The main goal of this work is to study a regularization method to reconstruct the solution of the backward non-linear hyperbolic equation $ u_{tt} + \alpha\Delta^2u_t +\beta \Delta ^2u = \mathcal{F}(x, t, u) $ come with the input data are blurred by random Gaussian white noise. We first prove that the considered problem is ill-posed (in the sense of Hadamard), i.e., the solution does not depend continuously on the data. Then we propose the Fourier truncation method for stabilizing the ill-posed problem. Base on some priori assumptions for the true solution we derive the error and a convergence rate between a mild solution and its regularized solutions. Also, a numerical example is provided to confirm the efficiency of theoretical results.
Citation: Phuong Nguyen Duc, Erkan Nane, Omid Nikan, Nguyen Anh Tuan. Approximation of the initial value for damped nonlinear hyperbolic equations with random Gaussian white noise on the measurements[J]. AIMS Mathematics, 2022, 7(7): 12620-12634. doi: 10.3934/math.2022698
The main goal of this work is to study a regularization method to reconstruct the solution of the backward non-linear hyperbolic equation $ u_{tt} + \alpha\Delta^2u_t +\beta \Delta ^2u = \mathcal{F}(x, t, u) $ come with the input data are blurred by random Gaussian white noise. We first prove that the considered problem is ill-posed (in the sense of Hadamard), i.e., the solution does not depend continuously on the data. Then we propose the Fourier truncation method for stabilizing the ill-posed problem. Base on some priori assumptions for the true solution we derive the error and a convergence rate between a mild solution and its regularized solutions. Also, a numerical example is provided to confirm the efficiency of theoretical results.
[1] | M. Aassila, A. Guesmia, Energy decay for a damped nonlinear hyperbolic equation, Appl. Math. Lett., 12 (1999), 49–52. https://doi.org/10.1016/S0893-9659(98)00171-2 doi: 10.1016/S0893-9659(98)00171-2 |
[2] | G. Chen, F. Da, Blow-up of solution of Cauchy problem for three-dimensional damped nonlinear hyperbolic equation, Nonlinear Anal. Theor., 71 (2009), 358–372. https://doi.org/10.1016/j.na.2008.10.132 doi: 10.1016/j.na.2008.10.132 |
[3] | P.-L. Chow, I. A. Ibragimov, R. Z. Khasminskii, Statistical approach to some ill-posed problems for linear partial differential equations, Probab. Theory Relat. Fields, 113 (1999), 421–441. https://doi.org/10.1007/s004400050212 doi: 10.1007/s004400050212 |
[4] | C. Cao, M. A. Rammaha, E. S. Titi, Gevrey regularity for nonlinear analytic parabolic equations on the sphere, J. Dyn. Differ. Equ., 12 (2000), 411–433. https://doi.org/10.1023/A:1009072526324 doi: 10.1023/A:1009072526324 |
[5] | G. Chen, Y. Wang, Z. Zhao, Blow-up of solution of an initial boundary value problem for a damped nonlinear hyperbolic equation, Appl. Math. Lett., 17 (2004), 491–497. https://doi.org/10.1016/S0893-9659(04)90116-4 doi: 10.1016/S0893-9659(04)90116-4 |
[6] | C. Foias, R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359–369. https://doi.org/10.1016/0022-1236(89)90015-3 doi: 10.1016/0022-1236(89)90015-3 |
[7] | L. Hörmander, Linear partial differential operators, Berlin, Heidelberg: Springer, 1963. https://doi.org/10.1007/978-3-642-46175-0 |
[8] | A. Imani, D. Ganji, H. B. Rokni, H. Latifizadeh, E. Hesameddini, M. H. Rafiee, Approximate traveling wave solution for shallow water wave equation, Appl. Math. Model., 36 (2012), 1550–1557. https://doi.org/10.1016/j.apm.2011.09.030 doi: 10.1016/j.apm.2011.09.030 |
[9] | W. Liu, K. Chen, Existence and general decay for nondissipative hyperbolic differential inclusions with acoustic/memory boundary conditions, Math. Nachr., 289 (2016), 300–320. https://doi.org/10.1002/mana.201400343 doi: 10.1002/mana.201400343 |
[10] | J. C. Maxwell, Ⅷ. A dynamical theory of the electromagnetic field, Phil. Trans. R. Soc., 155 (1865), 459–512. https://doi.org/10.1098/rstl.1865.0008 doi: 10.1098/rstl.1865.0008 |
[11] | P. Mathé, S. V. Pereverzev, Optimal discretization of inverse problems in hilbert scales. Regularization and self-regularization of projection methods, SIAM J. Numer. Anal., 38 (2001), 1999–2021. https://doi.org/10.1137/S003614299936175X doi: 10.1137/S003614299936175X |
[12] | D. Picard, G. Kerkyacharian, Estimation in inverse problems and second-generation wavelets, In: Proceedings of the international congress of mathematicians, European Mathematical Society Publishing House, Madrid, August 22–30, 2006,713–739. https://doi.org/10.4171/022-3/37 |
[13] | A. D. Pierce, Acoustics: an introduction to its physical principles and applications, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-11214-1 |
[14] | N. D. Phuong, N. H. Tuan, D. Baleanu, T. B. Ngoc, On Cauchy problem for nonlinear fractional differential equation with random discrete data, Appl. Math. Comput., 362 (2019), 124458. https://doi.org/10.1016/j.amc.2019.05.029 doi: 10.1016/j.amc.2019.05.029 |
[15] | C. Song, Z. Yang, Existence and nonexistence of global solutions to the cauchy problem for a nonlinear beam equation, Math. Method. Appl. Sci., 33 (2010), 563–575. https://doi.org/10.1002/mma.1175 doi: 10.1002/mma.1175 |
[16] | N. H. Tuan, V. V. Au, N. H. Can, Regularization of initial inverse problem for strongly damped wave equation, Appl. Anal., 97 (2018), 69–88. https://doi.org/10.1080/00036811.2017.1359560 doi: 10.1080/00036811.2017.1359560 |
[17] | N. H. Tuan, D. Baleanu, T. N. Thach, D. O'Regan, N. H. Can, Final value problem for nonlinear time fractional reaction-diffusion equation with discrete data, J. Comput. Appl. Math., 376 (2020), 112883. https://doi.org/10.1016/j.cam.2020.112883 doi: 10.1016/j.cam.2020.112883 |
[18] | N. A. Triet, T. T. Binh, N. D. Phuong, D. Baleanu, N. H. Can, Recovering the initial value for a system of nonlocal diffusion equations with random noise on the measurements, Math. Method. Appl. Sci., 44 (2021), 5188–5209. https://doi.org/10.1002/mma.7102 doi: 10.1002/mma.7102 |
[19] | N. H. Tuan, D. V. Nguyen, V. V. Au, D. Lesnic, Recovering the initial distribution for strongly damped wave equation, Appl. Math. Lett., 73 (2017), 69–77. https://doi.org/10.1016/j.aml.2017.04.014 doi: 10.1016/j.aml.2017.04.014 |
[20] | N. H. Tuan, E. Nane, D. O'Regan, N. D. Phuong, Approximation of mild solutions of a semilinear fractional differential equation with random noise, Proc. Amer. Math. Soc., 148 (2020), 3339–3357. https://doi.org/10.1090/proc/15029 doi: 10.1090/proc/15029 |
[21] | G. F. Wheeler, W. P. Crummett, The vibrating string controversy, Am. J. Phys., 55 (1987), 33–37. https://doi.org/10.1119/1.15311 doi: 10.1119/1.15311 |
[22] | G. A. Zou, B. Wang, Stochastic Burgers' equation with fractional derivative driven by multiplicative noise, Comput. Math. Appl., 74 (2017), 3195–3208. https://doi.org/10.1016/j.camwa.2017.08.023 doi: 10.1016/j.camwa.2017.08.023 |