This paper presents a detailed procedure for determining the probability of return for random walks on $ \mathbb{Z} $, whose increment is given by a generalization of a well-known Fibonacci sequence, namely the $ k $-Fibonacci-like sequence $ (G_{k, n})_n $. Also, we study the size of the set of these walks that return to the origin an infinite number of times, in term of fractal dimension. In addition, we investigate the limiting distribution of an adequate Markov chain that encapsulates the entire Tribonacci sequence $ ({\mathsf T}_n) $ to provide the limiting behavior of this sequence.
Citation: Najmeddine Attia. Some remarks on recursive sequence of fibonacci type[J]. AIMS Mathematics, 2024, 9(9): 25834-25848. doi: 10.3934/math.20241262
This paper presents a detailed procedure for determining the probability of return for random walks on $ \mathbb{Z} $, whose increment is given by a generalization of a well-known Fibonacci sequence, namely the $ k $-Fibonacci-like sequence $ (G_{k, n})_n $. Also, we study the size of the set of these walks that return to the origin an infinite number of times, in term of fractal dimension. In addition, we investigate the limiting distribution of an adequate Markov chain that encapsulates the entire Tribonacci sequence $ ({\mathsf T}_n) $ to provide the limiting behavior of this sequence.
[1] | D. E. Knuth, The art of computer programming, United States: Pearson Education, 1997. |
[2] | E. Czeizler, L. Kari, S. Seki, On a special class of primitive words, Theor. Comput. Sci., 411 (2010), 617–630. https://doi.org/10.1016/j.tcs.2009.09.037 doi: 10.1016/j.tcs.2009.09.037 |
[3] | S. Uygun, H. Eldogan, Properties of k-Jacobsthal and k-Jacobsthal Lucas sequences, Gen. Math. Notes, 36 (2016), 34–47. |
[4] | S. Uygun, The (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas sequences, Appl. Math. Sci., 9 (2015), 3467–3476. |
[5] | S. Uygun, Bi-periodic Jacobsthal Lucas matrix sequence, Acta Universitatis Apulensis, 66 (2021), 53–69. |
[6] | S. Falcon, A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Soliton. Fract., 33 (2007), 38–49. https://doi.org/10.1016/j.chaos.2006.10.022 doi: 10.1016/j.chaos.2006.10.022 |
[7] | Y. K. Panwar, G. P. S. Rathore, R. Chawla, On the $k$-Fibonacci-like Numbers, Turkish J. Anal. Number Theory, 2 (2014), 9–12. http://dx.doi.org/10.12691/tjant-2-1-3 doi: 10.12691/tjant-2-1-3 |
[8] | B. Singh, S. Bhatnagar, S. Omprakash, Fibonacci-like sequence, Int. J. Advan. Math. Sci., 1 (2013), 145–151. http://dx.doi.org/10.14419/ijams.v1i3.898 doi: 10.14419/ijams.v1i3.898 |
[9] | B. Singh, S. Omprakash, S. Bhatnagar, Fibonacci-like sequence and its properties, Int. J. Contemp. Math. Sci., 5 (2010), 859–868. |
[10] | E. Makover, J. McGowan, An elementary proof that random Fibonacci sequences grow exponentially, J. Number Theory, 121 (2006), 40–44. https://doi.org/10.1016/j.jnt.2006.01.002 doi: 10.1016/j.jnt.2006.01.002 |
[11] | S. Sambasivarao, M. Srinivas, Some remarks concerning k-Fibonacci-like numbers, Int. J. Math. Sci. Comput., 5 (2015), 8–10. |
[12] | S. Falcon, A. Plaza, Iterated partial sums of the k-Fibonacci sequences, Axioms, 11 (2022), 542. https://doi.org/10.3390/axioms11100542 doi: 10.3390/axioms11100542 |
[13] | S. Falcon, A. Plaza, On $k$-Fibonacci sequences and polynomials and their derivatives, Chaos Soliton. Fract., 39 (2009), 1005–1019. https://doi.org/10.1016/j.chaos.2007.03.007 doi: 10.1016/j.chaos.2007.03.007 |
[14] | Y. K. Panwar, A note on the generalized k-Fibonacci sequence, Naturengs MTU J. Eng. Natural Sci., 2 (2021), 29–39. |
[15] | K. J. Falconer, Fractal geometry, Mathematical foundations and applications, Wiley: 2nd Edition, 2003. |
[16] | R. D. Mauldin, M. Urbanski, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc., s3-73 (1996), 105–154. https://doi.org/10.1112/plms/s3-73.1.105 doi: 10.1112/plms/s3-73.1.105 |
[17] | N. Attia, C. Souissi, N. Saidi, R. Ali, A note on $k$-Bonacci random walks, Fractal Fract., 7 (2023), 280. https://doi.org/10.3390/fractalfract7040280 doi: 10.3390/fractalfract7040280 |
[18] | J. Neunhauserer, Return of Fibonacci random walks, Stat. Probabil. Lett., 121 (2017), 51–53. https://doi.org/10.1016/j.spl.2016.10.009 doi: 10.1016/j.spl.2016.10.009 |
[19] | M. Feinberg, Fibonacci-Tribonacci, Fibonacci Quart., 1 (1963), 71–74. |
[20] | S. Arolkar, Y. S. Valaulikar, Hyers-Ulam stability of generalized Tribonacci functional equation, Turkish J. Anal. Number Theory, 5 (2017), 80–85. https://doi.org/10.12691/tjant-5-3-1 doi: 10.12691/tjant-5-3-1 |
[21] | K. E, Magnani, On third-order linear recurrent functions, Discrete Dyn. Nat. Soc., 2019 (2009), 9489437. https://doi.org/10.1155/2019/9489437 doi: 10.1155/2019/9489437 |
[22] | M. N. Parizi, M. E. Gordji, On Tribonacci functions and Tribonacci numbers, Int. J. Math. Comput. Sci., 11 (2016), 23–32. |
[23] | K. K. Sharma, Generalized Tribonacci function and Tribonacci numbers, Int. J. Recent Tech. Eng., 9 (2020), 1313–1316. https://doi.org/10.35940/ijrte.F7640.059120 doi: 10.35940/ijrte.F7640.059120 |
[24] | Y. Soykan, Summing formulas for generalized Tribonacci numbers, Universal J. Math. Appl., 3 (2020), 1–11. https://doi.org/10.32323/ujma.637876 doi: 10.32323/ujma.637876 |
[25] | Y. Taşyurdu, On the sums of Tribonacci and Tribonacci-Lucas numbers, Appl. Math. Sci., 13 (2019), 1201–1208. https://doi.org/10.12988/ams.2019.910144 doi: 10.12988/ams.2019.910144 |
[26] | T. Ilija, Binet type formula for Tribonacci sequence with arbitrary initial numbers, Chaos Solitons Fractals, 114 (2018), 63–68. https://doi.org/10.1016/j.chaos.2018.06.023 doi: 10.1016/j.chaos.2018.06.023 |
[27] | K. Alladi, J. V. E. Hoggatt, On tribonacci numbers and related functions, Fibonacci Quart., 15 (1977), 42–45. |
[28] | J. E. Hutchinson, Fractals and self similarity, Indiana U. Math. J., 30 (1981), 713–747. |
[29] | M. F. Barnsley, Fractals everywhere, Boston: Academic Press, 1988. |