Processing math: 56%
Research article

Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions

  • Received: 09 July 2024 Revised: 19 August 2024 Accepted: 28 August 2024 Published: 06 September 2024
  • MSC : 26A33, 34A08, 34B15

  • In this paper, we study the existence and uniqueness of solutions for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point Riemann-Liouville fractional integral boundary conditions via standard fixed point theorems. The existence of solutions is proved using Krasnoselskii's fixed point theorem, while the existence and uniqueness of solutions is established using the Banach fixed point theorem. We also discuss the stability of the problem in terms of Ulam-Hyers, Ulam-Hyers-Rassias, generalized Ulam-Hyers, and generalized Ulam-Hyers-Rassias stability. As an application, some examples are presented to illustrate our theoretical results.

    Citation: Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas. Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions[J]. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263

    Related Papers:

    [1] Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami . Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system. AIMS Mathematics, 2024, 9(6): 16203-16233. doi: 10.3934/math.2024784
    [2] Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394
    [3] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [4] Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami . Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense. AIMS Mathematics, 2024, 9(4): 9926-9950. doi: 10.3934/math.2024486
    [5] Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632
    [6] Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012
    [7] Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042
    [8] Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288
    [9] Sabri T. M. Thabet, Sa'ud Al-Sa'di, Imed Kedim, Ava Sh. Rafeeq, Shahram Rezapour . Analysis study on multi-order ϱ-Hilfer fractional pantograph implicit differential equation on unbounded domains. AIMS Mathematics, 2023, 8(8): 18455-18473. doi: 10.3934/math.2023938
    [10] Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438
  • In this paper, we study the existence and uniqueness of solutions for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point Riemann-Liouville fractional integral boundary conditions via standard fixed point theorems. The existence of solutions is proved using Krasnoselskii's fixed point theorem, while the existence and uniqueness of solutions is established using the Banach fixed point theorem. We also discuss the stability of the problem in terms of Ulam-Hyers, Ulam-Hyers-Rassias, generalized Ulam-Hyers, and generalized Ulam-Hyers-Rassias stability. As an application, some examples are presented to illustrate our theoretical results.



    Fractional differential equations (FDEs) extend the concept of classical integer-order differential equations to non-integer orders, providing a powerful framework for modeling complex systems exhibiting memory and hereditary properties. The origins of fractional calculus can be traced back to the late of 17th century when Gottfried Wilhelm Leibniz and Guillaume de L'Hôpital exchanged letters discussing the possibility of derivatives of non-integer order. Over the centuries, the theory of fractional calculus has been developed and formalized by mathematicians such as Joseph Liouville, Bernhard Riemann, Hermann Weyl, and Marcel Riesz, among others.

    In the modern era, fractional calculus has found applications in various scientific and engineering disciplines. Unlike classical differential equations, FDEs are capable of capturing the dynamics of processes that exhibit anomalous diffusion, non-local behavior, and long-range temporal correlations. This makes them particularly suitable for modeling phenomena in fields such as physics, control theory, biology, finance, and engineering; see the monographs [1,2,3,4,5,6].

    The mathematical foundation of FDEs involves several definitions of fractional derivatives and integrals, each suited for different types of problems. The most commonly used definitions include the Riemann-Liouville, Caputo, and Hadamard fractional derivatives. These derivatives are integral operators that generalize the concept of differentiation to fractional orders, providing a flexible tool for describing the evolution of systems over time. Within this framework, several types of fractional derivatives have been developed, each tailored to capture different aspects of these systems. Among these, the Hilfer-Hadamard fractional derivative is a new fractional derivative introduced in 2012 by M. D. Qasim[7]. It has emerged as a notable concept, blending the features of the Hilfer and Hadamard fractional derivatives. The unique combination of Hilfer and Hadamard characteristics makes it particularly versatile for a wide range of applications. As research in this area continues to evolve, the Hilfer-Hadamard fractional derivative is expected to play an increasingly important role in the mathematical modeling of complex systems.

    The study of existence and uniqueness of solutions to FDEs is crucial, as it ensures that the models are mathematically well-posed and their solutions are reliable for practical applications. These properties are typically established using fixed point theorems, which are foundational tools in functional analysis; see the monographs [8,9,10]. The stability analysis of FDEs is essential to understand how solutions behave under small perturbations, which is crucial for the robustness of models in real-world applications. Various concepts of stability have been developed, each suited to different types of perturbations and scenarios. In the context of FDEs, concepts such as Lyapunov stability, asymptotic stability, Mittag-Leffler stability, Ulam-Hyers stability, and Ulam-Hyers-Rassias stability are commonly used, see [11,12,13,14,15,16,17] and references cited therein.

    The research since 2017 has focused on exploring the theoretical properties of the Hilfer-Hadamard fractional derivative and its applications to differential equations. The study of the existence and uniqueness of solutions to differential equations involving this derivative has been a vibrant area of investigation. Researchers have also examined the stability of such systems, employing various fixed point theorems and stability concepts, including Ulam-Hyers stability, Ulam-Hyers-Rassias stability, and their generalizations. For more detailed discussions, see [18,19,20,21].

    Research on sequential fractional differential equations (FDEs) with boundary value problems has made significant progress, primarily focusing on single sequential FDEs with various types of boundary conditions regarding the existence and uniqueness of solutions. Notable examples can be found in the monographs [22,23,24,25,26]. These studies utilize a range of mathematical techniques and contribute to a broader understanding of the applications of fractional calculus in various fields, including physics, engineering, and applied mathematics.

    Among the various applications of FDEs, coupled systems involving sequential fractional differential equations with boundary value problems have also garnered significant attention due to their ability to describe complex interactions between multiple components or variables within a system. Recent results on this topic are limited and include the following.

    In 2018, Zada et al. [27] studied the nonlinear sequential coupled system of Caputo fractional differential equations with Riemann-Liouville fractional integral boundary conditions of the form

    {(cDq+kcDq1)x(t)=f(t,x(t),y(t)),t[0,T], 2<q3,(cDp+kcDp1)y(t)=g(t,x(t),y(t)),t[0,T], 2<p3,x(0)=0,  x(T)=ni=1αiIρiy(ηi),y(0)=0,  y(T)=mj=1βjIγjy(θj),

    where cD(.) denotes the caputo fractional derivatives of order p and q, I(.) denotes the Riemann-Liouville fractional integral of order ρi and γj>0, ηi, θj(0,T), kR+, f, g:[0,T]×R2R, and αi,βjR, i=1,2,,n, j=1,2,,m are real constants such that

    ni=1αiηρi+1iΓ(ρi+2).mj=1βjθγj+1jΓ(γj+2)T2.

    The authors in this paper demonstrated the existence of solutions by applying the Leray-Schauder alternative criterion, while uniqueness is established using the Banach fixed point theorem. They also presented the Ulam-Hyers stability of the mentioned system.

    A few years later, in 2022, Zada and Yar [28] studied the existence, uniqueness, and Ulam-Hyers stability of a sequential coupled system of Hadamard fractional differential equations with nonlocal Hadamard fractional integral boundary conditions as follows:

    {(Dq+kDq1)u(t)=f(t,u(t),v(t)),k>0, 1<q2, t(1,e),(Dp+kDp1)v(t)=g(t,u(t),v(t)),k>0, 1<p2, t(1,e),u(1)=0,  mi=1λiIαiu(ηi)=nj=1μj(Iβju(e)Iβju(ξj)),v(1)=0,  mi=1ρiIγiv(θi)=nj=1κj(Iδjv(e)Iδjv(ζj)),

    where D(.) denotes Hadamard fractional derivative of order p and q,f,g:[1,e]×R2R are continuous functions, ηi, θi, ξj, ζj(1,e), λi, ρi, μj, κjR, i=1,2,,m, j=1,2,,n, and I(ϕ) is the Hadamard fractional integral of order ϕ>0,ϕ=αi,γi,βj,δj, i=1,2,,m, j=1,2,,n. The existence of solutions was derived from Leray-Schauder's alternative, whereas the uniqueness was established by the Banach fixed point theorem.

    In the same year, Agarwal et al. [29] studied the existence and Ulam-Hyers stability results for a fully coupled system of nonlinear sequential Hilfer fractional differential equations of the form

    {(HDα1,β1σ1HDα11,β1)x(t)=f1(t,x(t),y(t)),t[a,b],a0,(HDα2,β2σ2HDα21,β2)y(t)=f2(t,x(t),y(t)),t[a,b],

    subject to integro-multistrip-multipoint boundary conditions

    {x(k)(a)=y(k)(a)=0,  k=0,1,2,,n2,bax(s)ds=pi=2λi1ηiηi1y(s)ds+qj=1μjy(ϱj),bay(s)ds=pi=2λi1ηiηi1x(s)ds+qj=1μjx(ϱj),

    where HDαi,βi is the Hilfer fractional derivative operator of order αi,n1<αin, n3, and type βi, 0βi1, i=1,2, and fi:[a,b]×R×RR (i=1,2) are continuous functions, a<η1<η2<<ηp<ϱ1<ϱ2<<ϱq<b,λi1,μj>0,i=2,3,,p, j=1,2,,q with p,qN, and σ1,σ2>0. The authors applied the standard fixed point theorems due to Banach and Krasnoselskii, as well as the Leray-Schauder nonlinear alternative, to establish the existence and uniqueness of the solution. The paper also included a study of Ulam-Hyers stability for the given problem.

    Very recently, in 2024, Sompong et al. [30] changed a coupled system of sequential Hilfer fractional differential equations from the aforementioned paper to a coupled system of sequential Hilfer-Hadamard fractional differential equations

    {(HDα1,β11++k1HDα11,β11+)u(t)=f(t,u(t),v(t)),  1<α12,  t[1,e],(HDα2,β21++k2HDα21,β21+)v(t)=g(t,u(t),v(t)),  1<α22,  t[1,e],

    with four-point coupled boundary conditions

    u(1)=0,u(e)=λv(θ),  1<θ<e,v(1)=0,v(e)=μu(η),  1<η<e,

    where HDαi,βi1+ denotes the Hilfer-Hadamard fractional derivatives of order αi(1,2] and type βi[0,1] for i{1,2},k1,k2R+, f,g:[1,e]×R×RR are given continuous functions, and λ and μ are real constants.

    Motivated by the research going on in this direction, in the present paper we extend the results of [30] to a coupled system of sequential Hilfer-Hadamard fractional differential equations

    {(HDα1,β11++k1HDα11,β11+)u(t)=f(t,u(t),v(t)),t[1,e],(HDα2,β21++k2HDα21,β21+)v(t)=g(t,u(t),v(t)),t[1,e], (1.1)

    with multi-point Riemann-Liouville fractional integral boundary conditions

    u(1)=0,u(e)=ni=1λiIδi1+v(θi)=ni=1λiΓ(δi)θi1(θis)δi1v(s)ds,v(1)=0,v(e)=nj=1μjIσj1+u(ηj)=nj=1μjΓ(σj)ηj1(ηjs)σj1u(s)ds, (1.2)

    where HDαi,βi1+ denotes the Hilfer-Hadamard fractional derivatives of order αi(1,2] and type βi[0,1] for i{1,2},k1,k2R+, and f,g:[1,e]×R×RR are given continuous functions. Iδi and Iσj are the Riemann-Liouville fractional integral of positive order θi and ηj(1,e), and λi,μj,1i,jn are real constants. Note that the Hilfer-Hadamard fractional derivative is viewed as interpolating the Hadamard fractional derivative and the Caputo-Hadamard fractional derivative. In this paper, we focus on the special case of order αi(1,2] as most applications involve derivatives of no more than second-order. Another important highlight of this research are the boundary conditions of the problem, which are multi-point Riemann-Liouville fractional integral boundary conditions that make it applicable to a broader class of mathematical models.

    Fractional differential equations continue to be a vibrant area of research, with ongoing developments enhancing our understanding and expanding their applicability. This paper contributes to this growing body of knowledge by addressing key aspects of existence, uniqueness, and stability in the context of fractional integral boundary conditions. The existence and uniqueness of solutions are established using fixed point theorems such as Krasnoselskii's and the Banach fixed point theorem. Ulam-Hyers, Ulam-Hyers-Rassias, generalized Ulam-Hyers, and generalized Ulam-Hyers-Rassias stability are also discussed for the system of Hilfer-Hadamard sequential fractional differential equations (1.1) with conditions (1.2). Illustrative examples are provided.

    The remaining structure of this paper is as follows: In Section 2, we recall some definitions, notations, and theorems needed for our proofs. The main results regarding existence and uniqueness are presented in Section 3. The stability results in the sense of Ulam-Hyers, generalized Ulam-Hyers, Ulam-Hyers-Rassias, and generalized Ulam-Hyers-Rassias are discussed in Section 4. Examples illustrating the main results are provided in Section 5.

    In this section, we present some fundamental definitions and theorems. Let L1[a,b] be the Banach space of an Lebesgue integrable function. We consider AC[a,b], the space of absolutely continuous function on the interval [a,b], and ACnδ[a,b] is the space of n-times δdifferentiable absolutely continuous functions on the interval [a,b], as follows

    AC[a,b]={f:f(t)=c+taφ(τ)dτ,cR,φL1[a,b]},ACnδ[a,b]={f:[a,b]R:δ(n1)f(t)AC[a,b]},

    where δ is the Euler operator tddt.

    Definition 2.1. (The Riemann-Liouville fractional integral [2]) The Riemann-Liouville integral of order α>0 of a function f:[a,)R is defined as

    Iαa+f(t):=1Γ(α)ta(tτ)α1f(τ)dτ,t>a.

    Definition 2.2. (Hadamard fractional integral [2]) The Hadamard fractional integral of order αR+ for a function f:[a,)R is defined as

    HIαa+f(t)=1Γ(α)ta(logtτ)α1f(τ)τdτ,t>a,

    provided the integral exists, where log(.)=loge(.).

    Definition 2.3. (Hadamard fractional derivative [2]) The Hadamard fractional derivative of order α>0, applied to the function f:[a,)R, is defined as

    HDαa+f(t)=δn(HInαa+f(t)),  n1<α<n,n=[α]+1,

    where δn=(tddt)n and [α] denotes the integer part of the real number α.

    Definition 2.4. (Hilfer-Hadamard fractional derivative [20,31]) Let n1<αn,0β1, and fL1[a,b]. The Hilfer-Hadamard fractional derivative of order α and type β of f is defined as

    (HDα,βa+f)(t)=(HIβ(nα)a+δn HI(nα)(1β)a+f)(t)=(HIβ(nα)a+δn HInγa+f)(t)=(HIβ(nα)a+ HDγa+f)(t),

    where HI(.)a+, γ=α+nβαβ, and HD(.)a+ are the Hadamard fractional integral and derivative defined by Definitions 2.2 and 2.3, respectively.

    The Hilfer-Hadamard fractional derivative may be viewed as interpolating the Hadamard fractional derivative and the Caputo-Hadamard fractional derivative. Indeed, for β=0, this derivative reduces to the Hadamard fractional derivative, and when β=1, we recover the Caputo-Hadamard fractional derivative.

    We use some theorems of the Hadamard fractional integral and Hilfer-Hadamard fractional derivative by Kilbas [2].

    Theorem 2.5. [2] Let α>0, n=[α]+1, and 0<a<b<. If fL1[a,b] and (HInαa+f)(t) ACnδ[a,b], then

    (HIαa+ HDαa+f)(t)=f(t)n1j=0(δ(nj1)(HInαa+f))(a)Γ(αj)(logta)αj1.

    Theorem 2.6. [20] Let α>0, 0β1, γ=α+nβαβ, n1<γn, n=[α]+1, and 0<a<b<. If fL1[a,b] and (HInγa+f)(t)ACnδ[a,b], then

    HIαa+ (HDα,βa+f)(t)= HIγa+ (HDγa+f)(t)=f(t)n1j=0(δ(nj1)(HInγa+f))(a)Γ(γj)(logta)γj1.

    From this theorem, we notice that if β=0, the formula reduces to the formula in the Theorem 2.5.

    We will use the following well-known fixed point theorems in Banach space to prove the existence and uniqueness of solutions for the coupled system of the sequential Hilfer-Hadamard fractional differential problem.

    Theorem 2.7. (Krasnoselskii's fixed point theorem [32]) Let Y be a bounded, closed, convex, and nonempty subset of a Banach space X. Let F1 and F2 be the operators satisfying the conditions: (i) F1y1+F2y2Y whenever y1,y2Y; (ii) F1 is compact and continuous; (iii) F2 is a contraction mapping. Then, there exists yY such that y=F1y+F2y.

    Theorem 2.8. (Banach fixed point theorem [33]) Let X be a Banach space, DX, nonempty closed subset, and F:DD a strict contraction, i.e., there exists k(0,1) such that FxFykxy for all x,yD. Then, F has a fixed point in D.

    In summary, Krasnoselskii's fixed point theorem is a generalization of the Banach fixed point theorem that allows for the sum of two operators, while Banach's theorem is a special case that deals with a single contraction mapping on a complete norm space.

    In this paper, we also focus on the stability of the solution to the problem in the class defined by system (1.1) and conditions (1.2), ensuring it stays continuous despite changes to the equation while maintaining the boundary condition structure. We explore and analyze four types of Ulam stability: Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability, and generalized Ulam-Hyers-Rassias stability for the fractional differential problem (1.1)–(1.2).

    Let ϵ1,ϵ2>0,α1,α2(1,2],β1,β2[0,1],f,g:[1,e]×R×RR be continuous functions, and φ1,φ2:[1,e]R+. We consider the system of fractional differential problem (1.1)–(1.2) and the systems of inequalities

    {|(HDα1,β11++k1HDα11,β11+)x(t)f(t,x(t),y(t))|ϵ1,t[1,e],|(HDα2,β21++k2HDα21,β21+)y(t)g(t,x(t),y(t))|ϵ2, (2.1)
    {|(HDα1,β11++k1HDα11,β11+)x(t)f(t,x(t),y(t))|φ1(t),t[1,e],|(HDα2,β21++k2HDα21,β21+)y(t)g(t,x(t),y(t))|φ2(t), (2.2)
    {|(HDα1,β11++k1HDα11,β11+)x(t)f(t,x(t),y(t))|ϵ1φ1(t),t[1,e],|(HDα2,β21++k2HDα21,β21+)y(t)g(t,x(t),y(t))|ϵ2φ2(t), (2.3)

    with multi-point Riemann-Liouville fractional integral boundary conditions

    x(1)=0,x(e)=ni=1λiIδi1+y(θi)=ni=1λiΓ(δi)θi1(θis)δi1y(s)ds,y(1)=0,y(e)=nj=1μjIσj1+x(ηj)=nj=1μjΓ(σj)ηj1(ηjs)σj1x(s)ds, (2.4)

    where θi,ηj(1,e), and λi,μj are real constant, for 1i,jn.

    In the following Ulam stability definitions, we denote Y=C1([1,e],R). For a vector v=(v1,v2)>0, this means v1,v2>0.

    Definition 2.9. (Ulam-Hyers stable [11]) Problem (1.1)–(1.2) is Ulam-Hyers stable, if there exists a constant vector cf,g=(cf,cg)>0 such that, for each ϵ=(ϵ1,ϵ2)>0 and for each solution (x,y)Y×Y of inequalities (2.1) with (2.4), there exists a solution (u,v)Y×Y of problem (1.1)–(1.2) satisfying

    (x,y)(u,v)cf,gϵT,t[1,e].

    Definition 2.10. (Generalized Ulam-Hyers stable [11]) Problem (1.1)–(1.2) is generalized Ulam-Hyers stable, if there exists a continuous vector function θf,g:R+×R+R+ with θf,g(0)=0 such that, for each solution (x,y)Y×Y of inequalities (2.1) with (2.4), there exists a solution (u,v)Y×Y of problem (1.1)–(1.2) satisfying

    (x,y)(u,v)θf,g(ϵ),t[1,e].

    Definition 2.11. (Ulam-Hyers-Rassias stable [11]) Problem (1.1)–(1.2) is Ulam-Hyer-Rassias stable with respect to φ=(φ1,φ2) if there exists a constant vector cf,g,φ=(cf,φ1,cg,φ2)>0 such that for each ϵ>0 and for each solution (x,y)Y×Y of inequalities (2.3) with (2.4), there exists a solution (u,v)Y×Y of problem (1.1)–(1.2) satisfying

    (x,y)(u,v)ϵcf,g,φ[φ(t)]T,t[1,e].

    Definition 2.12. (Generalized Ulam-Hyers-Rassias stable [11]) Problem (1.1)–(1.2) is generalized Ulam-Hyer-Rassias stable with respect to φ=(φ1,φ2) if there exists a constant vector cf,g,φ=(cf,φ1,cg,φ2)>0 such that, for each solution (x,y)Y×Y of inequalities (2.2) with (2.4), there exists a solution (u,v)Y×Y of problem (1.1)–(1.2) satisfying

    (x,y)(u,v)cf,g,φ[φ(t)]T,t[1,e].

    In a word, the primary differences among the stability concepts lie in the types of perturbations and the generality of the stability conditions: Ulam-Hyers stability addresses basic stability under small perturbations, while Ulam-Hyers-Rassias stability extends this by allowing more flexible perturbations. Generalized Ulam-Hyers stability broadens the application of Ulam-Hyers stability to various FDEs, and generalized Ulam-Hyers-Rassias stability combines this generalization with flexible perturbations for a more comprehensive analysis. These concepts are crucial for studying stability in various mathematical models, particularly in fractional differential equations.

    Remark 2.13. It is clear that (i) Definition 2.9 Definition 2.10; (ii) Definition 2.11 Definition 2.12; (iii) Definition 2.11 Definition 2.9.

    Remark 2.14. A function vector (x,y)Y×Y is a solution of inequalities (2.1) if and only if there exists a function ν1,ν2C([1,e],R) such that |ν1(t)|ϵ1,|ν2(t)|ϵ2, t[1,e], and

    {(HDα1,β11++k1HDα11,β11+)x(t)=f(t,x(t),y(t))+ν1(t),t[1,e],(HDα2,β21++k2HDα21,β21+)y(t)=g(t,x(t),y(t))+ν2(t).

    One can make similar observations to Remark 2.14 for inequalities (2.2) and (2.3).

    We start by proving a basic lemma concerning a linear variant of boundary value problem (1.1)–(1.2), which be used to transform boundary value problem (1.1)–(1.2) into an equivalent integral system of equations.

    Lemma 3.1. Let h1,h2C([1,e],R) and Δ=1AB0, where

    A=ni=1λiΓ(δi)θi1(θis)δi1(logs)γ21dsandB=nj=1μjΓ(σj)ηj1(ηjs)σj1(logs)γ11ds.

    Then, u,vC([1,e],R) are solutions of the Hilfer-Hadamard sequential fractional differential equations

    {(HDα1,β11++k1HDα11,β11+)u(t)=h1(t),1<α12,0β11,t[1,e],(HDα2,β21++k2HDα21,β21+)v(t)=h2(t),1<α22,0β21,t[1,e], (3.1)

    supplemented with integral boundary conditions (1.2) if and only if

    u(t)=(logt)γ11Δ{[k1e1u(s)sds1Γ(α1)e1h1(s)s(loges)α11dsni=1λiΓ(δi)θi1(θis)δi1(k2s1v(r)rdr1Γ(α2)s1h2(r)r(logsr)α21dr)ds]+A[k2e1v(s)sds1Γ(α2)e1h2(s)s(loges)α21dsnj=1μjΓ(σj)ηj1(ηjs)σj1(k1s1u(r)rdr1Γ(α1)s1h1(r)r(logsr)α11dr)ds]}k1t1u(s)sds+1Γ(α1)t1h1(s)s(logts)α11ds (3.2)

    and

    v(t)=(logt)γ21Δ{[k2e1v(s)sds1Γ(α2)e1h2(s)s(loges)α21dsnj=1μjΓ(σj)ηj1(ηjs)σj1(k1s1u(r)rdr1Γ(α1)s1h1(r)r(logsr)α11dr)ds]+B[k1e1u(s)sds1Γ(α1)e1h1(s)s(loges)α11dsni=1λiΓ(δi)θi1(θis)δi1(k2s1v(r)rdr1Γ(α2)s1h2(r)r(logsr)α21dr)ds]}k2t1v(s)sds+1Γ(α2)t1h2(s)s(logts)α21ds, (3.3)

    where γi=αi+2βiαiβi for i{1,2}.

    Proof. Taking the Hadamard fractional integral of order α1 both sides of the first equation of (3.1), we get

    (HIα11+HDα1,β11++k1HIα11+HDα11,β11+)u(t)=HIα11+h1(t).

    By Theorem 2.6, we have

    u(t)1j=0(δ(2j1)(HI2γ11+u))(1)Γ(γ1j)(logt)γ1j1+k1HIα11+HDα11,β11+u(t)=HIα11+h1(t). (3.4)

    From Eq (3.4), by Definition 2.4 one has

    u(t)(δHI2γ11+u)(1)Γ(γ1)(logt)γ11(HI2γ11+u)(1)Γ(γ11)(logt)γ12+k1HI11+(HIγ111+HDγ111+)u(t)=HIα11+h1(t), (3.5)

    where γ1,γ2(1,2] for i{1,2}. Then, by Theorem 2.5 we get

    u(t)(δHI2γ11+u)(1)Γ(γ1)(logt)γ11(HI2γ11+u)(1)Γ(γ11)(logt)γ12+k1HI11+(u(t)(HI2γ11+u)(1)Γ(γ11)(logt)γ12)=HIα11+h(t). (3.6)

    Equation (3.6) can be written as

    u(t)=  c0(logt)γ11+c1((log t)γ12+k1t1(log s)γ12sds)k1t1u(s)sds+1Γ(α)t1h1(s)s(log ts)α11ds, (3.7)

    where c0 and c1 are arbitrary constants. In a similar way, we obtain

    v(t)=  d0(logt)γ21+d1((log t)γ22+k2t1(log s)γ22sds)k2t1v(s)sds+1Γ(α)t1h2(s)s(log ts)α21ds, (3.8)

    where d0 and d1 are arbitrary constants. Using the first boundary conditions of (1.2), u(1)=0, and v(1)=0 together with Eqs (3.7) and (3.8), yield c1=0 and d1=0, respectively. Equations (3.7) and (3.8) become

    u(t)=c0(logt)γ11k1t1u(s)sds+1Γ(α1)t1h1(s)s(logts)α11ds, (3.9)

    and

    v(t)=d0(logt)γ21k2t1v(s)sds+1Γ(α2)t1h2(s)s(logts)α21ds. (3.10)

    Next, the second boundary conditions of (1.2) together with Eqs (3.9) and (3.10) yield

    c0k1e1u(s)sds+1Γ(α1)e1h1(s)s(loges)α11ds=ni=1λiΓ(δi)θi1(θis)δi1(d0(logs)γ21k2s1v(r)rdr+1Γ(α2)s1h2(r)r(logsr)α21dr)ds

    and

    d0k2e1v(s)sds+1Γ(α2)e1h2(s)s(loges)α21ds=nj=1μjΓ(σj)ηj1(ηjs)σj1(c0(logs)γ11k1s1u(r)rdr+1Γ(α1)s1h1(r)r(logsr)α11dr)ds,

    respectively. Rearranging the above equations, we get the linear system of equations:

    c0d0A=J1andd0c0B=J2, (3.11)

    where

    J1=k1e1u(s)sds1Γ(α1)e1h1(s)s(loges)α11dsni=1λiΓ(δi)θi1(θis)δi1(k2s1v(r)rdr1Γ(α2)s1h2(r)r(logsr)α21dr)ds,J2=k2e1v(s)sds1Γ(α2)e1h2(s)s(loges)α21dsnj=1μjΓ(σj)ηj1(ηjs)σj1(k1s1u(r)rdr1Γ(α1)s1h1(r)r(logsr)α11dr)ds.

    Solving system (3.11), we obtain

    c0=J1+AJ2Δandd0=J2+BJ1Δ.

    Substituting c0 and d0 back into Eqs (3.9) and (3.10), respectively, we get the integral equations (3.2) and (3.3). The converse follows by direct computation. This completes the proof.

    Let us introduce the Banach space X=C([1,e],R) endowed with the norm defined by u:=maxt[1,e]|u(t)|. Thus, the product space X×X equipped with the norm (u,v)=u+v is a Banach space. In view of Lemma 3.1, we define an operator F:X×XX×X by

    F(u,v)(t)=(F1(u,v)(t),F2(u,v)(t)), (3.12)

    where

    F1(u,v)(t)=(logt)γ11Δ{[k1e1u(s)sds1Γ(α1)e1f(s,u(s),v(s))s(loges)α11dsni=1λiΓ(δi)θi1(θis)δi1(k2s1v(r)rdr1Γ(α2)s1g(r,u(r),v(r))r(logsr)α21dr)ds]+A[k2e1v(s)sds1Γ(α2)e1g(s,u(s),v(s))s(loges)α21dsnj=1μjΓ(σj)ηj1(ηjs)σj1(k1s1u(r)rdr1Γ(α1)s1f(r,u(r),v(r))r(logsr)α11dr)ds]}k1t1u(s)sds+1Γ(α1)t1f(s,u(s),v(s))s(logts)α11ds (3.13)

    and

    F2(u,v)(t)=(logt)γ21Δ{[k2e1v(s)sds1Γ(α2)e1g(s,u(s),v(s))s(loges)α21dsnj=1μjΓ(σj)ηj1(ηjs)σj1(k1s1u(r)rdr1Γ(α1)s1f(r,u(r),v(r))r(logsr)α11dr)ds]+B[k1e1u(s)sds1Γ(α1)e1f(s,u(s),v(s))s(loges)α11dsni=1λiΓ(δi)θi1(θis)δi1(k2s1v(r)rdr1Γ(α2)s1g(r,u(r),v(r))r(logsr)α21dr)ds]}k2t1v(s)sds+1Γ(α2)t1g(s,u(s),v(s))s(logts)α21ds. (3.14)

    We use the following notations in the proofs:

    ω=ni=1|λi|(θi1)δiΓ(δi+1),ˉω=nj=1|μj|(ηj1)σjΓ(σj+1),M=1|Δ|[1+ωˉω+|Δ|],W1=2 ω|Δ|,W2=2 ˉω|Δ|.

    Note that A ω and B ˉω. The following hypotheses are required in the subsequent discussion :

    (H1) Let f,g:[1,e]×R×RR be continuous functions. Assume that there exist continuous nonnegative functions ϑC([1,e],R+) and χC([1,e],R+) such that

    |f(t,u(t),v(t))|ϑ(t)and|g(t,u(t),v(t))|χ(t),

    for each t[1,e].

    (H2) Assume that there exist positive constants L and ˉL such that, for all t[1,e] and ui,viR, i=1,2,

    |f(t,u1,u2)f(t,v1,v2)|L(|u1v1|+|u2v2|),|g(t,u1,u2)g(t,v1,v2)|ˉL(|u1v1|+|u2v2|).

    (H3) Assume that φ:[1,e]R+ is an increasing continuous function and there exists λφ>0 such that

    HIα1+φ(t)λφφ(t),t[1,e].

    In this subsection, we establish an existence result using Krasnoselskii's fixed point theorem.

    Theorem 3.2. Assume that (H1) holds. Then, the problem defined by Eqs (1.1) and (1.2) has at least one solution on the interval [1,e], provided that

    Π:=k1(M+W2)+k2(M+W1)<1. (3.15)

    Proof. By assumption (H1), we can fix

    Rϑ(M+W2)Γ(α1+1)+χ(M+W1)Γ(α2+1)1(k1(M+W2)+k2(M+W1)),

    where ϑ=supt[1,e]|ϑ(t)| and χ=supt[1,e]|χ(t)|, and we consider BR={(u,v)X×X:(u,v)R}. We split the operator F:X×XX×X defined by (3.12) as

    (F1,F2)=(F11,F21)+(F12,F22),

    where F11,F21,F12, and F22 are given by

    F11(u,v)(t)=(logt)γ11Δ{[k1e1u(s)sdsni=1λiΓ(δi)θi1(θis)δi1(k2s1v(r)rdr)ds]+A[k2e1v(s)sdsnj=1μjΓ(σj)ηj1(ηjs)σj1(k1s1u(r)rdr)ds]}k1t1u(s)sds,F21(u,v)(t)=(logt)γ21Δ{[k2e1v(s)sdsnj=1μjΓ(σj)ηj1(ηjs)σj1(k1s1u(r)rdr)ds]+B[k1e1u(s)sdsni=1λiΓ(δi)θi1(θis)δi1(k2s1v(r)rdr)ds]}k2t1v(s)sds,F12(u,v)(t)=(logt)γ11Δ{[1Γ(α1)e1f(s,u(s),v(s))s(loges)α11ds+ni=1λiΓ(δi)θi1(θis)δi1(1Γ(α2)s1g(r,u(r),v(r))r(logsr)α21dr)ds]+A[1Γ(α2)e1g(s,u(s),v(s))s(loges)α21ds+nj=1μjΓ(σj)ηj1(ηjs)σj1(1Γ(α1)s1f(r,u(r),v(r))r(logsr)α11dr)ds]}+1Γ(α1)t1f(s,u(s),v(s))s(logts)α11ds

    and

    F22(u,v)(t)=(logt)γ21Δ{[1Γ(α2)e1g(s,u(s),v(s))s(loges)α21ds+nj=1μjΓ(σj)ηj1(ηjs)σj1(1Γ(α1)s1f(r,u(r),v(r))r(logsr)α11dr)ds]+B[1Γ(α1)e1f(s,u(s),v(s))s(loges)α11ds+ni=1λiΓ(δi)θi1(θis)δi1(1Γ(α2)s1g(r,u(r),v(r))r(logsr)α21dr)ds]}+1Γ(α2)t1g(s,u(s),v(s))s(logts)α21ds.

    Step Ⅰ: First, we show that (F11,F21)(u,v)+(F12,F22)(x,y)BR, whenever (u,v),(x,y)BR. Let (u,v) and (x,y)BR. Then, for any t[1,e], we have

    |F11(u,v)(t)+F12(x,y)(t)|1|Δ|{[k1e1|u(s)|sds+1Γ(α1)e1|f(s,x(s),y(s))|s(loges)α11ds+ni=1|λi|Γ(δi)θi1(θis)δi1(k2s1|v(r)|rdr+1Γ(α2)s1|g(r,w(r),y(r))|r(logsr)α21dr)ds]+A[k2e1|v(s)|sds+1Γ(α2)e1|g(s,x(s),y(s))|s(loges)α21ds+nj=1|μj|Γ(σj)ηj1(ηjs)σj1(k1s1|u(r)|rdr+1Γ(α1)s1|f(r,w(r),y(r))|r(logsr)α11dr)ds]}+k1t1|u(s)|sds+1Γ(α1)t1|f(s,x(s),y(s))|s(logts)α11ds1|Δ|{[k1u+ϑΓ(α1+1)+ni=1|λi|Γ(δi)θi1(θis)δi1(k2vlogs+χ(logs)α2Γ(α2+1))ds]+ω[k2v+χΓ(α2+1)+nj=1|μj|Γ(σj)ηj1(ηjs)σj1(k1ulogs+ϑ(logs)α1Γ(α1+1))ds]}+k1ulogt+ϑ(logt)α1Γ(α1+1)1|Δ|{[k1u+ϑΓ(α1+1)+ω(k2v+χΓ(α2+1))]+ω[k2v+χΓ(α2+1)+ˉω(k1u+ϑΓ(α1+1))]}+k1u+ϑΓ(α1+1)=(uk1+ϑΓ(α1+1))M+(vk2+χΓ(α2+1))W1,

    which, upon taking the norm for t[1,e], yields

    F11(u,v)+F12(x,y)(k1u+ϑΓ(α1+1))M+(k2v+χΓ(α2+1))W1.

    By a similar method, it can be found that

    F21(u,v)+F22(x,y)(k2v+χΓ(α2+1))M+(k1u+ϑΓ(α1+1))W2.

    Hence,

    (F11,F21)(u,v)+(F12,F22)(x,y)F11(u,v)+F12(x,y)+F21(u,v)+F22(x,y)R(k1(M+W2)+k2(M+W1))+ϑ(M+W2)Γ(α1+1)+χ(M+W1)Γ(α2+1)R.

    Therefore, (F11,F21)(u,v)+(F12,F22)(x,y)BR.

    Step Ⅱ: Next, we show that the operator (F11,F21) is a contraction. Let (u1,v1) and (u2,v2)X×X. Then, for any t[1,e], we have

    |F11(u2,v2)(t)F11(u1,v1)(t)|1|Δ|{[k1e1|u2(s)u1(s)|sds+ni=1|λi|Γ(δi)θi1(θis)δi1(k2s1|v2(r)v1(r)|rdr)ds]+A[k2e1|v2(s)v1(s)|sds+nj=1|μj|Γ(σj)ηj1(ηjs)σj1(k1s1|u2(r)u1(r)|rdr)ds]}+k1t1|u2(s)u1(s)|sds1|Δ|{[k1u2u1+k2v2v1ni=1|λi|(θi1)δiΓ(δi+1)]+ω[k2v2v1+k1u2u1nj=1|μj|(ηj1)σjΓ(σj+1)]}+k1u2u1=k1Mu2u1+k2W1v2v1(u2u1+v2v1)[k1M+k2W1],

    which, upon taking the norm for t[1,e], yields

    F11(u2,v2)F11(u1,v1)(u2u1+v2v1)[k1M+k2W1].

    Similarly, one has

    F21(u2,v2)F21(u1,v1)(u2u1+v2v1)[k2M+k1W2].

    Hence,

    (F11,F21)(u2,v2)(F11,F21)(u1,v1)=F11(u2,v2)F11(u1,v1)+F21(u2,v2)F21(u1,v1)Π (u2u1+v2v1).

    In view of (3.15), the operator (\mathcal{F}_{11}, \mathcal{F}_{21}) is a contraction.

    Step Ⅲ: Finally, we will show that the operator (\mathcal{F}_{12}, \mathcal{F}_{22}) is continuous and compact. First, we show that the operator (\mathcal{F}_{12}, \mathcal{F}_{22}) is continuous. Let \{(u_{n}, v_{n})\} be a sequence such that (u_{n}, v_{n})\to(u, v) in X\times X for any t\in[1, e] . Then, we have

    \begin{align*} |&\mathcal{F}_{12}(u_{n},v_{n})(t)-\mathcal{F}_{12}(u,v)(t)|\\ \leq & \frac{1}{|\Delta|}\bigg\{ \bigg[\frac{1}{\Gamma(\alpha_1)}\int_{1}^{e}\frac{|f(s,u_n(s),v_n(s))-f(s,u(s),v(s))|}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_1-1}ds\\ &+\sum\limits_{i = 1}^{n}\frac{|\lambda_i|}{\Gamma(\delta_i)}\int_{1}^{\theta_i}(\theta_i-s)^{\delta_i-1} \bigg(\frac{1}{\Gamma(\alpha_2)}\int_{1}^{s}\frac{|g(r,u_n(r),v_n(r))-g(r,u(r),v(r)|}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_2-1}dr\bigg)ds\bigg]\\ &+A\bigg[\frac{1}{\Gamma(\alpha_2)}\int_{1}^{e}\frac{|g(s,u_n(s),v_n(s))-g(s,u(s),v(s))|}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_2-1}ds\\ &+\sum\limits_{j = 1}^{n}\frac{|\mu_j|}{\Gamma(\sigma_j)}\int_{1}^{\eta_j}(\eta_j-s)^{\sigma_j-1}\bigg( \frac{1}{\Gamma(\alpha_1)}\int_{1}^{s}\frac{ |f(r,u_n(r),v_n(r))-f(r,u(r),v(r))|}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_1-1}dr\bigg)ds\bigg] \\ &+ \frac{1}{\Gamma(\alpha_1)}\int_{1}^{t}\frac{|f(s,u_n(s),v_n(s))-f(s,u(s),v(s))|}{s}\bigg(\log \frac{t}{s}\bigg)^{\alpha_1-1}ds. \end{align*}

    Since f and g are continuous, we get that

    \begin{align} \lVert \mathcal{F}_{12}(u_{n},v_{n})-\mathcal{F}_{12}(u,v)\rVert\to0 \quad \text{as} \quad \{(u_{n},v_{n}) \}\to(u,v). \end{align} (3.16)

    Similarly, we have

    \begin{align} \lVert \mathcal{F}_{22}(u_{n},v_{n})-\mathcal{F}_{22}(u,v)\rVert\to0 \quad \text{as} \quad \{(u_{n},v_{n}) \}\to(u,v). \end{align} (3.17)

    It follows from (3.16) and (3.17) that the operator (\mathcal{F}_{12}, \mathcal{F}_{22}) is continuous.

    Next, we will show that (\mathcal{F}_{12}, \mathcal{F}_{22}) is compact by using Arzelá-Ascoli theorem. First, (\mathcal{F}_{12}, \mathcal{F}_{22}) is uniformly bounded since

    \begin{align*} \|\mathcal{F}_{12}(u,v)\|\leq \frac{M}{\Gamma(\alpha_1+1)}\|\vartheta\| + \frac{W_1}{\Gamma(\alpha_2+1)}\|\chi\| \end{align*}

    and

    \begin{align*} \|\mathcal{F}_{22}(u,v)\|\leq \frac{M}{\Gamma(\alpha_2+1)}\|\chi\| + \frac{W_2}{\Gamma(\alpha_1+1)}\|\vartheta\|. \end{align*}

    Finally, we will show that (\mathcal{F}_{12}, \mathcal{F}_{22}) is equicontinuous. We define

    \sup\limits_{(t,u,v)\in [1,e]\times B_{R}\times B_{R}}|f(t,u,v)| = \bar f\quad\text{and}\quad \sup\limits_{(t,u,v)\in [1,e]\times B_{R}\times B_{R}}|g(t,u,v)| = \bar g.

    Letting t_1, t_2\in[1, e] with t_1 < t_2 , one has

    \begin{align} &|\mathcal{F}_{12}(u,v)(t_2)-\mathcal{F}_{12}(u,v)(t_1)|\\ \leq &\frac{\big[(\log t_2)^{\gamma_1-1}-(\log t_1)^{\gamma_1-1} \big]}{|\Delta|}\bigg\{ \bigg[\frac{1}{\Gamma(\alpha_1)}\int_{1}^{e}\frac{|f(s,u(s),v(s))|}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_1-1}ds\\ &+\sum\limits_{i = 1}^{n}\frac{|\lambda_i|}{\Gamma(\delta_i)}\int_{1}^{\theta_i}(\theta_i-s)^{\delta_i-1}\bigg( \frac{1}{\Gamma(\alpha_2)}\int_{1}^{s}\frac{|g(r,u(r),v(r))|}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_2-1}dr\bigg)ds\bigg]\\ &+\omega \bigg[ \frac{1}{\Gamma(\alpha_2)}\int_{1}^{e}\frac{|g(s,u(s),v(s))|}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_2-1}ds\\ &+\sum\limits_{j = 1}^{n}\frac{|\mu_j|}{\Gamma(\sigma_j)}\int_{1}^{\eta_j}(\eta_j-s)^{\sigma_j-1} \bigg( \frac{1}{\Gamma(\alpha_1)}\int_{1}^{s}\frac{ |f(r,u(r),v(r))|}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_1-1}dr\bigg)ds \bigg] \bigg\}\\ &+\frac{1}{\Gamma(\alpha_1)}\bigg[ \int_{1}^{t_1}\frac{| f(s,u(s),v(s))|}{s}\bigg( \bigg(\log \frac{t_2}{s}\bigg)^{\alpha_1-1}- \bigg(\log \frac{t_1}{s}\bigg)^{\alpha_1-1}\bigg)ds\\ &+\int_{t_1}^{t_2}\frac{ |f(s,u(s),v(s))|}{s}\bigg(\log \frac{t_2}{s}\bigg)^{\alpha_1-1}ds \bigg]\\ \leq&\frac{1}{|\Delta|}\bigg\{ \frac{\bar f}{\Gamma(\alpha_1+1)}[ 1+\omega \bar\omega]+ \frac{\bar g}{\Gamma(\alpha_2+1)}[2\omega]\bigg\} \bigg[(\log t_2)^{\gamma_1-1}-(\log t_1)^{\gamma_1-1} \bigg]\\ &+\frac{\bar f}{\Gamma(\alpha_1+1)}\bigg[ (\log t_2)^{\alpha_1}-(\log t_1)^{\alpha_1}\bigg]. \end{align} (3.18)

    In the same way, we have

    \begin{align} &|\mathcal{F}_{22}(u,v)(t_2)-\mathcal{F}_{22}(u,v)(t_1)|\\ \leq& \frac{1}{|\Delta|}\bigg\{ \frac{\bar g}{\Gamma(\alpha_2+1)}[ 1+\omega \bar\omega]+ \frac{\bar f}{\Gamma(\alpha_1+1)}[2\bar \omega]\bigg\} \bigg[(\log t_2)^{\gamma_2-1}-(\log t_1)^{\gamma_2-1} \bigg]\\ &+\frac{\bar g}{\Gamma(\alpha_2+1)}\bigg[ (\log t_2)^{\alpha_2}-(\log t_1)^{\alpha_2}\bigg]. \end{align} (3.19)

    From (3.18) and (3.19), we get that

    |\mathcal{F}_{12}(u,v)(t_2)-\mathcal{F}_{12}(u,v)(t_1)|\to 0\quad \text{and}\quad |\mathcal{F}_{22}(u,v)(t_2)-\mathcal{F}_{22}(u,v)(t_1)|\to 0\ \quad\text{as}\quad t_2\to t_1.

    Thus, (\mathcal{F}_{12}, \mathcal{F}_{22}) is equicontinuous. By the Arzelá-Ascoli theorem, we get that (\mathcal{F}_{12}, \mathcal{F}_{22}) is compact on B_R .

    Hence, all the conditions of Krasnoselskii's fixed point theorem are satisfied, and therefore the boundary value problem defined by Eq (1.1) with conditions (1.2) has at least one solution on the interval [1, e] .

    Next, we prove an existence and uniqueness result based on the Banach fixed point theorem.

    Theorem 3.3. Assume that (H_{2}) holds. Then, the boundary value problem defined by Eqs (1.1) and (1.2) has a unique solution on the interval [1, e] , provided that

    \begin{align} \Xi : = k_1(M + W_2) + k_2(M + W_1) + \frac{L(M + W_2)}{\Gamma(\alpha_1 + 1)} + \frac{\bar L(M + W_1)}{\Gamma(\alpha_2 + 1)} < 1. \end{align} (3.20)

    Proof. We will use the Banach fixed point theorem to prove that \mathcal{F} , defined by (3.12), has a unique fixed point. Let us define

    N_{1}: = \max\limits_{t\in[1,e]}|f(t,0,0)| < \infty \ \quad \text{and }\ \quad N_{2}: = \max\limits_{t\in[1,e]}|g(t,0,0)| < \infty.

    By hypothesis (H_{2}) , we get

    |f(t,u(t),v(t))|\leq |f(t,u(t),v(t))-f(t,0,0)|+|f(t,0,0)|\leq L(\|u\|+\|v\|)+N_1 = L\|(u,v)\|+N_1

    and

    |g(t,u(t),v(t))|\leq |g(t,u(t),v(t))-g(t,0,0)|+|g(t,0,0)|\leq \bar L(\|u\|+\|v\|)+N_2 = \bar L\|(u,v)\|+N_2.

    We choose

    \begin{equation*} \begin{split} R\geq \frac{ \frac{N_1(M+W_2)}{\Gamma(\alpha_1+1)} +\frac{N_2(M+W_1)}{\Gamma(\alpha_2+1) }}{ 1-\bigg[ k_1 (M+W_2)+ k_2(M+W_1)+\frac{L(M+W_2)}{\Gamma(\alpha_1+1)} +\frac{\bar L(M+W_1)}{\Gamma(\alpha_2+1)}\bigg] }. \end{split} \end{equation*}

    Step Ⅰ: First, we show that \mathcal{F}(B_{R})\subset B_{R} , where B_{R} = \{(u, v)\in X\times X:\lVert(u, v)\rVert\leq R\} . Let (u, v)\in B_{R} . For t\in [1, e] , we have

    \begin{align*} &|\mathcal{F}_{1}(u,v)(t)|\\ \leq& \frac{1}{|\Delta|} \bigg\{ \bigg[k_1 \int_{1}^{e}\frac{|u(s)|}{s}ds+ \frac{1}{\Gamma(\alpha_1)}\int_{1}^{e}\frac{|f(s,u(s),v(s))|}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_1-1}ds\\ &+\sum\limits_{i = 1}^{n}\frac{|\lambda_i|}{\Gamma(\delta_i)}\int_{1}^{\theta_i}(\theta_i-s)^{\delta_i-1} \bigg(k_2 \int_{1}^{s}\frac{|v(r)|}{r}dr+ \frac{1}{\Gamma(\alpha_2)}\int_{1}^{s}\frac{|g(r,u(r),v(r))|}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_2-1}dr\bigg)ds\bigg]\\ &+ A \bigg[ k_2 \int_{1}^{e}\frac{|v(s)|}{s}ds +\frac{1}{\Gamma(\alpha_2)}\int_{1}^{e}\frac{|g(s,u(s),v(s))|}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_2-1}ds\\ &+\sum\limits_{j = 1}^{n}\frac{|\mu_j|}{\Gamma(\sigma_j)}\int_{1}^{\eta_j}(\eta_j-s)^{\sigma_j-1} \bigg(k_1 \int_{1}^{s}\frac{|u(r)|}{r}dr + \frac{1}{\Gamma(\alpha_1)}\int_{1}^{s}\frac{ |f(r,u(r),v(r))|}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_1-1}dr\bigg)ds \bigg]\bigg\} \\ & +k_1 \int_{1}^{t}\frac{|u(s)|}{s}ds +\frac{1}{\Gamma(\alpha_1)}\int_{1}^{t}\frac{| f(s,u(s),v(s))|}{s}\bigg(\log \frac{t}{s}\bigg)^{\alpha_1-1}ds\\ \leq&\frac{1}{|\Delta|} \bigg\{\bigg[k_1 \|u\|\int_{1}^{e}\frac{ds}{s}+ \frac{L(\|u\|+\|v\|)+N_1}{\Gamma(\alpha_1)}\int_{1}^{e}\bigg(\log \frac{e}{s}\bigg)^{\alpha_1-1}\frac{ds}{s} \\ &+\sum\limits_{i = 1}^{n}\frac{|\lambda_i|}{\Gamma(\delta_i)}\int_{1}^{\theta_i}(\theta_i-s)^{\delta_i-1}\bigg(k_2\|v\| \int_{1}^{s}\frac{dr}{r}+ \frac{\bar L(\|u\|+\|v\|)+N_2}{\Gamma(\alpha_2)}\int_{1}^{s}\bigg(\log\frac{s}{r}\bigg)^{\alpha_2-1}\frac{dr}{r}\bigg)ds\bigg]\\ &+ A \bigg[k_2 \|v\|\int_{1}^{e}\frac{ds}{s} +\frac{\bar L(\|u\|+\|v\|)+N_2}{\Gamma(\alpha_2)}\int_{1}^{e}\bigg(\log \frac{e}{s}\bigg)^{\alpha_2-1}\frac{ds}{s}\\ &+\sum\limits_{j = 1}^{n}\frac{|\mu_j|}{\Gamma(\sigma_j)} \int_{1}^{\eta_j}(\eta_j-s)^{\sigma_j-1} \bigg(k_1\|u\| \int_{1}^{s}\frac{dr}{r} + \frac{L(\|u\|+\|v\|)+N_1}{\Gamma(\alpha_1)}\int_{1}^{s}\bigg(\log \frac{s}{r}\bigg)^{\alpha_1-1} \frac{dr}{r}\bigg)ds\bigg]\bigg\}\\ &+k_1\|u\| \int_{1}^{t}\frac{ds}{s}+ \frac{L(\|u\|+\|v\|)+N_1}{\Gamma(\alpha_1)}\int_{1}^{t}\bigg(\log \frac{t}{s}\bigg)^{\alpha_1-1}\frac{ds}{s}\\ \leq&\frac{1}{|\Delta|} \bigg\{ \bigg[k_1R + \frac{LR+N_1}{\Gamma(\alpha_1+1)} +\bigg(k_2R + \frac{\bar LR+N_2}{\Gamma(\alpha_2+1)}\bigg) \sum\limits_{i = 1}^{n}|\lambda_i|\frac{ (\theta_i-1)^{\delta_i}}{\Gamma(\delta_i+1)}\bigg]\\ &+ A \bigg[ k_2R + \frac{\bar LR+N_2}{\Gamma(\alpha_2+1)} +\bigg(k_1R+\frac{LR+N_1}{\Gamma(\alpha_1+1)}\bigg)\sum\limits_{j = 1}^{n}|\mu_j|\frac{(\eta_j-1)^{\sigma_j} }{\Gamma(\sigma_j+1)} \bigg] \bigg\}+k_1R +\frac{LR+N_1}{\Gamma(\alpha_1+1)} \\ \leq&\frac{1}{|\Delta|} \bigg\{ \bigg[k_1R + \frac{LR+N_1}{\Gamma(\alpha_1+1)} +\omega \bigg(k_2R + \frac{\bar LR+N_2}{\Gamma(\alpha_2+1)}\bigg)\bigg] \\ &+ \omega \bigg[ k_2R +\frac{\bar LR+N_2}{\Gamma(\alpha_2+1)}+\bar \omega \bigg(k_1 R+ \frac{LR+N_1}{\Gamma(\alpha_1+1)}\bigg)\bigg]\bigg\}+k_1R + \frac{LR+N_1}{\Gamma(\alpha_1+1)} \\ = & \frac{1}{|\Delta|} \bigg( k_1R + \frac{LR+N_1}{\Gamma(\alpha_1+1)} \bigg) [ 1+\omega \bar \omega +|\Delta|] +\frac{1}{|\Delta|} \bigg(k_2R +\frac{\bar LR+N_2}{\Gamma(\alpha_2+1)}\bigg) [ 2\ \omega ]\\ = & k_1MR+ M\frac{LR+N_1}{\Gamma(\alpha_1+1)}+k_2W_1R+W_1\frac{\bar LR+N_2}{\Gamma(\alpha_2+1)}. \end{align*}

    Taking the norm for t\in[1, e] on the above inequality, we get

    \begin{equation*} \begin{split} \|\mathcal{F}_{1}(u,v)\|\leq k_1MR+k_2W_1R+M\frac{LR+N_1}{\Gamma(\alpha_1+1)} +W_1\frac{\bar LR+N_2}{\Gamma(\alpha_2+1)}. \end{split} \end{equation*}

    Similarly, we obtain

    \begin{equation*} \begin{split} \|\mathcal{F}_{2}(u,v)\|\leq k_2MR+k_1W_2R+ M\frac{\bar LR+N_2}{\Gamma(\alpha_2+1)} +W_2\frac{ LR+N_1}{\Gamma(\alpha_1+1)}. \end{split} \end{equation*}

    Hence, from (3.20), one gets

    \begin{align*} \|\mathcal{F}(u,v)\| = &\|(\mathcal{F}_{1}(u,v), \mathcal{F}_{2}(u,v))\| = \|\mathcal{F}_{1}(u,v)\| +\|\mathcal{F}_{2}(u,v)\| \\ \leq & R\bigg[ k_1 (M+W_2)+ k_2(M+W_1)+\frac{L(M+W_2)}{\Gamma(\alpha_1+1)} +\frac{\bar L(M+W_1)}{\Gamma(\alpha_2+1)} \bigg]\\ &+\frac{N_1(M+W_2)}{\Gamma(\alpha_1+1)}+\frac{N_2(M+W_1)}{\Gamma(\alpha_2+1) }\\ = &\Xi R+\frac{N_1(M+W_2)}{\Gamma(\alpha_1+1)}+\frac{N_2(M+W_1)}{\Gamma(\alpha_2+1) }\leq R. \end{align*}

    Therefore, \mathcal{F}(B_{R})\subset B_{R} .

    Step Ⅱ: We will show that the operator \mathcal{F} is a contraction. Let (u_{2}, v_{2}), (u_{1}, v_{1})\in X\times X . Then, by (H_{2}) , for any t\in[1, e] , we have

    \begin{align*} &|\mathcal{F}_{1}(u_{2},v_{2})(t)-\mathcal{F}_{1}(u_{1},v_{1})(t)|\\ \leq& \frac{1}{|\Delta|}\bigg\{ \bigg[ k_1 \int_{1}^{e}\frac{|u_2(s)-u_1(s)|}{s}ds + \frac{1}{\Gamma(\alpha_1)}\int_{1}^{e}\frac{|f(s,u_2(s),v_2(s))-f(s,u_1(s),v_1(s))|}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_1-1}ds \\ &+\sum\limits_{i = 1}^{n}\frac{|\lambda_i|}{\Gamma(\delta_i)}\int_{1}^{\theta_i}(\theta_i-s)^{\delta_i-1}\bigg( k_2\int_{1}^{s}\frac{|v_2(r)-v_1(r)|}{r}dr\\ &+\frac{1}{\Gamma(\alpha_2)}\int_1^s\frac{|g(r,u_2(r),v_2(r))-g(r,u_1(r),v_1(r))|}{r} \bigg(\log \frac{s}{r}\bigg)^{\alpha_2-1}dr\bigg)ds \bigg]\\ &+A\bigg[k_2 \int_{1}^{e}\frac{|v_2(s)-v_1(s)|}{s}ds + \frac{1}{\Gamma(\alpha_2)}\int_{1}^{e}\frac{|g(s,u_2(s),v_2(s))-g(s,u_1(s),v_1(s))|}{s} \bigg(\log \frac{e}{s}\bigg)^{\alpha_2-1}ds\\ &+ \sum\limits_{j = 1}^{n}\frac{|\mu_j|}{\Gamma(\sigma_j)}\int_{1}^{\eta_j}(\eta_j-s)^{\sigma_j-1} \bigg( k_1 \int_{1}^{s}\frac{|u_2(r)-u_1(r)|}{r}dr\\ & + \frac{1}{\Gamma(\alpha_1)}\int_{1}^{s}\frac{ |f(r,u_2(r),v_2(r))-f(r,u_1(r),v_1(r))|}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_1-1}dr\bigg)ds \bigg] \bigg\} \\ &+ k_1 \int_{1}^{t}\frac{|u_2(s)-u_1(s)|}{s}ds + \frac{1}{\Gamma(\alpha_1)}\int_{1}^{t}\frac{ |f(s,u_2(s),v_2(s))- f(s,u_1(s),v_1(s))|}{s}\bigg(\log \frac{t}{s}\bigg)^{\alpha_1-1}ds\\ \leq& \frac{1}{|\Delta|}\bigg\{ \bigg[ k_1 \|u_2-u_1\| + \frac{L(\|u_2-u_1\|+\|v_2-v_1\|)}{\Gamma(\alpha_1+1)} + \bigg( k_2\|v_2-v_1\| + \frac{\bar L(\|u_2-u_1\|+\|v_2-v_1\|)}{\Gamma(\alpha_2+1)} \bigg)\\ &\times\sum\limits_{i = 1}^{n}|\lambda_i|\frac{(\theta_i-1)^{\delta_i}}{\Gamma(\delta_i+1)} \bigg]+\omega \bigg[k_2\|v_2-v_1\| + \frac{\bar L(\|u_2-u_1\|+\|v_2-v_1\|)}{\Gamma(\alpha_2+1)} +\bigg( k_1\|u_2-u_1\| \\ &+ \frac{L(\|u_2-u_1\|+\|v_2-v_1\|)}{\Gamma(\alpha_1+1)} \bigg) \sum\limits_{j = 1}^{n}|\mu_j|\frac{(\eta_j-1)^{\sigma_j}}{\Gamma(\sigma_j+1)}\bigg] \bigg\} + k_1\|u_2-u_1\| +\frac{L(\|u_2-u_1\|+\|v_2-v_1\|)}{\Gamma(\alpha_1+1)} \\ = & M \bigg(k_1 \|u_2-u_1\| + \frac{L(\|u_2-u_1\|+\|v_2-v_1\|)}{\Gamma(\alpha_1+1)}\bigg) +W_1 \bigg( k_2\|v_2-v_1\| + \frac{\bar L(\|u_2-u_1\|+\|v_2-v_1\|)}{\Gamma(\alpha_2+1)} \bigg)\\ \leq& \bigg[ k_1M + \frac{ML}{\Gamma(\alpha_1+1)} + k_2W_1 + \frac{W_1\bar L}{\Gamma(\alpha_2+1)} \bigg] (\|u_2-u_1\| +\|v_2-v_1\| ) \end{align*}

    which, upon taking the norm for t\in[1, e] , yields

    \begin{equation} \begin{split} \|\mathcal{F}_{1}(u_{2},v_{2})-\mathcal{F}_{1}(u_{1},v_{1})\|\leq \bigg[ k_1M+ k_2W_1 +\frac{ML}{\Gamma(\alpha_1+1)} + \frac{W_1\bar L}{\Gamma(\alpha_2+1)} \bigg] (\|u_2-u_1\| +\|v_2-v_1\| ). \end{split} \end{equation} (3.21)

    Similarly,

    \begin{equation} \begin{split} \|\mathcal{F}_{2}(u_{2},v_{2})-\mathcal{F}_{2}(u_{1},v_{1})\|\leq \bigg[ k_2M + k_1W_2 + \frac{M\bar L}{\Gamma(\alpha_2+1)} + \frac{W_2 L}{\Gamma(\alpha_1+1)} \bigg] (\|u_2-u_1\| +\|v_2-v_1\| ). \end{split} \end{equation} (3.22)

    It follows from (3.21) and (3.22) that

    \|\mathcal{F}(u_{2},v_{2})-\mathcal{F}(u_{1},v_{1})\| \leq \Xi(\|u_2-u_1\|+\|v_2-v_1\|).

    By (3.20) , it shows that the operator \mathcal{F} is a contraction. Therefore, the boundary value problem defined by Eq (1.1) with conditions (1.2) has a unique solution on the interval [1, e] .

    Lastly, we study the Ulam-Hyers and Ulam-Hyers-Rassias stability of the coupled system of Hilfer-Hadamard fractional differential equations (1.1) with the integral boundary conditions (1.2).

    Theorem 4.1. If assumption (H_{2}) and conditions (3.20) are satisfied, then the boundary value problem defined by Eqs (1.1) and (1.2) is Ulam-Hyers stable, and hence generalized Ulam-Hyers stable.

    Proof. Let \boldsymbol{\epsilon} = (\epsilon_1, \epsilon_2) > 0 be given. Assume (x, y) is a solution of the inequality (2.1) with the boundary conditions (2.4). Then by Remark 2.14, there exist functions \nu_1, \nu_2\in C^1([1, e], {\mathbb R}) such that |\nu_1(t)|\leq \epsilon_1, \; |\nu_2(t)|\leq \epsilon_2, \ t\in [1, e] , and

    \begin{equation} \begin{cases} (_{H}D^{\alpha_{1},\beta_{1}}_{1^{+}}+k_{1\;H}D^{\alpha_{1}-1,\beta_{1}}_{1^{+}})x(t) = f(t,x(t),y(t))+\nu_1(t),\quad t\in[1,e],\\ (_{H}D^{\alpha_{2},\beta_{2}}_{1^{+}}+k_{2\;H}D^{\alpha_{2}-1,\beta_{2}}_{1^{+}})y(t) = g(t,x(t),y(t))+\nu_2(t),\\ x(1) = 0,\; x(e) = \sum\limits_{i = 1}^{n}\lambda_iI^{\delta_i}_{1^+}y(\theta_i) = \sum\limits_{i = 1}^{n}\frac{\lambda_i}{\Gamma(\delta_i)}\displaystyle{\int}_{1}^{\theta_i}(\theta_i-s)^{\delta_i-1}y(s)ds,\\ y(1) = 0,\; y(e) = \sum\limits_{j = 1}^{n}\mu_jI^{\sigma_j}_{1^+}x(\eta_j) = \sum\limits_{j = 1}^{n}\frac{\mu_j}{\Gamma(\sigma_j)}\displaystyle{\int}_{1}^{\eta_j}(\eta_j-s)^{\sigma_j-1}x(s)ds, \end{cases} \end{equation} (4.1)

    where \theta_i, \eta_j\in(1, e) . By Lemma 3.1, the solution of (4.1) can be written as

    \begin{align*} x(t) = & \frac{(\log t)^{\gamma_1-1}}{\Delta}\bigg\{ \bigg[k_1 \int_{1}^{e}\frac{x(s)}{s}ds- \frac{1}{\Gamma(\alpha_1)}\int_{1}^{e}\frac{f(s,x(s),y(s))+\nu_1(s)}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_1-1}ds \\ \notag & -\sum\limits_{i = 1}^{n}\frac{\lambda_i}{\Gamma(\delta_i)}\int_{1}^{\theta_i}(\theta_i-s)^{\delta_i-1}\bigg(k_2 \int_{1}^{s}\frac{y(r)}{r}dr-\frac{1}{\Gamma(\alpha_2)}\int_{1}^{s}\frac{g(r,x(r),y(r))+\nu_2(r)}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_2-1}dr\bigg)ds\bigg]\\ &+A\bigg[ k_2 \int_{1}^{e}\frac{y(s)}{s}ds- \frac{1}{\Gamma(\alpha_2)}\int_{1}^{e}\frac{g(s,x(s),y(s))+\nu_2(s)}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_2-1}ds\\ \notag &-\sum\limits_{j = 1}^{n}\frac{\mu_j}{\Gamma(\sigma_j)}\int_{1}^{\eta_j}(\eta_j-s)^{\sigma_j-1} \bigg(k_1 \int_{1}^{s}\frac{x(r)}{r}dr- \frac{1}{\Gamma(\alpha_1)}\int_{1}^{s}\frac{f(r,x(r),y(r))+\nu_1(r)}{r} \bigg(\log \frac{s}{r}\bigg)^{\alpha_1-1}dr\bigg)ds \bigg] \bigg\}\\ &-k_1 \int_{1}^{t}\frac{x(s)}{s}ds+ \frac{1}{\Gamma(\alpha_1)}\int_{1}^{t}\frac{f(s,x(s),y(s))+\nu_1(s)}{s}\bigg(\log \frac{t}{s}\bigg)^{\alpha_1-1}ds, \end{align*}

    which can be rearranged as

    \begin{align*} &x(t)- \frac{(\log t)^{\gamma_1-1}}{\Delta}\bigg\{ \bigg[k_1 \int_{1}^{e}\frac{x(s)}{s}ds- \frac{1}{\Gamma(\alpha_1)}\int_{1}^{e}\frac{f(s,x(s),y(s))}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_1-1}ds\\ &-\sum\limits_{i = 1}^{n}\frac{\lambda_i}{\Gamma(\delta_i)}\int_{1}^{\theta_i}(\theta_i-s)^{\delta_i-1}\bigg(k_2 \int_{1}^{s}\frac{y(r)}{r}dr-\frac{1}{\Gamma(\alpha_2)}\int_{1}^{s}\frac{g(r,x(r),y(r))}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_2-1}dr\bigg)ds\bigg]\\ &+A\bigg[ k_2 \int_{1}^{e}\frac{y(s)}{s}ds- \frac{1}{\Gamma(\alpha_2)}\int_{1}^{e}\frac{g(s,x(s),y(s))}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_2-1}ds\\ \notag &-\sum\limits_{j = 1}^{n}\frac{\mu_j}{\Gamma(\sigma_j)}\int_{1}^{\eta_j}(\eta_j-s)^{\sigma_j-1} \bigg(k_1 \int_{1}^{s}\frac{x(r)}{r}dr- \frac{1}{\Gamma(\alpha_1)}\int_{1}^{s}\frac{f(r,x(r),y(r))}{r} \bigg(\log \frac{s}{r}\bigg)^{\alpha_1-1}dr\bigg)ds \bigg] \bigg\}\\ &+k_1 \int_{1}^{t}\frac{x(s)}{s}ds- \frac{1}{\Gamma(\alpha_1)}\int_{1}^{t}\frac{f(s,x(s),y(s))}{s}\bigg(\log \frac{t}{s}\bigg)^{\alpha_1-1}ds\\ = & \frac{(\log t)^{\gamma_1-1}}{\Delta}\bigg\{ \bigg[- \frac{1}{\Gamma(\alpha_1)}\int_{1}^{e}\frac{\nu_1(s)}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_1-1}ds \\ \notag &-\sum\limits_{i = 1}^{n}\frac{\lambda_i}{\Gamma(\delta_i)}\int_{1}^{\theta_i}(\theta_i-s)^{\delta_i-1} \bigg(-\frac{1}{\Gamma(\alpha_2)}\int_{1}^{s}\frac{\nu_2(r)}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_2-1}dr\bigg)ds\bigg]\\ &+A\bigg[ - \frac{1}{\Gamma(\alpha_2)}\int_{1}^{e}\frac{\nu_2(s)}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_2-1}ds\\ \notag &-\sum\limits_{j = 1}^{n}\frac{\mu_j}{\Gamma(\sigma_j)}\int_{1}^{\eta_j}(\eta_j-s)^{\sigma_j-1}\bigg(-\frac{1}{\Gamma(\alpha_1)}\int_{1}^{s}\frac{\nu_1(r)}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_1-1}dr\bigg)ds \bigg] \bigg\}\\ &+ \frac{1}{\Gamma(\alpha_1)}\int_{1}^{t}\frac{\nu_1(s)}{s}\bigg(\log \frac{t}{s}\bigg)^{\alpha_1-1}ds. \end{align*}

    Using |\nu_i|\leq \epsilon_i, \; i = 1, 2, for any t\in [1, e] , we have

    \begin{align*} \notag \Bigg|&x(t)- \frac{(\log t)^{\gamma_1-1}}{\Delta}\bigg\{ \bigg[k_1 \int_{1}^{e}\frac{x(s)}{s}ds- \frac{1}{\Gamma(\alpha_1)}\int_{1}^{e}\frac{f(s,x(s),y(s))}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_1-1}ds \\ \notag &-\sum\limits_{i = 1}^{n}\frac{\lambda_i}{\Gamma(\delta_i)}\int_{1}^{\theta_i}(\theta_i-s)^{\delta_i-1}\bigg(k_2 \int_{1}^{s}\frac{y(r)}{r}dr-\frac{1}{\Gamma(\alpha_2)}\int_{1}^{s}\frac{g(r,x(r),y(r))}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_2-1}dr\bigg)ds\bigg]\\ &+A\bigg[ k_2 \int_{1}^{e}\frac{y(s)}{s}ds- \frac{1}{\Gamma(\alpha_2)}\int_{1}^{e}\frac{g(s,x(s),y(s))}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_2-1}ds\\ \notag &-\sum\limits_{j = 1}^{n}\frac{\mu_j}{\Gamma(\sigma_j)}\int_{1}^{\eta_j}(\eta_j-s)^{\sigma_j-1} \bigg(k_1 \int_{1}^{s}\frac{x(r)}{r}dr- \frac{1}{\Gamma(\alpha_1)}\int_{1}^{s}\frac{f(r,x(r),y(r))}{r} \bigg(\log \frac{s}{r}\bigg)^{\alpha_1-1}dr\bigg)ds \bigg] \bigg\}\\ &+k_1 \int_{1}^{t}\frac{x(s)}{s}ds- \frac{1}{\Gamma(\alpha_1)}\int_{1}^{t}\frac{f(s,x(s),y(s))}{s}\bigg(\log \frac{t}{s}\bigg)^{\alpha_1-1}ds\Bigg|\\ \leq&\frac{\epsilon_1M}{\Gamma(\alpha_1+1)}+\frac{\epsilon_2W_1}{\Gamma(\alpha_2+1)}. \end{align*}

    By virtue of Theorem 3.3, we denote by (u, v) the unique solution of problem (1.1)–(1.2). Then we have u(t) = \mathcal{F}_1(u, v)(t) , where \mathcal{F}_1 is defined by (3.12). From the above inequality, it follows that

    \begin{align*} &|x(t)-u(t)| = |x(t)-\mathcal{F}_1(u,v)(t)|\\ \leq&\frac{\epsilon_1M}{\Gamma(\alpha_1+1)}+\frac{\epsilon_2W_1}{\Gamma(\alpha_2+1)}+\frac{(\log t)^{\gamma_1-1}}{|\Delta|}\bigg\{ \bigg[k_1 \int_{1}^{e}\frac{|x(s)-u(s)|}{s}ds\\ &+\frac{1}{\Gamma(\alpha_1)}\int_{1}^{e}\frac{|f(s,x(s),y(s))-f(s,u(s),v(s))|}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_1-1}ds\\ &+\sum\limits_{i = 1}^{n}\frac{\lambda_i}{\Gamma(\delta_i)}\int_{1}^{\theta_i}(\theta_i-s)^{\delta_i-1}\bigg(k_2 \int_{1}^{s}\frac{|y(r)-v(r)|}{r}dr\\ &+\frac{1}{\Gamma(\alpha_2)}\int_{1}^{s}\frac{|g(r,x(r),y(r))-g(r,u(r),v(r))|}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_2-1}dr\bigg)ds\bigg]\\ &+A\bigg[ k_2 \int_{1}^{e}\frac{|y(s)-v(s)|}{s}ds+ \frac{1}{\Gamma(\alpha_2)}\int_{1}^{e}\frac{|g(s,x(s),y(s))-g(s,u(s),v(s))|}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_2-1}ds\\ \notag &+\sum\limits_{j = 1}^{n}\frac{\mu_j}{\Gamma(\sigma_j)}\int_{1}^{\eta_j}(\eta_j-s)^{\sigma_j-1} \bigg(k_1 \int_{1}^{s}\frac{|x(r)-u(r)|}{r}dr\\ &+\frac{1}{\Gamma(\alpha_1)}\int_{1}^{s}\frac{|f(r,x(r),y(r))-f(r,u(r),v(r))|}{r} \bigg(\log \frac{s}{r}\bigg)^{\alpha_1-1}dr\bigg)ds \bigg] \bigg\}\\ &+k_1 \int_{1}^{t}\frac{|x(s)-u(s)|}{s}ds+ \frac{1}{\Gamma(\alpha_1)}\int_{1}^{t}\frac{|f(s,x(s),y(s))-f(s,x(s),y(s))|}{s}\bigg(\log \frac{t}{s}\bigg)^{\alpha_1-1}ds. \end{align*}

    It follows by assumption (H_{2}) that

    \begin{align} \|x-u\| \leq & \frac{\epsilon_1M}{\Gamma(\alpha_1+1)}+\frac{\epsilon_2W_1}{\Gamma(\alpha_2+1)} +\|x-u\|\bigg(k_1M+\frac{ML}{\Gamma(\alpha_1+1)}+\frac{W_1\bar{L}}{\Gamma(\alpha_2+1)}\bigg)\\ &+ \|y-v\|\bigg(k_2W_1+\frac{ML}{\Gamma(\alpha_1+1)}+\frac{W_1\bar{L}}{\Gamma(\alpha_2+1)}\bigg). \end{align} (4.2)

    Similarly, we have

    \begin{align*} y(t) = & \frac{(\log t)^{\gamma_2-1}}{\Delta}\bigg\{ \bigg[k_2 \int_{1}^{e}\frac{y(s)}{s}ds- \frac{1}{\Gamma(\alpha_2)}\int_{1}^{e}\frac{g(s,x(s),y(s))+\nu_2(s)}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_2-1}ds\\ &-\sum\limits_{j = 1}^{n}\frac{\mu_j}{\Gamma(\sigma_j)}\int_{1}^{\eta_j}(\eta_j-s)^{\sigma_j-1}\bigg(k_1 \int_{1}^{s}\frac{x(r)}{r}dr- \frac{1}{\Gamma(\alpha_1)}\int_{1}^{s}\frac{f(r,x(r),y(r))+\nu_1(r)}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_1-1}dr\bigg)ds\bigg]\\ &+B\bigg[ k_1 \int_{1}^{e}\frac{x(s)}{s}ds- \frac{1}{\Gamma(\alpha_1)}\int_{1}^{e}\frac{f(s,x(s),y(s))+\nu_1(s)}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_1-1}ds\\ &-\sum\limits_{i = 1}^{n}\frac{\lambda_i}{\Gamma(\delta_i)}\int_{1}^{\theta_i}(\theta_i-s)^{\delta_i-1}\bigg(k_2 \int_{1}^{s}\frac{y(r)}{r}dr-\frac{1}{\Gamma(\alpha_2)}\int_{1}^{s}\frac{g(r,x(r),y(r))+\nu_2(r)}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_2-1}dr\bigg)ds \bigg]\bigg\}\\ &-k_2\int_{1}^{t}\frac{y(s)}{s}ds+\frac{1}{\Gamma(\alpha_2)}\int_{1}^{t}\frac{g(s,x(s),y(s))+\nu_2(s)}{s}\bigg(\log \frac{t}{s}\bigg)^{\alpha_2-1}ds. \end{align*}

    We get that

    \begin{align} \|y-v\| \leq & \frac{\epsilon_1W_2}{\Gamma(\alpha_1+1)}+\frac{\epsilon_2M}{\Gamma(\alpha_2+1)}+\|x-u\|\bigg(k_1W_2+\frac{W_2L}{\Gamma(\alpha_1+1)}+\frac{M\bar{L}}{\Gamma(\alpha_2+1)}\bigg)\\ &+ \|y-v\|\bigg(k_2M+\frac{W_2L}{\Gamma(\alpha_1+1)}+\frac{M\bar{L}}{\Gamma(\alpha_2+1)}\bigg). \end{align} (4.3)

    Solving inequalities (4.2) and (4.3) simultaneously for \|x-u\| and \|y-v\| , we obtain

    \|x-u\| \leq \frac{G_1\epsilon_1+G_2\epsilon_2}{D}\quad\text{and}\quad \|y-v\| \leq \frac{B_1\epsilon_1+B_2\epsilon_2}{D},

    where

    \begin{align*} G_1& = \frac{1}{\Gamma(\alpha_1+1)}\bigg[M\bigg(1-k_2M-\frac{W_2L}{\Gamma(\alpha_1+1)}-\frac{M\bar{L}}{\Gamma(\alpha_2+1)}\bigg)+W_2\bigg(k_2W_1+\frac{ML}{\Gamma(\alpha_1+1)}+\frac{W_1\bar{L}}{\Gamma(\alpha_2+1)}\bigg)\bigg],\\ G_2& = \frac{1}{\Gamma(\alpha_2+1)}\bigg[W_1\bigg(1-k_2M-\frac{W_2L}{\Gamma(\alpha_1+1)}-\frac{M\bar{L}}{\Gamma(\alpha_2+1)}\bigg)+M\bigg(k_2W_1+\frac{ML}{\Gamma(\alpha_1+1)}+\frac{W_1\bar{L}}{\Gamma(\alpha_2+1)}\bigg)\bigg],\\ B_1& = \frac{1}{\Gamma(\alpha_1+1)}\bigg[W_2\bigg(1-k_1M-\frac{ML}{\Gamma(\alpha_1+1)}-\frac{W_1\bar{L}}{\Gamma(\alpha_2+1)}\bigg)+M\bigg(k_1W_2+\frac{W_2L}{\Gamma(\alpha_1+1)}+\frac{M\bar{L}}{\Gamma(\alpha_2+1)}\bigg)\bigg],\\ B_2& = \frac{1}{\Gamma(\alpha_2+1)}\bigg[M\bigg(1-k_1M-\frac{ML}{\Gamma(\alpha_1+1)}-\frac{W_1\bar{L}}{\Gamma(\alpha_2+1)}\bigg)+W_1\bigg(k_1W_2+\frac{W_2L}{\Gamma(\alpha_1+1)}+\frac{M\bar{L}}{\Gamma(\alpha_2+1)}\bigg)\bigg], \end{align*}

    and

    \begin{align*} D = &\bigg(1-k_1M-\frac{ML}{\Gamma(\alpha_1+1)}-\frac{W_1\bar{L}}{\Gamma(\alpha_2+1)}\bigg)\bigg(1-k_2M-\frac{W_2L}{\Gamma(\alpha_1+1)}-\frac{M\bar{L}}{\Gamma(\alpha_2+1)}\bigg)\\ &-\bigg(k_1W_2+\frac{W_2L}{\Gamma(\alpha_1+1)}+\frac{M\bar{L}}{\Gamma(\alpha_2+1)}\bigg)\bigg(k_2W_1+\frac{ML}{\Gamma(\alpha_1+1)}+\frac{W_1\bar{L}}{\Gamma(\alpha_2+1)}\bigg). \end{align*}

    In consequence, we get that

    \|x-u\| + \|y-v\|\leq \frac{G_1+B_1}{D}\epsilon_1+\frac{G_2+B_2}{D}\epsilon_2.

    By virtue of condition (3.20), we note that \frac{G_1+B_1}{D} > 0 and \frac{G_2+B_2}{D} > 0 . Letting \boldsymbol{c}_{f, g} = (c_f, c_g): = \Big(\frac{G_1+B_1}{D}, \frac{G_2+B_2}{D}\Big) > 0 , for each \boldsymbol{\epsilon} = (\epsilon_1, \epsilon_2) > 0 we get that

    \|(x,y)-(u,v)\| = \|x-u\| + \|y-v\|\leq c_f\epsilon_1+c_g\epsilon_2 = \boldsymbol{c}_{f,g}\boldsymbol{\epsilon}^T.

    Hence problem (1.1)–(1.2) is Ulam-Hyers stable. Moreover, it is generalized Ulam-Hyers stable, as \|v-u\| \leq \theta_{f, g}(\boldsymbol{\epsilon}), with \theta_{f, g}(\boldsymbol{\epsilon}) = \boldsymbol{c}_{f, g}\boldsymbol{\epsilon^T}, \; \theta_{f, g}(\boldsymbol{0}) = 0 . This completes the proof.

    Theorem 4.2. Assume that (H_{2}) and conditions (3.20) hold, and that there exists a function \boldsymbol{\varphi} = (\varphi_1, \varphi_2) , where \varphi_i \in C([1, e], \mathbb{R}+) for i = 1, 2 , satisfying (H{3}) . Then, the problem defined by Eqs (1.1) and (1.2) is Ulam-Hyers-Rassias stable, and hence generalized Ulam-Hyers-Rassias stable with respect to \boldsymbol{\varphi} .

    Proof. Let \boldsymbol{\epsilon} = (\epsilon_1, \epsilon_2) > 0 and (x, y) be a solution of the inequality (2.2) with the boundary conditions (2.4). By integration of (2.2) and using (H_{3}) , for any t\in [1, e] , one has

    \begin{align*} &\Bigg|x(t) -c_{0} (\log t)^{\gamma_1-1}-c_{1}\bigg((\log \ t)^{\gamma_1-2}+k\int_1^t\frac{(\log \ s)^{\gamma-2}}{s}ds\bigg) +k\int_{1}^{t}\frac{x(s)}{s}ds\notag\\ &-\frac{1}{\Gamma(\alpha)}\int_{1}^{t}\frac{f(s,x(s),y(s))}{s} \Big(\log \ \frac{t}{s}\Big)^{\alpha-1} ds\Bigg| \leq\; \epsilon{_{H}{I}^{\alpha}_{1^{+}}}\varphi_1(t)\leq \epsilon\lambda_{\varphi_1} \varphi_1(t), \end{align*}

    for all c_0 = \frac{(\delta{_H}I^{2-\gamma_1}_{1^+}x)(1)}{\Gamma(\gamma_1)}, \; c_1 = \frac{({_H}I^{2-\gamma_1}_{1^+}x)(1)}{\Gamma(\gamma_1-1)}\in \mathbb{R} . By virtue of the proof of Lemma 3.1, we will choose c_0 and c_1 such that x in the above inequality also satisfies boundary conditions (2.4) as follows that

    c_1 = 0\quad\text{and}\quad c_0 = \frac{J_1+AJ_2}{\Delta},

    where A and \Delta are defined as in Lemma 3.1, and

    \begin{align*} J_1 = &k_1 \int_{1}^{e}\frac{x(s)}{s}ds- \frac{1}{\Gamma(\alpha_1)}\int_{1}^{e}\frac{f(s,x(s),y(s))}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_1-1}ds\\ &-\sum\limits_{i = 1}^{n}\frac{\lambda_i}{\Gamma(\delta_i)}\int_{1}^{\theta_i}(\theta_i-s)^{\delta_i-1}\bigg(k_2 \int_{1}^{s}\frac{y(r)}{r}dr- \frac{1}{\Gamma(\alpha_2)}\int_{1}^{s}\frac{g(r,x(r),y(r))}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_2-1}dr\bigg)ds,\\ J_2 = &k_2 \int_{1}^{e}\frac{y(s)}{s}ds- \frac{1}{\Gamma(\alpha_2)}\int_{1}^{e}\frac{g(s,x(s),y(s))}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_2-1}ds\\ &-\sum\limits_{j = 1}^{n}\frac{\mu_j}{\Gamma(\sigma_j)}\int_{1}^{\eta_j}(\eta_j-s)^{\sigma_j-1}\bigg(k_1 \int_{1}^{s}\frac{x(r)}{r}dr- \frac{1}{\Gamma(\alpha_1)}\int_{1}^{s}\frac{f(r,x(r),y(r))}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_1-1}dr\bigg)ds. \end{align*}

    Then we have the inequality

    \begin{align*} &\Bigg| \notag x(t)- \frac{(\log t)^{\gamma_1-1}}{\Delta}\bigg\{ \bigg[k_1 \int_{1}^{e}\frac{x(s)}{s}ds- \frac{1}{\Gamma(\alpha_1)}\int_{1}^{e}\frac{f(s,x(s),y(s))}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_1-1}ds \\ \notag & -\sum\limits_{i = 1}^{n}\frac{\lambda_i}{\Gamma(\delta_i)}\int_{1}^{\theta_i}(\theta_i-s)^{\delta_i-1}\bigg(k_2 \int_{1}^{s}\frac{y(r)}{r}dr-\frac{1}{\Gamma(\alpha_2)}\int_{1}^{s}\frac{g(r,x(r),y(r))}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_2-1}dr\bigg)ds\bigg]\\ &+A\bigg[ k_2 \int_{1}^{e}\frac{y(s)}{s}ds- \frac{1}{\Gamma(\alpha_2)}\int_{1}^{e}\frac{g(s,x(s),y(s))}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_2-1}ds\\ \notag &-\sum\limits_{j = 1}^{n}\frac{\mu_j}{\Gamma(\sigma_j)}\int_{1}^{\eta_j}(\eta_j-s)^{\sigma_j-1} \bigg(k_1 \int_{1}^{s}\frac{x(r)}{r}dr- \frac{1}{\Gamma(\alpha_1)}\int_{1}^{s}\frac{f(r,x(r),y(r))}{r} \bigg(\log \frac{s}{r}\bigg)^{\alpha_1-1}dr\bigg)ds \bigg] \bigg\}\\ &+k_1 \int_{1}^{t}\frac{x(s)}{s}ds- \frac{1}{\Gamma(\alpha_1)}\int_{1}^{t}\frac{f(s,x(s),y(s))}{s}\bigg(\log \frac{t}{s}\bigg)^{\alpha_1-1}ds\Bigg|\\ < &\; \epsilon{_{H}{I}^{\alpha}_{1^{+}}}\varphi_1(t)\leq \epsilon\lambda_{\varphi_1} \varphi_1(t), \quad t\in [1,e]. \end{align*}

    Now, by virtue of Theorem 3.3, we let (u, v) be the unique solution of problem (1.1)–(1.2). That is defined as u(t) = \mathcal{F}_1(u, v)(t) , where \mathcal{F}_1 is defined by (3.13). From the above inequality, the same method as in the proof of Theorem 4.1, it follows that

    \begin{align*} |x(t)-u(t)| = &|x(t)-\mathcal{F}_1(u,v)(t)|\leq \epsilon\lambda_{\varphi_1} \varphi_1(t) +\frac{(\log t)^{\gamma_1-1}}{|\Delta|}\bigg\{ \bigg[k_1 \int_{1}^{e}\frac{|x(s)-u(s)|}{s}ds\\ &+ \frac{1}{\Gamma(\alpha_1)}\int_{1}^{e}\frac{|f(s,x(s),y(s))-f(s,u(s),v(s))|}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_1-1}ds\\ & +\sum\limits_{i = 1}^{n}\frac{\lambda_i}{\Gamma(\delta_i)}\int_{1}^{\theta_i}(\theta_i-s)^{\delta_i-1}\bigg(k_2 \int_{1}^{s}\frac{|y(r)-v(r)|}{r}dr\\ &+\frac{1}{\Gamma(\alpha_2)}\int_{1}^{s}\frac{|g(r,x(r),y(r))-g(r,u(r),v(r))|}{r}\bigg(\log \frac{s}{r}\bigg)^{\alpha_2-1}dr\bigg)ds\bigg]\\ &+A\bigg[ k_2 \int_{1}^{e}\frac{|y(s)-v(s)|}{s}ds+ \frac{1}{\Gamma(\alpha_2)}\int_{1}^{e}\frac{|g(s,x(s),y(s))-g(s,u(s),v(s))|}{s}\bigg(\log \frac{e}{s}\bigg)^{\alpha_2-1}ds\\ \notag &+\sum\limits_{j = 1}^{n}\frac{\mu_j}{\Gamma(\sigma_j)}\int_{1}^{\eta_j}(\eta_j-s)^{\sigma_j-1} \bigg(k_1 \int_{1}^{s}\frac{|x(r)-u(r)|}{r}dr\\ &+ \frac{1}{\Gamma(\alpha_1)}\int_{1}^{s}\frac{|f(r,x(r),y(r))-f(r,u(r),v(r))|}{r} \bigg(\log \frac{s}{r}\bigg)^{\alpha_1-1}dr\bigg)ds \bigg] \bigg\}\\ &+k_1 \int_{1}^{t}\frac{|x(s)-u(s)|}{s}ds+ \frac{1}{\Gamma(\alpha_1)}\int_{1}^{t}\frac{|f(s,x(s),y(s))-f(s,x(s),y(s))|}{s}\bigg(\log \frac{t}{s}\bigg)^{\alpha_1-1}ds, \end{align*}

    which implies that

    \begin{align*} \|x-u\| \leq & \epsilon\lambda_{\varphi_1} \varphi_1(t) +\|x-u\|\bigg(k_1M+\frac{ML}{\Gamma(\alpha_1+1)}+\frac{W_1\bar{L}}{\Gamma(\alpha_2+1)}\bigg)\\ &+ \|y-v\|\bigg(k_2W_1+\frac{ML}{\Gamma(\alpha_1+1)}+\frac{W_1\bar{L}}{\Gamma(\alpha_2+1)}\bigg). \end{align*}

    Similarly, we get that

    \begin{align*} \|y-v\| \leq & \epsilon\lambda_{\varphi_2} \varphi_2(t)+\|x-u\|\bigg(k_1W_2+\frac{W_2L}{\Gamma(\alpha_1+1)}+\frac{M\bar{L}}{\Gamma(\alpha_2+1)}\bigg)\\ &+\|y-v\|\bigg(k_2M+\frac{W_2L}{\Gamma(\alpha_1+1)}+\frac{M\bar{L}}{\Gamma(\alpha_2+1)}\bigg). \end{align*}

    Solving the above two equations simultaneously for \|x-u\| and \|y-v\|, and then setting D the same as in Theorem 4.1, the preceding inequalities can be written as

    \|x-u\| \leq \frac{\epsilon(E_1\varphi_1(t)+E_2\varphi_2(t))}{D}\quad\text{and}\quad \|y-v\| \leq \frac{\epsilon(Q_1\varphi_1(t)+Q_2\varphi_2(t))}{D},

    where

    \begin{align*} E_1& = \lambda_{\varphi_1}\bigg(1-k_2M-\frac{W_2L}{\Gamma(\alpha_1+1)}-\frac{M\bar{L}}{\Gamma(\alpha_2+1)}\bigg),\quad E_2 = \lambda_{\varphi_2}\bigg(k_2W_1+\frac{ML}{\Gamma(\alpha_1+1)}+\frac{W_1\bar{L}}{\Gamma(\alpha_2+1)}\bigg),\\ Q_1& = \lambda_{\varphi_1}\bigg(k_1W_2+\frac{W_2L}{\Gamma(\alpha_1+1)}+\frac{M\bar{L}}{\Gamma(\alpha_2+1)}\bigg),\quad Q_2 = \lambda_{\varphi_2}\bigg(1-k_1M-\frac{ML}{\Gamma(\alpha_1+1)}-\frac{W_1\bar{L}}{\Gamma(\alpha_2+1)}\bigg). \end{align*}

    In consequence, by condition (3.15), we get

    \|x-u\| + \|y-v\|\leq \epsilon (c_{f,\varphi_1}\varphi_1(t)+ c_{g,\varphi_2}\varphi_2(t)).

    Letting \boldsymbol{c}_{f, g, \boldsymbol{\varphi}} = (c_{f, \varphi_1}, c_{g, \varphi_2}) = \Big(\frac{E_1+Q_1}{D}, \frac{E_2+Q_2}{D}\Big) , for each \epsilon > 1 , we have

    \|(x,y)-(u,v)\|\leq \epsilon\boldsymbol{c}_{f,g,\boldsymbol{\varphi}}[\boldsymbol{\varphi}(t)]^T.

    Hence problem (1.1)–(1.2) is Ulam-Hyers-Rassias stable with respect to \boldsymbol{\varphi} . Moreover, it is generalized Ulam-Hyers-Rassias stable with respect to \boldsymbol{\varphi} and if we take \epsilon = 1 , then \|(x, y)-(u, v)\|\leq \boldsymbol{c}_{f, g, \boldsymbol{\varphi}}[\boldsymbol{\varphi}(t)]^T . This completes the proof.

    In this section, we give two examples to illustrate our main results.

    Example 5.1. Consider the following Hilfer-Hadamard problem:

    \begin{equation} \begin{cases} \Big(_{H}D^{\frac{3}{2},\frac{1}{4}}+\frac{8}{70}_{H}D^{\frac{1}{2},\frac{1}{4}}\Big)u(t) = \frac{\arctan v(t)}{1+u^2(t)},\qquad t \in [1,e], \\ \Big(_{H}D^{\frac{3}{2},\frac{3}{4}}+\frac{1}{31}_{H}D^{\frac{1}{2},\frac{3}{4}}\Big)v(t) = \frac{e^t}{2}\big(\sin u(t)+\cos v(t)\big), \\ u(1) = 0,\ \ u(e) = 3I^{\frac{7}{2}}v\bigg(\frac{4}{3}\bigg)+ 13I^{\frac{5}{2}}v\bigg(\frac{7}{6}\bigg),\ \ v(1) = 0,\ \ v(e) = \frac{1}{10}I^{\frac{7}{4}}u(2)+7I^{\frac{5}{2}}u\bigg(\frac{5}{3}\bigg). \end{cases} \end{equation} (5.1)

    Here, \alpha_{1} = \frac{3}{2}, \alpha_{2} = \frac{3}{2}, \beta_{1} = \frac{1}{4}, \beta_{2} = \frac{3}{4}, \gamma_1 = \frac{13}{8}, \gamma_2 = \frac{15}{8}, k_{1} = \frac{8}{70}, k_{2} = \frac{1}{31}, \lambda_1 = 3, \lambda_2 = 13, \delta_1 = \frac{7}{2}, \delta_2 = \frac{5}{2}, \theta_1 = \frac{4}{3}, \theta_2 = \frac{7}{6}, \mu_1 = \frac{1}{10}, \mu_2 = 7, \sigma_1 = \frac{7}{4}, \sigma_2 = \frac{5}{2}, \eta_1 = 2 , and \eta_2 = \frac{5}{3} . For each t\in[1, e] , there exists continuous nonnegative functions \vartheta(t) = \frac{\pi}{2} and \chi(t) = e^t such that

    |f(t,u(t),v(t))| = \bigg|\frac{\arctan v(t)}{1+u^2(t)} \bigg| \leq \vartheta(t)\quad {and}\quad |g(t,u(t),v(t))| = \bigg|\frac{e^t}{2}\big(\sin u(t)+\cos v(t)\big) \bigg|\leq \chi(t),

    and (H_{1}) is satisfied. Using the given data, we find that M = 2.0421, \; W_1 = 0.0998, and W_2 = 1.6545. Therefore, we have

    \begin{align*} \Pi = k_1(M+W_2)+k_2(M+W_1) \approx 0.4916 < 1. \end{align*}

    Thus, all the conditions of Theorem 3.2 are satisfied. Therefore, the boundary value problem (5.1) has at least one solution on the interval [1, e] .

    Example 5.2. Consider the following Hilfer-Hadamard problem:

    \begin{equation} \begin{cases} \Big(_{H}D^{\frac{5}{4},\frac{1}{2}}+\frac{4}{55}_{H}D^{\frac{1}{4},\frac{1}{2}}\Big)u(t) = \frac{|u(t)|}{\sqrt{143+t^2}(5+|u(t)|)}+\frac{1}{100}(1+\log t)|v(t)|,\quad t\in [1,e], \\ \Big(_{H}D^{\frac{3}{2},1}+\frac{1}{26}_{H}D^{\frac{1}{2},1}\Big)v(t) = \frac{|u(t)|}{(4+t)^{3}(1+|u(t)|)}+\frac{\sin v(t)}{(5+t)^2}, \\ u(1) = 0,\ \ u(e) = \frac{5}{9}I^{\frac{5}{2}}v(2)+ 6I^{\frac{3}{2}}v\bigg(\frac{3}{2}\bigg),\ \ v(1) = 0,\ \ v(e) = 5I^{\frac{19}{7}}u\bigg(\frac{5}{3}\bigg)+\frac{1}{21}I^{\frac{7}{2}}u\bigg(\frac{3}{2}\bigg). \end{cases} \end{equation} (5.2)

    Here, \alpha_{1} = \frac{5}{4}, \alpha_{2} = \frac{3}{2}, \beta_{1} = \frac{1}{2}, \beta_{2} = 1, \gamma_1 = \frac{13}{8}, \gamma_2 = 2, k_{1} = \frac{4}{55}, k_{2} = \frac{1}{26}, \lambda_1 = \frac{5}{9}, \lambda_2 = 6, \delta_1 = \frac{5}{2}, \delta_2 = \frac{3}{2}, \theta_1 = 2, \theta_2 = \frac{3}{2}, \mu_1 = 5, \mu_2 = \frac{1}{21}, \sigma_1 = \frac{19}{7}, \sigma_2 = \frac{7}{2}, \eta_1 = \frac{5}{3} , and \eta_2 = \frac{3}{2} . Consider the functions

    f(t,u,v) = \frac{|u|}{\sqrt{143+t^2}(5+|u|)}+\frac{1}{100}(1+\log t)|v|\quad{and}\quad g(t,u,v) = \frac{|u|}{(4+t)^{3}(1+|u|)}+\frac{\sin v}{(5+t)^2}.

    We see that hypothesis (H_{2}) holds, because, for any u_{i}, v_{i}\in\mathbb{R} for i = 1, 2 , one has

    |f(t,u_{1},u_{2})-f(t,v_{1},v_{2})|\leq \frac{1}{50}(|u_{1}-v_{1}|+|u_{2}-v_{2}|)

    and

    |g(t,u_{1},u_{2})-g(t,v_{1},v_{2})|\leq \frac{1}{36}(|u_{1}-v_{1}|+|u_{2}-v_{2}|),

    with L = \frac{1}{50} and \bar L = \frac{1}{36} . Using the given data, we find that M = 2.7575, \; W_1 = 3.6622, and W_2 = 0.8156 . Therefore, we have

    \begin{align*} \Xi = \bigg[ k_1(M +W_2) + k_2(M+W_1)+\frac{L(M+W_2)}{\Gamma(\alpha_1+1)}+ \frac{\bar L(M+W_1)}{\Gamma(\alpha_2+1)} \bigg] \approx 0.7040 < 1. \end{align*}

    Thus, all the conditions of Theorem 3.3 are satisfied. Therefore, the problem defined by Eq (5.2) has a unique solution on the interval [1, e] . Moreover, according to Theorem 4.1, boundary value problem (5.2) is both Ulam-Hyers stable and generalized Ulam-Hyers stable. In addition, by virtue of Theorem 4.2, if there exists a function \boldsymbol{\varphi} = (\varphi_1, \varphi_2) , where \varphi_i \in C([1, e], \mathbb{R}+) for i = 1, 2 , satisfying (H{3}) , then problem (5.2) is Ulam-Hyers-Rassias stable and generalized Ulam-Hyers-Rassias stable on the interval [1, e] with respect to \boldsymbol{\varphi} .

    This paper presents existence and uniqueness results for a system of Hilfer-Hadamard sequential fractional differential equations (1.1) with multi-point Riemann-Liouville fractional integral boundary conditions (1.2). First by considering a linear variant of the given problem, we converted the nonlinear problem into a fixed point problem. Once the fixed point operator was established, the existence results were derived using Krasnoselskii's fixed point theorem. The Banach fixed point theorem was then applied to achieve the existence and uniqueness result.

    Moreover, the sufficient conditions for the stability of the problem in the sense of Ulam-Hyers and Ulam-Hyers-Rassias were determined. We found that if the problem has a unique solution according to the assumptions of Theorem 3.3, it is also Ulam-Hyers stable and generalized Ulam-Hyers stable on [1, e] . Furthermore, by adding one more condition for the function \boldsymbol{\varphi} as (H_3) , we obtained Ulam-Hyers-Rassias and generalized Ulam-Hyers-Rassias stability results with respect to the function \boldsymbol{\varphi} . Additionally, we provide two examples that illustrate the obtained results.

    In summary, we obtained existence, uniqueness, and stability results for the coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions, making it applicable to a broader class of mathematical models.

    Ugyen Samdrup Tshering: Conceptualization, methodology, writing–original draft preparation, writing–review; Ekkarath Thailert: Conceptualization, methodology, writing–original draft preparation, writing–review and editing, supervision, funding acquisition; Sotiris K. Ntouyas: Writing–review suggestions and editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    We thank Naresuan University (NU), and National Science, Research and Innovation Fund (NSRF): Grant NO. R2567B019, for financial support.

    The authors declare no conflicts of interest.



    [1] K. Diethelm, The analysis of fractional differential equations, New York: Springer, 2010. http://dx.doi.org/10.1007/978-3-642-14574-2
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of the fractional differential equations, Elsevier, 2006. https://doi.org/10.1016/s0304-0208(06)x8001-5
    [3] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge: Cambridge Scientific Publishers, 2009.
    [4] B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-52141-1
    [5] Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014. https://doi.org/10.1142/9069
    [6] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284 (2002), 399–408. http://dx.doi.org/10.1016/S0301-0104(02)00670-5 doi: 10.1016/S0301-0104(02)00670-5
    [7] M. D. Qassim, K. M. Furati, N. E. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., 2012 (2012), 391062. https://doi.org/10.1155/2012/391062 doi: 10.1155/2012/391062
    [8] B. Telli, M. S. Souid, J. Alzabut, H. Khan, Existence and uniqueness theorems for a variable-order fractional differential equation with delay, Axioms, 12 (2023), 339. http://dx.doi.org/10.3390/axioms12040339 doi: 10.3390/axioms12040339
    [9] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc., 55 (2018), 1639–1657. https://doi.org/10.4134/BKMS.b170887 doi: 10.4134/BKMS.b170887
    [10] A. Wongcharoen, B. Ahmad, S. K. Ntouyas, J. Tariboon, Three-point boundary value problems for Langevin equation with Hilfer fractional derivative, Adv. Math. Phys., 2020 (2020), 9606428. http://dx.doi.org/10.1155/2020/9606428 doi: 10.1155/2020/9606428
    [11] J. R. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 63 (2011), 1–10. http://dx.doi.org/10.14232/ejqtde.2011.1.63 doi: 10.14232/ejqtde.2011.1.63
    [12] A. Lachouri, A. Ardjouni, The existence and Ulam-Hyers stability results for generalized Hilfer fractional integro-differential equations with nonlocal integral boundary conditions, Adv. Theory Nonlinear Anal. Appl., 6 (2023), 101–117. http://dx.doi.org/10.31197/atnaa.917180 doi: 10.31197/atnaa.917180
    [13] J. Nan, W. Hu, Y. H. Su, Y. Yun, Existence and stability fo solutions for a coupled Hadamard type sequence fractional differential system on glucose graphs, J. Appl. Anal. Comput., 14 (2024), 911–946. https://doi.org/10.11948/20230202 doi: 10.11948/20230202
    [14] E. El-hadya, S. Ögrekçic, On Hyers-Ulam-Rassias stability of fractional differential equations with Caputo derivative, J. Math. Computer Sci., 22 (2021), 325–332. http://dx.doi.org/10.22436/jmcs.022.04.02 doi: 10.22436/jmcs.022.04.02
    [15] S. Wang, The Ulam Stability of fractional differential equation with the Caputo-Fabrizio derivative, J. Funct. Spaces, 2022 (2022), 7268518. http://dx.doi.org/10.1155/2022/7268518 doi: 10.1155/2022/7268518
    [16] A. Guerfi, A. Ardjouni, Existence, uniqueness, continuous dependence and Ulam stability of mild solutions for an iterative fractional differential equation, Cubo, 24 (2022), 83–94. http://dx.doi.org/10.4067/S0719-06462022000100083 doi: 10.4067/S0719-06462022000100083
    [17] H. Vu, N. V. Hoa, Hyers-Ulam stability of fractional integro-differential equation with a positive constant coefficient involving the generalized Caputo fractional derivative, Filomat, 36 (2022), 6299–6316. http://dx.doi.org/10.2298/FIL2218299V doi: 10.2298/FIL2218299V
    [18] S. Abbas, M. Benchohra, J. Lagreg, A. Alsaedi, Y. Zhou, Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type, Adv. Differ. Equ., 2017 (2017), 180. http://dx.doi.org/10.1186/s13662-017-1231-1 doi: 10.1186/s13662-017-1231-1
    [19] D. Vivek, K. Kanagarajan, S. Harikrishnan, Dynamics and stability of Hilfer-Hadamard type fractional differential equations with boundary conditions, J. Nonlinear Anal. Appl., 2018 (2018), 14–26.
    [20] A. A. Salamooni, D. Pawar, Existence and uniqueness of boundary value problems for Hilfer-Hadamard type fractional differential equations, 2018, arXiv: 1801.10400. https://doi.org/10.48550/arXiv.1801.10400
    [21] U. S. Tshering, E. Thailert, S. K. Ntouyas, P. Siriwat, Sequential Hilfer-Hadamard fractional three-point boundary value problems, Thai J. Math., 21 (2023), 609–624.
    [22] M. H. Aqlan, A. Alsaedi, B. Ahmad, J. J. Nieto, Existence theory for sequential fractional differential equations with anti-periodic type boundary conditions, Open Math., 14 (2016), 723–735. https://doi.org/10.1515/math-2016-0064 doi: 10.1515/math-2016-0064
    [23] A. Salem, L. Almaghamsi, Solvability of sequential fractional differential equation at resonance, Mathematics, 11 (2023), 1044. https://doi.org/10.3390/math11041044 doi: 10.3390/math11041044
    [24] H. Zhang, Y. Li, J. Yang, New sequential fractional differential equations with mixed-type boundary conditions, J. Funct. Spaces, 2020 (2020), 6821637. https://doi.org/10.1155/2020/6821637 doi: 10.1155/2020/6821637
    [25] B. Ahmada, J. J. Nieto, Sequential fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 64 (2012), 3046–3052. https://doi.org/10.1016/j.camwa.2012.02.036 doi: 10.1016/j.camwa.2012.02.036
    [26] S. Sitho, S. K. Ntouyas, A. Samadi, J. Tariboon, Boundary value problems for y-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions, Mathematics, 9 (2021), 1001. https://doi.org/10.3390/math9091001 doi: 10.3390/math9091001
    [27] A. Zada, M. Yar, T. Li, Existence and stability analysis of nonlinear sequential coupled system of Caputo fractional differential equations with integral boundary conditions, Ann. Univ. Paedagog. Crac. Stud. Math., 17 (2018), 103–125. http://dx.doi.org/10.2478/aupcsm-2018-0009 doi: 10.2478/aupcsm-2018-0009
    [28] A. Zada, M. Yar, Existence and stability analysis of sequential coupled system of Hadamard-type fractional differential equations, Krag. J. Math., 46 (2022), 85–104. http://dx.doi.org/10.46793/KgJMat2201.085Z doi: 10.46793/KgJMat2201.085Z
    [29] R. P. Agarwal, A. Assolami, A. Alsaedi, B. Ahmad, Existence results and Ulam-Hyers stability for a fully coupled system of nonlinear sequential Hilfer fractional differential equations and integro-multistrip-multipoint boundary conditions, Qual. Theory Dyn. Syst., 21 (2022), 125. http://dx.doi.org/10.1007/s12346-022-00650-6 doi: 10.1007/s12346-022-00650-6
    [30] J. Sompong, E. Thailert, S. K. Ntouyas, U. S. Tshering, On coupled systems of Hilfer-Hadamard sequential fractional differential equations with three-point boundary conditions, Carpathian J. Math., 40 (2024), 443–458. http://dx.doi.org/10.37193/CJM.2024.02.14 doi: 10.37193/CJM.2024.02.14
    [31] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. http://dx.doi.org/10.1142/3779
    [32] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, 10 (1955), 123–127.
    [33] K. Deimling, Nonlinear functional analysis, Berlin, Heidelberg: Springer, 1985. http://dx.doi.org/10.1007/978-3-662-00547-7
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1288) PDF downloads(43) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog