In this paper, we have established some new Hermite–Hadamard–Mercer type of inequalities by using $ {\kappa} $–Riemann–Liouville fractional integrals. Moreover, we have derived two new integral identities as auxiliary results. From the applied identities as auxiliary results, we have obtained some new variants of Hermite–Hadamard–Mercer type via $ {\kappa} $–Riemann–Liouville fractional integrals. Several special cases are deduced in detail and some know results are recaptured as well. In order to illustrate the efficiency of our main results, some applications regarding special means of positive real numbers and error estimations for the trapezoidal quadrature formula are provided as well.
Citation: Miguel Vivas-Cortez, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor. Some new generalized $ \kappa $–fractional Hermite–Hadamard–Mercer type integral inequalities and their applications[J]. AIMS Mathematics, 2022, 7(2): 3203-3220. doi: 10.3934/math.2022177
In this paper, we have established some new Hermite–Hadamard–Mercer type of inequalities by using $ {\kappa} $–Riemann–Liouville fractional integrals. Moreover, we have derived two new integral identities as auxiliary results. From the applied identities as auxiliary results, we have obtained some new variants of Hermite–Hadamard–Mercer type via $ {\kappa} $–Riemann–Liouville fractional integrals. Several special cases are deduced in detail and some know results are recaptured as well. In order to illustrate the efficiency of our main results, some applications regarding special means of positive real numbers and error estimations for the trapezoidal quadrature formula are provided as well.
[1] | M. Vivas-Cortez, T. Abdeljawad, P. O. Mohammed, Y. R-Oliveros, Simpson's integral inequalities for twice differentiable convex functions, Math. Prob. Eng., 2020 (2020), 1936461. doi: 10.1155/2020/1936461. doi: 10.1155/2020/1936461 |
[2] | M. Vivas-Cortez, C. García, J. E. H. Hernández, Ostrowski–type inequalities for functions whose derivative modulus is relatively $(m, h_1, h_2)$–convex, Appl. Math. Inf. Sci., 13 (2019), 369–378. doi: 10.18576/amis/130303. doi: 10.18576/amis/130303 |
[3] | M. Vivas-Cortez, M. A. Ali, A. Kashuri, H. Budak, Generalizations of fractional Hermite–Hadamard–Mercer like inequalities for convex functions, AIMS Mathematics, 6, (2021), 9397–9421. doi: 10.3934/math.2021546. |
[4] | M. Vivas-Cortez, A. Kashuri, S. I. Butt, M. Tariq, J. Nasir, Exponential type $p$–convex function with some related inequalities and their applications, Appl. Math. Inf. Sci., 15, (2021), 253–261. doi: 10.18576/amis/150302. |
[5] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite–Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000. |
[6] | A. Guessab, Direct and converse results for generalized multivariate Jensen-type inequalities, J. Nonlinear Convex Anal., 13 (2012), 777–797. |
[7] | A. M. Mercer, A variant of Jensen's inequality, J. Inequal. Pure Appl. Math., 4 (2003), 73. |
[8] | Z. Pavić, The Jensen–Mercer inequality with infinite convex combinations, Math. Sci. Appl. E-Notes, 7 (2019), 19–27. |
[9] | M. A. Khan, J. Pecaric, New refinements of the Jensen-Mercer inequality associated to positive $n$-tuples, Armen. J. Math., 12 (2020), 1–12. |
[10] | H. R. Moradi, S. Furuichi, Improvement and generalization of some Jensen-Mercer-type inequalities, J. Math. Inequal., 17 (2020), 377–383. |
[11] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[12] | S. Mubeen, G. M. Habibullah, ${k}$–fractional integrals and applications, Int. J. Contemp. Math. Sci., 7 (2012), 89–94. |
[13] | R. Diaz, On hypergeometric functions and Pochhammer ${k}$-symbol, Divulg. Mat., 2 (2007), 179–192. |
[14] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite–Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048. doi: 10.1016/j.mcm.2011.12.048 |
[15] | M. U. Awan, S. Talib, Y. M. Chu, M. A. Noor, K. I. Noor, Some new refinements of Hermite–Hadamard-type inequalities involving $\psi_{k}$–Riemann–Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 3051920. doi: 10.1155/2020/3051920. doi: 10.1155/2020/3051920 |
[16] | H. Ogulmus, M. Z. Sarikaya, Hermite–Hadamard–Mercer type inequalities for fractional integrals. Available from: https: doi.org/10.13140/RG.2.2.30669.79844. |
[17] | M. Z. Sarikaya, A. Karaca, On the ${k}$–Riemann–Liouville fractional integral and applications, Int. J. Math. Stat., 1 (2014), 33–43. |
[18] | E. Set, B. Celik, M. E. Ozdemir, M. Aslan, Some new results on Hermite–Hadamard–Mercer-type inequalities using a general family of fractional integral operators, Fractal Fract., 5 (2021), 68. doi: 10.3390/fractalfract5030068. doi: 10.3390/fractalfract5030068 |
[19] | J. Nie, J. Liu, J. F. Zhang, T. S. Du, Estimation-type results on the $k$–fractional Simpson-type integral inequalities and applications, J. Taibah Uni. Sci., 13 (2019), 932–940. doi: 10.1080/16583655.2019.1663574. doi: 10.1080/16583655.2019.1663574 |
[20] | S. H. Wu, M. U. Awan, M. V. Mihai, M. A. Noor, S. Talib, Estimates of upper bound for a $k$-th order differentiable functions involving Riemann–Liouville integrals via higher order strongly $h$–preinvex functions, J. Inequal. Appl., 2019 (2019), 227. doi: 10.1186/s13660-019-2146-z. doi: 10.1186/s13660-019-2146-z |
[21] | P. O. Mohammed, I. Brevik, A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals, Symmetry, 2020 (2020), 610. doi: 10.3390/sym12040610. doi: 10.3390/sym12040610 |
[22] | A. Fernandez, P. Mohammed, Hermite–Hadamard inequalities in fractional calculus defined using Mittag–Leffler kernels, Math. Method. Appl. Sci., 44 (2020), 8414–8431. https://doi.org/10.1002/mma.6188. |
[23] | M. A. Noor, K. I. Noor, M. U. Awan, Generalized fractional Hermite–Hadamard inequalities, Miskolc Math. Notes, 21 (2020), 1001–1011. |