We study a simple motion differential game with many pursuers and one evader with equal capabilities in $ \mathbb{R}^n $. The control functions of the players are subject to the Grönwall-type constraints. If the state of the evader coincides with the state of a pursuer, then the game is considered completed. If the state of the evader does not coincide with the state of any pursuer at all times, then we say that evasion is possible. We show that pursuit can be completed if a condition on the convex hull of the initial states of the pursuers is satisfied.
Citation: Gafurjan Ibragimov, Omongul Egamberganova, Idham Arif Alias, Shravan Luckraz. On some new results in a pursuit differential game with many pursuers and one evader[J]. AIMS Mathematics, 2023, 8(3): 6581-6589. doi: 10.3934/math.2023332
We study a simple motion differential game with many pursuers and one evader with equal capabilities in $ \mathbb{R}^n $. The control functions of the players are subject to the Grönwall-type constraints. If the state of the evader coincides with the state of a pursuer, then the game is considered completed. If the state of the evader does not coincide with the state of any pursuer at all times, then we say that evasion is possible. We show that pursuit can be completed if a condition on the convex hull of the initial states of the pursuers is satisfied.
[1] | A. A. Azamov, Duality of linear differential games of pursuit, Dokl. Akad. Nauk, Russ. Acad. Sci., 263 (1982), 777–780. |
[2] | A. A. Azamov, On Pontryagin's second method in linear differential games of pursuit, Math. USSR-Sb., 46 (1983), 429–437. https://doi.org/10.1070/SM1983v046n03ABEH002944 doi: 10.1070/SM1983v046n03ABEH002944 |
[3] | F. L. Chernousko, V. L. Zak, On differential games of evasion from many pursuers, J. Optim. Theory Appl., 46 (1985), 461–470. https://doi.org/10.1007/BF00939151 doi: 10.1007/BF00939151 |
[4] | A. A. Chikrii, Conflict-controlled processes, Springer Dordrecht, 1997. https://doi.org/10.1007/978-94-017-1135-7 |
[5] | A. Friedman, Differential games, New York: John Wiley and Sons, 1971. https://doi.org/10.1090/cbms/018 |
[6] | T. H. Grönwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. Math., 20 (1919), 293–296. https://doi.org/10.2307/1967124 doi: 10.2307/1967124 |
[7] | S. A. Ganebny, S. S. Kumkov, S. Le Ménec, V. S. Patsko, Model problem in a line with two pursuers and one evader, Dyn. Games Appl., 2 (2012), 228–257. https://doi.org/10.1007/s13235-012-0041-z doi: 10.1007/s13235-012-0041-z |
[8] | E. Garcia, D. W. Casbeer, A. Von Moll, M. Pachter, Multiple pursuer multiple evader differential games, IEEE Trans. Automat. Contr., 66 (2021), 2345–2350. https://doi.org/10.1109/TAC.2020.3003840 doi: 10.1109/TAC.2020.3003840 |
[9] | H. Huang, W. Zhang, J. Ding, D. M. Stipanovic, C. J. Tomlin, Guaranteed decentralized pursuit-evasion in the plane with multiple pursuers, 2011 50th IEEE Conference on Decision and Control and European Control Conference, 2011. https://doi.org/10.1109/CDC.2011.6161237 |
[10] | G. Ibragimov, M. Ferrara, A. Kuchkarov, B. A. Pansera, Simple motion evasion differential game of many pursuers and evaders with integral constraints, Dyn. Games Appl., 8 (2018), 352–378. https://doi.org/10.1007/s13235-017-0226-6 doi: 10.1007/s13235-017-0226-6 |
[11] | G. Ibragimov, N. Satimov, A multiplayer pursuit differential game on a closed convex set with integral constraints, Abstr. Appl. Anal., 2012 (2012), 460171. https://doi.org/10.1155/2012/460171 doi: 10.1155/2012/460171 |
[12] | G. Ibragimov, M. Ferrara, M. Ruziboev, B. A. Pansera, Linear evasion differential dame of one evader and several pursuers with integral constraints, Int. J. Game Theory, 50 (2021), 729–750. https://doi.org/10.1007/s00182-021-00760-6 doi: 10.1007/s00182-021-00760-6 |
[13] | G. Ibragimov, S. Luckraz, On a characterization of evasion strategies for pursuit-evasion games on graphs, J. Optim. Theory Appl., 175 (2017), 590–596. https://doi.org/10.1007/s10957-017-1155-7 doi: 10.1007/s10957-017-1155-7 |
[14] | R. Isaacs, Differential games, American Mathematical Society, 1965. https://doi.org/10.2307/2003985 |
[15] | R. P. Ivanov, Simple pursuit-evasion on a compact convex set, Dokl. Akad. Nauk SSSR, 254 (1980), 1318–1321. |
[16] | N. N. Krasovskii, A. I. Subbotin, Game-theoretical control problems, New York: Springer, 1988. |
[17] | S. Luckraz, A survey on the relationship between the game of cops and robbers and other game representations, Dyn. Games Appl., 9 (2019), 506–520. https://doi.org/10.1007/s13235-018-0275-5 doi: 10.1007/s13235-018-0275-5 |
[18] | L. A. Petrosyan, Differential games of pursuit, Series on Optimization, Vol. 2, Singapore: World Scientific Poblishing, 1993. https://doi.org/10.1142/1670 |
[19] | L. S. Pontryagin, Selected works, Moscow: MAKS Press, 2004. |
[20] | B. N. Pshenichnii, Simple pursuit by several objects, Cybern. Syst. Anal., 12 (1976), 484–485. https://doi.org/10.1007/BF01070036 doi: 10.1007/BF01070036 |
[21] | B. T. Samatov, G. I. Ibragimov, I. V. Khodjibayeva, Pursuit-evasion differential games with Grönwall type constraints on controls, Ural Math. J., 6 (2020), 95–107. https://doi.org/10.15826/umj.2020.2.010 doi: 10.15826/umj.2020.2.010 |
[22] | N. Y. Satimov, B. B. Rikhsiev, Methods of solving of evasion problems in mathematical control theory, Fan, Tashkent, Uzbekistan, 2000. |
[23] | N. Y. Satimov, B. B. Rikhsievand, A. A. Khamdamov, On a pursuit problem for $n$ person linear differential and discrete games with integral constraints, Math. USSR-Sb., 46 (1983), 459. https://doi.org/10.1070/SM1983v046n04ABEH002946 doi: 10.1070/SM1983v046n04ABEH002946 |
[24] | A. I. Subbotin, Generalization of the main equation of differential game theory, J. Optim. Theory Appl., 43 (1984), 103–133. https://doi.org/10.1007/BF00934749 doi: 10.1007/BF00934749 |
[25] | W. Sun, P. Tsiotras, T. Lolla, D. N. Subramani, P. F. J. Lermusiaux, Multiple-pursuer/one-evader pursuit-evasion game in dynamic flow-fields, J. Guid. Control Dynam., 40 (2017), 1627–1637. https://doi.org/10.2514/1.G002125 doi: 10.2514/1.G002125 |
[26] | A. Von Moll, D. Casbeer, E. Garcia, D. Milutinović, Pursuit-evasion of an evader by multiple pursuers, 2018 International Conference on Unmanned Aircraft Systems (ICUAS), 2018. https://doi.org/10.1109/ICUAS.2018.8453470 |