Research article Special Issues

Strongly convex functions and extensions of related inequalities with applications to entropy

  • Received: 09 January 2024 Revised: 11 March 2024 Accepted: 13 March 2024 Published: 20 March 2024
  • MSC : 26B25, 26D20

  • We extended the Mercer inequlaity, Fejér-Hermite-Hadamard, and Jensen inequalities for strongly convex functions. Moreover, we obtained several results in information theory and mathematical analysis using obtained inequalities.

    Citation: Yamin Sayyari, Mana Donganont, Mehdi Dehghanian, Morteza Afshar Jahanshahi. Strongly convex functions and extensions of related inequalities with applications to entropy[J]. AIMS Mathematics, 2024, 9(5): 10997-11006. doi: 10.3934/math.2024538

    Related Papers:

  • We extended the Mercer inequlaity, Fejér-Hermite-Hadamard, and Jensen inequalities for strongly convex functions. Moreover, we obtained several results in information theory and mathematical analysis using obtained inequalities.



    加载中


    [1] A. Azócar, K. Nikodem, G. Roa, Fejér-type inequalities for strongly convex functions, Annales Mathematicae Silesianae, 26 (2012), 43–54.
    [2] M. Dehghanian, Y. Sayyari, On cubic convex functions and applications in information theory, Int. J. Nonlinear Anal. Appl., 14 (2023), 77–83. http://dx.doi.org/10.22075/ijnaa.2023.28880.4010 doi: 10.22075/ijnaa.2023.28880.4010
    [3] S. Dragomir, C. Goh, Some bounds on entropy measures in information theory, Appl. Math. Lett., 10 (1997), 23–28. http://dx.doi.org/10.1016/S0893-9659(97)00028-1 doi: 10.1016/S0893-9659(97)00028-1
    [4] L. Fejér, Uber die Fourierreihen (Hungarian), Math. Naturwise. Anz. Ungar. Akad. Wiss, 24 (1906), 369–390.
    [5] G. Grüss, Über das maximum des absoluten Betrages von, Math. Z., 39 (1935), 215–226.
    [6] J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier dune fonction consideree par Riemann, J. Math. Pure. Appl., 9 (1893), 171–215.
    [7] J. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math., 30 (1906), 175–193. http://dx.doi.org/10.1007/BF02418571 doi: 10.1007/BF02418571
    [8] A. Mercer, A variant of Jensen's inequality, J. Inequal. Pure Appl. Math., 4 (2003), 73.
    [9] N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequat. Math., 80 (2010), 193–199. http://dx.doi.org/10.1007/s00010-010-0043-0 doi: 10.1007/s00010-010-0043-0
    [10] Y. Sayyari, New entropy bounds via uniformly convex functions, Chaos Soliton. Fract., 141 (2020), 110360. http://dx.doi.org/10.1016/j.chaos.2020.110360 doi: 10.1016/j.chaos.2020.110360
    [11] Y. Sayyari, A refinement of the Jensen-Simic-Mercer inequality with applications to entropy, J. Korean Soc. Math. Educ. B: Pure Appl. Math., 29 (2022), 51–57. http://dx.doi.org/10.7468/jksmeb.2022.29.1.51 doi: 10.7468/jksmeb.2022.29.1.51
    [12] Y. Sayyari, New refinements of Shannon's entropy upper bounds, J. Inform. Optim. Sci., 42 (2021), 1869–1883. http://dx.doi.org/10.1080/02522667.2021.1966947 doi: 10.1080/02522667.2021.1966947
    [13] Y. Sayyari, An improvement of the upper bound on the entropy of information sources, J. Math. Ext., 15 (2021), 1–12. http://dx.doi.org/10.30495/JME.SI.2021.1976 doi: 10.30495/JME.SI.2021.1976
    [14] Y. Sayyari, Remarks on uniformly convexity with applications in A-G-H inequality and entropy, Int. J. Nonlinear Anal., 13 (2022), 131–139. http://dx.doi.org/10.22075/IJNAA.2022.24133.2678 doi: 10.22075/IJNAA.2022.24133.2678
    [15] Y. Sayyari, An extension of Jensen-Mercer inequality with applications to entropy, Honam Math. J., 44 (2022), 513–520. http://dx.doi.org/10.5831/HMJ.2022.44.4.513 doi: 10.5831/HMJ.2022.44.4.513
    [16] Y. Sayyari, H. Barsam, A. Sattarzadeh, On new refinement of the Jensen inequality using uniformly convex functions with applications, Appl. Anal., 102 (2023), 5215–5223. http://dx.doi.org/10.1080/00036811.2023.2171873 doi: 10.1080/00036811.2023.2171873
    [17] Y. Sayyari, M. Dehghanian, $fgh$-convex functions and entropy bounds, Numer. Func. Anal. Opt., 44 (2023), 1428–1442. http://dx.doi.org/10.1080/01630563.2023.2261742 doi: 10.1080/01630563.2023.2261742
    [18] Y. Sayyari, M. Dehghanian, C. Park, S. Paokanta, An extension of the Hermite-Hadamard inequality for a power of a convex function, Open Math., 21 (2023), 20220542. http://dx.doi.org/10.1515/math-2022-0542 doi: 10.1515/math-2022-0542
    [19] S. Simic, Jensen's inequality and new entropy bounds, Appl. Math. Lett., 22 (2009), 1262–1265. http://dx.doi.org/10.1016/j.aml.2009.01.040 doi: 10.1016/j.aml.2009.01.040
    [20] S. Simic, Sharp global bounds for Jensen's inequality, Rocky MT J. Math., 41 (2011), 2021–2031.
    [21] S. Zlobec, Characterization of convexifiable functions, Optimization, 55 (2006), 251–261. http://dx.doi.org/10.1080/02331930600711968 doi: 10.1080/02331930600711968
    [22] S. Zlobec, Convexifiable functions in integral calculus, Glas. Mat., 40 (2005), 241–247.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(752) PDF downloads(55) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog