χρ) and evaluated at a and b, respectively.
Proof. Using integration by parts, it easy to follow that
ρ2∫10(1−τρα)τρ−1[(bρ−χρ)f′(τρχρ+(1−τρ)bρ)−(χρ−aρ)f′((1−τρ)aρ+τρχρ)]dτ=f(bρ)2−ρα2∫10τρα−1f(τρχρ+(1−τρ)bρ)dτ+f(aρ)2−ρα2∫10τρα−1f((1−τρ)aρ+τρχρ)dτ=f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α], | (3.2) |
which completes the proof of Lemma 3.1.
In particular, taking limits when χ→a and χ→b respectively in the identity (3.1), and summing the obtained identities, we obtain
f(aρ)+f(bρ)2−ραΓ(α+1)2(bρ−aρ)α[ρKαa+f(bρ)+ρKαb−f(aρ)]=ρ(bρ−aρ)2∫10[(1−τρ)α−τρα]τρ−1f′(τρaρ+(1−τρ)bρ)dτ, | (3.3) |
which is Lemma 2.4 in [5].
Next, we establish some integral inequalities by the differentiability, the convexity and Lemma 3.1.
If the function |f′| is convex, then the following integral inequality holds.
Theorem 3.1. Suppose that f:[aρ,bρ]→R is differentiable on (aρ,bρ) with ρ>0 and 0≤a<b, and f∈Xpc(aρ,bρ). If |f′| is convex on [aρ,bρ], then the inequality
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤α4(α+1)(α+2)[(α+3)(χρ−aρ)|f′(aρ)|+(α+1)(bρ−aρ)|f′(χρ)|+(α+3)(bρ−χρ)|f′(bρ)|] | (3.4) |
holds for any α>0 and any χ∈[a,b].
Proof. Using Lemma 3.1 and the convexity of the function |f′|, we have
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤ρ2∫10(1−τρα)τρ−1[(bρ−χρ)|f′(τρχρ+(1−τρ)bρ)|+(χρ−aρ)|f′((1−τρ)aρ+τρχρ)|]dτ≤ρ(bρ−χρ)2∫10(1−τρα)τρ−1[τρ|f′(χρ)|+(1−τρ)|f′(bρ)|]dτ+ρ(χρ−aρ)2∫10(1−τρα)τρ−1[(1−τρ)|f′(aρ)|+τρ|f′(χρ)|]dτ. | (3.5) |
By simple computation, the inequality (3.4) is obtained which completes the proof of Theorem 3.1.
If we take χρ=aρ+bρ2 in the inequality (3.4), then we get a integral inequality.
|f(aρ)+f(bρ)2−2α−1ραΓ(α+1)(bρ−aρ)α[ρKαρ√aρ+bρ2−f(aρ)+ρKαρ√aρ+bρ2+f(bρ)]|≤α(bρ−aρ)8(α+1)(α+2)[(α+3)|f′(aρ)|+2(α+1)|f′(aρ+bρ2)|+(α+3)|f′(bρ)|]. | (3.6) |
Also, making limits when ρ→1 in the inequality (3.6), we immediately get the integral inequalities for Riemann-Liouville fractional integrals:
|f(a)+f(b)2−2α−1Γ(α+1)(b−a)α[Rαa+b2−f(a)+Rαa+b2+f(b)]|≤α(b−a)8(α+1)(α+2)[(α+3)|f′(a)|+2(α+1)|f′(a+b2)|+(α+3)|f′(b)|]. | (3.7) |
If the function |f′|q(q>1) is convex, then the below inequality holds.
Theorem 3.2. Suppose that f:[aρ,bρ]→R is differentiable on (aρ,bρ) with ρ>0 and 0≤a<b, and f∈Xpc(aρ,bρ). If |f′|q(q>1) is convex on [aρ,bρ], then the inequality
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤12α[B(2q−r−1q−1,ρq−r−1ρα(q−1))]1−1/q{(χρ−aρ)[B(r+1,ρ+r+1ρα)|f′(χρ)|q+(B(r+1,r+1ρα)−B(r+1,ρ+r+1ρα))|f′(aρ)|q]1/q+(bρ−χρ)[B(r+1,ρ+r+1ρα)|f′(χρ)|q+(B(r+1,r+1ρα)−B(r+1,ρ+r+1ρα))|f′(bρ)|q]1/q} | (3.8) |
holds for any α>0, χ∈[a,b] and 0≤r≤q, where B(μ,ν) is classical beta function defined by
B(μ,ν)=∫10sμ−1(1−s)ν−1ds(μ>0,ν>0). | (3.9) |
Proof. Using the identity (3.1), Hölder's inequality and the convexity of the function |f′|q(q>1), we have
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤ρ2∫10(1−τρα)τρ−1[(bρ−χρ)|f′(τρχρ+(1−τρ)bρ)|+(χρ−aρ)|f′((1−τρ)aρ+τρχρ)|]dτ≤ρ(bρ−χρ)2(∫10(1−τρα)q−rq−1τq(ρ−1)−rq−1dτ)1−1/q×[∫10(1−τρα)rτr[τρ|f′(χρ)|q+(1−τρ)|f′(bρ)|q]dτ]1/q+ρ(χρ−aρ)2(∫10(1−τρα)q−rq−1τq(ρ−1)−rq−1dτ)1−1/q×[∫10(1−τρα)rτr[τρ|f′(aρ)|q+(1−τρ)|f′(χρ)|q]dτ]1/q. | (3.10) |
By direct calculation, we obtain the inequality (3.8) which completes the proof of Theorem 3.2.
In particular, making r=0, r=1 and r=q, respectively, then
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤ρ1/q2α1−1/q(ρ+1)1/q[B(2q−1q−1,ρq−1ρα(q−1))]1−1/q×{(χρ−aρ)[|f′(χρ)|q+ρ|f′(aρ)|q]1/q+(bρ−χρ)[|f′(χρ)|q+ρ|f′(bρ)|q]1/q} | (3.11) |
and
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤ρ2α(q−1)2−2/q21+1/q[(ρ+2)(ρ+2+ρα)(ρα+2)](1(ρq−2)[ρq−2+ρα(q−1)])1−1/q×{(χρ−aρ)[2(2+ρα)|f′(χρ)|q+ρ(ρ+2+ρα)|f′(aρ)|q]1/q+(bρ−χρ)[2(2+ρα)|f′(χρ)|q+ρ(ρ+2+ρα)|f′(bρ)|q]1/q} | (3.12) |
and
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤ρ1−1/q2α1/q(q−1ρq−q−1)1−1/q{(χρ−aρ)[B(q+1,ρ+q+1ρα)|f′(χρ)|q+(B(q+1,q+1ρα)−B(q+1,ρ+q+1ρα))|f′(aρ)|q]1/q+(bρ−χρ)[B(q+1,ρ+q+1ρα)|f′(χρ)|q+(B(q+1,q+1ρα)−B(q+1,ρ+q+1ρα))|f′(bρ)|q]1/q}. | (3.13) |
Furthermore, utilizing Lemma 3.1 reduces to the below inequalities.
Theorem 3.3. Suppose that f:[aρ,bρ]→R is differentiable on (aρ,bρ) with ρ>0 and 0≤a<b, and f∈Xpc(aρ,bρ). If |f′|q(q>1) is convex on [aρ,bρ], then the inequality
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤12α[B(2q−r−1q−1,ρ(q−r)+r−1ρα(q−1))]1−1/q{(χρ−aρ)[B(r+1,ρ(r+1)−r+1ρα)|f′(χρ)|q+(B(r+1,ρr−r+1ρα)−B(r+1,ρ(r+1)−r+1ρα))|f′(aρ)|q]1/q+(bρ−χρ)[B(r+1,ρ(r+1)−r+1ρα)|f′(χρ)|q+(B(r+1,ρr−r+1ρα)−B(r+1,ρ(r+1)−r+1ρα))|f′(bρ)|q]1/q} | (3.14) |
holds for any α>0, χ∈[a,b] and 0≤r≤q, where B(μ,ν) is classical beta function defined in (3.9).
Proof. Using the identity (3.1), Hölder's inequality and the convexity of the function |f′|q(q>1), we have
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤ρ2∫10(1−τρα)τρ−1[(bρ−χρ)|f′(τρχρ+(1−τρ)bρ)|+(χρ−aρ)|f′((1−τρ)aρ+τρχρ)|]dτ≤ρ(bρ−χρ)2(∫10(1−τρα)q−rq−1τ(ρ−1)(q−r)q−1dτ)1−1/q×[∫10(1−τρα)rτ(ρ−1)r[τρ|f′(χρ)|q+(1−τρ)|f′(bρ)|q]dτ]1/q+ρ(χρ−aρ)2(∫10(1−τρα)q−rq−1τ(ρ−1)(q−r)q−1dτ)1−1/q×[∫10(1−τρα)rτ(ρ−1)r[τρ|f′(aρ)|q+(1−τρ)|f′(χρ)|q]dτ]1/q. | (3.15) |
By direct calculation, we obtain the inequality (3.14) which completes the proof of Theorem 3.3.
In particular, making r=1 and r=q, respectively, then
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤α21−1/q(α+1)(α+2)1/q{(χρ−aρ)[(α+1)|f′(χρ)|q+(α+3)|f′(aρ)|q]1/q+(bρ−χρ)[(α+1)|f′(χρ)|q+(α+3)|f′(bρ)|q]1/q} | (3.16) |
and
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤ρ1−1/q2α1/q{(χρ−aρ)[B(q+1,ρ(q+1)−q+1ρα)|f′(χρ)|q+(B(q+1,ρq−q+1ρα)−B(q+1,ρ(q+1)−q+1ρα))|f′(aρ)|q]1/q+(bρ−χρ)[B(q+1,ρ(q+1)−q+1ρα)|f′(χρ)|q+(B(q+1,ρq−q+1ρα)−B(q+1,ρ(q+1)−q+1ρα))|f′(bρ)|q]1/q}. | (3.17) |
Theorem 3.4. Suppose that f:[aρ,bρ]→R is differentiable on (aρ,bρ) with ρ>0 and 0≤a<b, and f∈Xpc(aρ,bρ). If |f′|q(q>1) is convex on [aρ,bρ], then the inequality
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤ρ1/q2α1−1/q[(ρr−r+1)(ρ(r+1)−r+1)]1/q[B(2q−1q−1,(ρ−1)(q−r)+q−1ρα(q−1))]1−1/q×{(χρ−aρ)[(ρr−r+1)|f′(χρ)|q+ρ|f′(aρ)|q]1/q+(bρ−χρ)[(ρr−r+1)|f′(χρ)|q+ρ|f′(bρ)|q]1/q} | (3.18) |
holds for any α>0, χ∈[a,b] and 0≤r≤q, where B(μ,ν) is classical beta function defined in (3.9).
Proof. Using the identity (3.1), Hölder's inequality and the convexity of the function |f′|q(q>1), we have
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤ρ2∫10(1−τρα)τρ−1[(bρ−χρ)|f′(τρχρ+(1−τρ)bρ)|+(χρ−aρ)|f′((1−τρ)aρ+τρχρ)|]dτ≤ρ(bρ−χρ)2(∫10(1−τρα)qq−1τ(ρ−1)(q−r)q−1dτ)1−1/q×[∫10τ(ρ−1)r[τρ|f′(χρ)|q+(1−τρ)|f′(bρ)|q]dτ]1/q+ρ(χρ−aρ)2(∫10(1−τρα)qq−1τ(ρ−1)(q−r)q−1dτ)1−1/q×[∫10τ(ρ−1)r[τρ|f′(aρ)|q+(1−τρ)|f′(χρ)|q]dτ]1/q. | (3.19) |
By direct calculation, we obtain the inequality (3.18) which completes the proof of Theorem 3.4.
In particular, making r=1 and r=q, respectively, then
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤121+1/qα1−1/q[B(2q−1q−1,1α)]1−1/q{(χρ−aρ)[|f′(χρ)|q+|f′(aρ)|q]1/q+(bρ−χρ)[|f′(χρ)|q+|f′(bρ)|q]1/q} | (3.20) |
and
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤ρ1/q2α1−1/q[(ρq−q+1)(ρ(q+1)−q+1)][B(2q−1q−1,1ρα)]1−1/q×{(χρ−aρ)[(ρq−q+1)|f′(χρ)|q+ρ|f′(aρ)|q]1/q+(bρ−χρ)[(ρq−q+1)|f′(χρ)|q+ρ|f′(bρ)|q]1/q}. | (3.21) |
Theorem 3.5. Suppose that f:[aρ,bρ]→R is differentiable on (aρ,bρ) with ρ>0 and 0≤a<b, and f∈Xpc(aρ,bρ). If |f′|q(q>1) is convex on [aρ,bρ], then the inequality
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤12α[B(2q−r−1q−1,ρq−1ρα(q−1))]1−1/q{(χρ−aρ)[B(r+1,ρ+1ρα)|f′(χρ)|q+(B(r+1,1ρα)−B(r+1,ρ+1ρα))|f′(aρ)|q]1/q+(bρ−χρ)[B(r+1,ρ+1ρα)|f′(χρ)|q+(B(r+1,1ρα)−B(r+1,ρ+1ρα))|f′(bρ)|q]1/q} | (3.22) |
holds for any α>0, χ∈[a,b] and 0≤r≤q, where B(μ,ν) is classical beta function defined in (3.9).
Proof. Using the identity (3.1), Hölder's inequality and the convexity of the function |f′|q(q>1), we have
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤ρ2∫10(1−τρα)τρ−1[(bρ−χρ)|f′(τρχρ+(1−τρ)bρ)|+(χρ−aρ)|f′((1−τρ)aρ+τρχρ)|]dτ≤ρ(bρ−χρ)2(∫10(1−τρα)q−rq−1τq(ρ−1)q−1dτ)1−1/q×[∫10(1−τρα)r[τρ|f′(χρ)|q+(1−τρ)|f′(bρ)|q]dτ]1/q+ρ(χρ−aρ)2(∫10(1−τρα)q−rq−1τq(ρ−1)q−1dτ)1−1/q×[∫10(1−τρα)r[τρ|f′(aρ)|q+(1−τρ)|f′(χρ)|q]dτ]1/q. | (3.23) |
By direct calculation, we obtain the inequality (3.22) which completes the proof of Theorem 3.5.
In particular, making r=1 and r=q, respectively, then
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤ρ2α(q−1)2−2/q2[(ρ+1)(ρα+1)ρα+ρ+1)]1/q[1(ρq−1)[ρq−1+ρα(q−1)]]1−1/q×{(χρ−aρ)[(1+ρα)|f′(χρ)|q+ρ(ρα+ρ+2)|f′(aρ)|q]1/q+(bρ−χρ)[(1+ρα)|f′(χρ)|q+ρ(ρα+ρ+2)|f′(bρ)|q]1/q} | (3.24) |
and
|f(aρ)+f(bρ)2−ραΓ(α+1)2[ρKαχ−f(aρ)(χρ−aρ)α+ρKαχ+f(bρ)(bρ−χρ)α]|≤ρ1−1/q2α1/q(q−1ρq−1)1−1/q{(χρ−aρ)[B(q+1,ρ+1ρα)|f′(χρ)|q+(B(q+1,1ρα)−B(q+1,ρ+1ρα))|f′(aρ)|q]1/q+(bρ−χρ)[B(q+1,ρ+1ρα)|f′(χρ)|q+(B(q+1,1ρα)−B(q+1,ρ+1ρα))|f′(bρ)|q]1/q}. | (3.25) |
In this article, we firstly establish Hermite-Hadamard type inequality for the Erdélyi-Kober fractional integrals (2.1). Taking limits when χ→a and χ→b respectively in the inequality (2.1), it is the generalization and the refinement of Theorem 2.1 in the reference [5]. In addition, as an application, the error estimations of Hermite-Hadamard type inequality have been investigated. The derived inequalities can be seen as a generalization for Riemann-Liouville fractional integrals when ρ→1 and the Corollaries presented in the paper show that the results of this paper generalize and extend many existing results.
This work was supported PhD Research Foundation of Inner Mongolia Minzu University (No. BS402) and Foundation of the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region (No. NJZY20119) and Natural Science Foundation of Inner Mongolia (No. 2019MS01007), China.
The authors declare that they have no conflict of interest.
[1] | B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Switzerland: Springer International Publishing AG, 2017. |
[2] | M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Simpson's type for s−convex functions with applications, RGMIA Res. Rep. Coll., 12 (2009), 1–9. |
[3] | A. Akkurt, M. Yildirim, H. Yildirim, On some integral inequalities for generalized fractional integral, Adv. Inequal. Appl., 17 (2016), 1–11. |
[4] |
J. Chen, X. Huang, Some new inequalities of Simpson's type for s−convex functions via fractional integrals, Filomat, 31 (2017), 4989–4997. doi: 10.2298/FIL1715989C
![]() |
[5] |
H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. doi: 10.1016/j.jmaa.2016.09.018
![]() |
[6] |
S. S. Dragomir, Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of h−convex functions, Math. Methods Appl. Sci., 44 (2021), 2364–2380. doi: 10.1002/mma.5893
![]() |
[7] | S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpsons inequality and applications, J. Inequal. Appl., 5 (2000), 1–36. |
[8] |
F. Ertural, M. Z. Sarikaya, Simpson type integral inequalities for generalized fractional integral, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 113 (2019), 3115–3124. doi: 10.1007/s13398-019-00680-x
![]() |
[9] |
A. Guessab, G. Schmeisser, Sharp error estimates for interpolatory approximation on convex polytopes, SIAM J. Numer. Anal., 43 (2005), 909–923. doi: 10.1137/S0036142903435958
![]() |
[10] |
A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in approximate multivariate integration, SIAM Math. Comp., 73 (2003), 1365–1384. doi: 10.1090/S0025-5718-03-01622-3
![]() |
[11] |
A. Guessab, G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory., 115 (2002), 260–288. doi: 10.1006/jath.2001.3658
![]() |
[12] | C. Hermite, Sur deux limites d'une intégrale définie, Mathesis, 3 (1983), 82. |
[13] | X. R. Hai, S. H. Wang, Hermite-Hadamard type inequalities based on Katugampola fractional integrals, Mathematics in Practice and Theory, 2021. Available from: https://kns.cnki.net/kcms/detail/11.2018.O1.20210617.1103.008.html. |
[14] | M. Iqbal, S. Qaisar, S. Hussain, On Simpsons type inequalities utilizing fractional integrals, J. Comput. Anal. Appl., 3 (2017), 1137–1145. |
[15] | F. Jarad, E. Uǧurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 1 (2017), 247. |
[16] | U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. |
[17] | U. N. Katugampola, New approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15. |
[18] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, J. Van Mill, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006. |
[19] | D. Mitrinović, I. Lacković, Hermite and convexity, Aequationes mathematicae, 28 (1985), 229–232. |
[20] | I. Podlubny, Fractional differential equations: Mathematics in science and engineering, San Diego: Academic Press, 1999. |
[21] | J. Sabatier, O. P. Agrawal, J. A. Tenreiro Machado, Advances in fractional calculus: Theoretical developments and applications in physics and engineering, Biochem. J., 36 (2007), 97–103. |
[22] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Minsk Nauka I Tekhnika, 1993. |
[23] | A. A. Shaikh, A. Iqbal, C. K. Mondal, Some results on ϕ-convex functions and geodesic ϕ-convex functions, Differ. Geo. Dyn. Syst., 20 (2018), 159–69. |
[24] | S. H. Wang, F. Qi, Hermite-Hadamard type inequalities for s−Convex functions via Riemann-Liouville fractional integrals, J, Comput. Anal. Appl., 22 (2017), 1124–1134. |
1. | Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators, 2023, 11, 2227-7390, 1953, 10.3390/math11081953 |