In the paper, based on Erdélyi-Kober fractional integrals $ ^\rho \mathcal{K}^\alpha_{\chi+}f $ and $ ^\rho \mathcal{K}^\alpha_{\chi-}f $ for any $ \chi\in[a, b] $ with $ f\in\mathfrak{X}_c^p(a, b) $, authors establish some new Hermite-Hadamard type inequalities for convex function. The obtained inequalities generalize the corresponding results for Riemann-Liouville fractional integrals by taking limits when a parameter $ \rho\rightarrow1 $. As applications, the error estimations of Hermite-Hadamard type inequality are also provided.
Citation: XuRan Hai, ShuHong Wang. Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals[J]. AIMS Mathematics, 2021, 6(10): 11494-11507. doi: 10.3934/math.2021666
In the paper, based on Erdélyi-Kober fractional integrals $ ^\rho \mathcal{K}^\alpha_{\chi+}f $ and $ ^\rho \mathcal{K}^\alpha_{\chi-}f $ for any $ \chi\in[a, b] $ with $ f\in\mathfrak{X}_c^p(a, b) $, authors establish some new Hermite-Hadamard type inequalities for convex function. The obtained inequalities generalize the corresponding results for Riemann-Liouville fractional integrals by taking limits when a parameter $ \rho\rightarrow1 $. As applications, the error estimations of Hermite-Hadamard type inequality are also provided.
[1] | B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Switzerland: Springer International Publishing AG, 2017. |
[2] | M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Simpson's type for $s-$convex functions with applications, RGMIA Res. Rep. Coll., 12 (2009), 1–9. |
[3] | A. Akkurt, M. Yildirim, H. Yildirim, On some integral inequalities for generalized fractional integral, Adv. Inequal. Appl., 17 (2016), 1–11. |
[4] | J. Chen, X. Huang, Some new inequalities of Simpson's type for $s-$convex functions via fractional integrals, Filomat, 31 (2017), 4989–4997. doi: 10.2298/FIL1715989C |
[5] | H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. doi: 10.1016/j.jmaa.2016.09.018 |
[6] | S. S. Dragomir, Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of $h-$convex functions, Math. Methods Appl. Sci., 44 (2021), 2364–2380. doi: 10.1002/mma.5893 |
[7] | S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpsons inequality and applications, J. Inequal. Appl., 5 (2000), 1–36. |
[8] | F. Ertural, M. Z. Sarikaya, Simpson type integral inequalities for generalized fractional integral, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 113 (2019), 3115–3124. doi: 10.1007/s13398-019-00680-x |
[9] | A. Guessab, G. Schmeisser, Sharp error estimates for interpolatory approximation on convex polytopes, SIAM J. Numer. Anal., 43 (2005), 909–923. doi: 10.1137/S0036142903435958 |
[10] | A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in approximate multivariate integration, SIAM Math. Comp., 73 (2003), 1365–1384. doi: 10.1090/S0025-5718-03-01622-3 |
[11] | A. Guessab, G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory., 115 (2002), 260–288. doi: 10.1006/jath.2001.3658 |
[12] | C. Hermite, Sur deux limites d'une intégrale définie, Mathesis, 3 (1983), 82. |
[13] | X. R. Hai, S. H. Wang, Hermite-Hadamard type inequalities based on Katugampola fractional integrals, Mathematics in Practice and Theory, 2021. Available from: https://kns.cnki.net/kcms/detail/11.2018.O1.20210617.1103.008.html. |
[14] | M. Iqbal, S. Qaisar, S. Hussain, On Simpsons type inequalities utilizing fractional integrals, J. Comput. Anal. Appl., 3 (2017), 1137–1145. |
[15] | F. Jarad, E. Uǧurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 1 (2017), 247. |
[16] | U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. |
[17] | U. N. Katugampola, New approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15. |
[18] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, J. Van Mill, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006. |
[19] | D. Mitrinović, I. Lacković, Hermite and convexity, Aequationes mathematicae, 28 (1985), 229–232. |
[20] | I. Podlubny, Fractional differential equations: Mathematics in science and engineering, San Diego: Academic Press, 1999. |
[21] | J. Sabatier, O. P. Agrawal, J. A. Tenreiro Machado, Advances in fractional calculus: Theoretical developments and applications in physics and engineering, Biochem. J., 36 (2007), 97–103. |
[22] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Minsk Nauka I Tekhnika, 1993. |
[23] | A. A. Shaikh, A. Iqbal, C. K. Mondal, Some results on $\phi$-convex functions and geodesic $\phi$-convex functions, Differ. Geo. Dyn. Syst., 20 (2018), 159–69. |
[24] | S. H. Wang, F. Qi, Hermite-Hadamard type inequalities for $s-$Convex functions via Riemann-Liouville fractional integrals, J, Comput. Anal. Appl., 22 (2017), 1124–1134. |