Research article

Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions

  • Received: 09 July 2024 Revised: 19 August 2024 Accepted: 28 August 2024 Published: 06 September 2024
  • MSC : 26A33, 34A08, 34B15

  • In this paper, we study the existence and uniqueness of solutions for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point Riemann-Liouville fractional integral boundary conditions via standard fixed point theorems. The existence of solutions is proved using Krasnoselskii's fixed point theorem, while the existence and uniqueness of solutions is established using the Banach fixed point theorem. We also discuss the stability of the problem in terms of Ulam-Hyers, Ulam-Hyers-Rassias, generalized Ulam-Hyers, and generalized Ulam-Hyers-Rassias stability. As an application, some examples are presented to illustrate our theoretical results.

    Citation: Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas. Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions[J]. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263

    Related Papers:

  • In this paper, we study the existence and uniqueness of solutions for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point Riemann-Liouville fractional integral boundary conditions via standard fixed point theorems. The existence of solutions is proved using Krasnoselskii's fixed point theorem, while the existence and uniqueness of solutions is established using the Banach fixed point theorem. We also discuss the stability of the problem in terms of Ulam-Hyers, Ulam-Hyers-Rassias, generalized Ulam-Hyers, and generalized Ulam-Hyers-Rassias stability. As an application, some examples are presented to illustrate our theoretical results.



    加载中


    [1] K. Diethelm, The analysis of fractional differential equations, New York: Springer, 2010. http://dx.doi.org/10.1007/978-3-642-14574-2
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of the fractional differential equations, Elsevier, 2006. https://doi.org/10.1016/s0304-0208(06)x8001-5
    [3] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge: Cambridge Scientific Publishers, 2009.
    [4] B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-52141-1
    [5] Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014. https://doi.org/10.1142/9069
    [6] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284 (2002), 399–408. http://dx.doi.org/10.1016/S0301-0104(02)00670-5 doi: 10.1016/S0301-0104(02)00670-5
    [7] M. D. Qassim, K. M. Furati, N. E. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., 2012 (2012), 391062. https://doi.org/10.1155/2012/391062 doi: 10.1155/2012/391062
    [8] B. Telli, M. S. Souid, J. Alzabut, H. Khan, Existence and uniqueness theorems for a variable-order fractional differential equation with delay, Axioms, 12 (2023), 339. http://dx.doi.org/10.3390/axioms12040339 doi: 10.3390/axioms12040339
    [9] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc., 55 (2018), 1639–1657. https://doi.org/10.4134/BKMS.b170887 doi: 10.4134/BKMS.b170887
    [10] A. Wongcharoen, B. Ahmad, S. K. Ntouyas, J. Tariboon, Three-point boundary value problems for Langevin equation with Hilfer fractional derivative, Adv. Math. Phys., 2020 (2020), 9606428. http://dx.doi.org/10.1155/2020/9606428 doi: 10.1155/2020/9606428
    [11] J. R. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 63 (2011), 1–10. http://dx.doi.org/10.14232/ejqtde.2011.1.63 doi: 10.14232/ejqtde.2011.1.63
    [12] A. Lachouri, A. Ardjouni, The existence and Ulam-Hyers stability results for generalized Hilfer fractional integro-differential equations with nonlocal integral boundary conditions, Adv. Theory Nonlinear Anal. Appl., 6 (2023), 101–117. http://dx.doi.org/10.31197/atnaa.917180 doi: 10.31197/atnaa.917180
    [13] J. Nan, W. Hu, Y. H. Su, Y. Yun, Existence and stability fo solutions for a coupled Hadamard type sequence fractional differential system on glucose graphs, J. Appl. Anal. Comput., 14 (2024), 911–946. https://doi.org/10.11948/20230202 doi: 10.11948/20230202
    [14] E. El-hadya, S. Ögrekçic, On Hyers-Ulam-Rassias stability of fractional differential equations with Caputo derivative, J. Math. Computer Sci., 22 (2021), 325–332. http://dx.doi.org/10.22436/jmcs.022.04.02 doi: 10.22436/jmcs.022.04.02
    [15] S. Wang, The Ulam Stability of fractional differential equation with the Caputo-Fabrizio derivative, J. Funct. Spaces, 2022 (2022), 7268518. http://dx.doi.org/10.1155/2022/7268518 doi: 10.1155/2022/7268518
    [16] A. Guerfi, A. Ardjouni, Existence, uniqueness, continuous dependence and Ulam stability of mild solutions for an iterative fractional differential equation, Cubo, 24 (2022), 83–94. http://dx.doi.org/10.4067/S0719-06462022000100083 doi: 10.4067/S0719-06462022000100083
    [17] H. Vu, N. V. Hoa, Hyers-Ulam stability of fractional integro-differential equation with a positive constant coefficient involving the generalized Caputo fractional derivative, Filomat, 36 (2022), 6299–6316. http://dx.doi.org/10.2298/FIL2218299V doi: 10.2298/FIL2218299V
    [18] S. Abbas, M. Benchohra, J. Lagreg, A. Alsaedi, Y. Zhou, Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type, Adv. Differ. Equ., 2017 (2017), 180. http://dx.doi.org/10.1186/s13662-017-1231-1 doi: 10.1186/s13662-017-1231-1
    [19] D. Vivek, K. Kanagarajan, S. Harikrishnan, Dynamics and stability of Hilfer-Hadamard type fractional differential equations with boundary conditions, J. Nonlinear Anal. Appl., 2018 (2018), 14–26.
    [20] A. A. Salamooni, D. Pawar, Existence and uniqueness of boundary value problems for Hilfer-Hadamard type fractional differential equations, 2018, arXiv: 1801.10400. https://doi.org/10.48550/arXiv.1801.10400
    [21] U. S. Tshering, E. Thailert, S. K. Ntouyas, P. Siriwat, Sequential Hilfer-Hadamard fractional three-point boundary value problems, Thai J. Math., 21 (2023), 609–624.
    [22] M. H. Aqlan, A. Alsaedi, B. Ahmad, J. J. Nieto, Existence theory for sequential fractional differential equations with anti-periodic type boundary conditions, Open Math., 14 (2016), 723–735. https://doi.org/10.1515/math-2016-0064 doi: 10.1515/math-2016-0064
    [23] A. Salem, L. Almaghamsi, Solvability of sequential fractional differential equation at resonance, Mathematics, 11 (2023), 1044. https://doi.org/10.3390/math11041044 doi: 10.3390/math11041044
    [24] H. Zhang, Y. Li, J. Yang, New sequential fractional differential equations with mixed-type boundary conditions, J. Funct. Spaces, 2020 (2020), 6821637. https://doi.org/10.1155/2020/6821637 doi: 10.1155/2020/6821637
    [25] B. Ahmada, J. J. Nieto, Sequential fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 64 (2012), 3046–3052. https://doi.org/10.1016/j.camwa.2012.02.036 doi: 10.1016/j.camwa.2012.02.036
    [26] S. Sitho, S. K. Ntouyas, A. Samadi, J. Tariboon, Boundary value problems for y-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions, Mathematics, 9 (2021), 1001. https://doi.org/10.3390/math9091001 doi: 10.3390/math9091001
    [27] A. Zada, M. Yar, T. Li, Existence and stability analysis of nonlinear sequential coupled system of Caputo fractional differential equations with integral boundary conditions, Ann. Univ. Paedagog. Crac. Stud. Math., 17 (2018), 103–125. http://dx.doi.org/10.2478/aupcsm-2018-0009 doi: 10.2478/aupcsm-2018-0009
    [28] A. Zada, M. Yar, Existence and stability analysis of sequential coupled system of Hadamard-type fractional differential equations, Krag. J. Math., 46 (2022), 85–104. http://dx.doi.org/10.46793/KgJMat2201.085Z doi: 10.46793/KgJMat2201.085Z
    [29] R. P. Agarwal, A. Assolami, A. Alsaedi, B. Ahmad, Existence results and Ulam-Hyers stability for a fully coupled system of nonlinear sequential Hilfer fractional differential equations and integro-multistrip-multipoint boundary conditions, Qual. Theory Dyn. Syst., 21 (2022), 125. http://dx.doi.org/10.1007/s12346-022-00650-6 doi: 10.1007/s12346-022-00650-6
    [30] J. Sompong, E. Thailert, S. K. Ntouyas, U. S. Tshering, On coupled systems of Hilfer-Hadamard sequential fractional differential equations with three-point boundary conditions, Carpathian J. Math., 40 (2024), 443–458. http://dx.doi.org/10.37193/CJM.2024.02.14 doi: 10.37193/CJM.2024.02.14
    [31] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. http://dx.doi.org/10.1142/3779
    [32] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, 10 (1955), 123–127.
    [33] K. Deimling, Nonlinear functional analysis, Berlin, Heidelberg: Springer, 1985. http://dx.doi.org/10.1007/978-3-662-00547-7
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(894) PDF downloads(37) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog