Research article

Robust stabilization of fractional-order hybrid optical system using a single-input TS-fuzzy sliding mode control strategy with input nonlinearities

  • Received: 17 July 2024 Revised: 29 August 2024 Accepted: 02 September 2024 Published: 06 September 2024
  • MSC : 26A33, 93C42, 37N35

  • Hybrid optical systems with integrated control mechanisms enable a dynamic adjustment of optical components, ensuring real-time optimization, adaptability to changing conditions, and precise functionality. This control requirement enhances their performance in applications demanding responsiveness, such as autonomous systems, adaptive optics, and advanced imaging technologies. This research introduces a novel approach, employing a dynamic-free Takagi-Sugeno fuzzy sliding mode control (TS-fuzzy SMC) technique, to regulate and stabilize a specific category of chaotic fractional-order modified hybrid optical systems. The method addresses uncertainties and input-saturation challenges within the system. Leveraging a novel fractional calculus definition along with the non-integer type of the Lyapunov stability theorem and linear matrix inequality principle, the TS-fuzzy SMC approach was applied to effectively mitigate and regulate the undesired behavior of the fractional-order chaotic-modified hybrid optical system. Notably, this scheme achieved control without experiencing undesirable chattering phenomena. The paper concludes by offering concrete examples and comparisons, demonstrating how the theoretical findings are applied in real-world scenarios. This provides practical insights into the effectiveness of the proposed approach in diverse applications.

    Citation: Majid Roohi, Saeed Mirzajani, Ahmad Reza Haghighi, Andreas Basse-O'Connor. Robust stabilization of fractional-order hybrid optical system using a single-input TS-fuzzy sliding mode control strategy with input nonlinearities[J]. AIMS Mathematics, 2024, 9(9): 25879-25907. doi: 10.3934/math.20241264

    Related Papers:

  • Hybrid optical systems with integrated control mechanisms enable a dynamic adjustment of optical components, ensuring real-time optimization, adaptability to changing conditions, and precise functionality. This control requirement enhances their performance in applications demanding responsiveness, such as autonomous systems, adaptive optics, and advanced imaging technologies. This research introduces a novel approach, employing a dynamic-free Takagi-Sugeno fuzzy sliding mode control (TS-fuzzy SMC) technique, to regulate and stabilize a specific category of chaotic fractional-order modified hybrid optical systems. The method addresses uncertainties and input-saturation challenges within the system. Leveraging a novel fractional calculus definition along with the non-integer type of the Lyapunov stability theorem and linear matrix inequality principle, the TS-fuzzy SMC approach was applied to effectively mitigate and regulate the undesired behavior of the fractional-order chaotic-modified hybrid optical system. Notably, this scheme achieved control without experiencing undesirable chattering phenomena. The paper concludes by offering concrete examples and comparisons, demonstrating how the theoretical findings are applied in real-world scenarios. This provides practical insights into the effectiveness of the proposed approach in diverse applications.



    加载中


    [1] X. Luo, Multiscale optical field manipulation via planar digital optics, ACS Photonics, 10 (2023), 2116–2127. https://doi.org/10.1021/acsphotonics.2c01752 doi: 10.1021/acsphotonics.2c01752
    [2] A. A. Alikhanov, M. S. Asl, C. Huang, A. Khibiev, A second-order difference scheme for the nonlinear time-fractional diffusion-wave equation with generalized memory kernel in the presence of time delay, J. Comput. Appl. Math., 438 (2023), 115515. https://doi.org/10.1016/j.cam.2023.115515 doi: 10.1016/j.cam.2023.115515
    [3] A. A. Alikhanov, M. S. Asl, C. Huang, Stability analysis of a second-order difference scheme for the time-fractional mixed sub-diffusion and diffusion-wave equation, Fract. Calc. Appl. Anal., 27 (2024), 102–123. https://doi.org/10.1007/s13540-023-00229-1 doi: 10.1007/s13540-023-00229-1
    [4] A. Boubellouta, A. Boulkroune, Intelligent fractional-order control-based projective synchronization for chaotic optical systems, Soft Comput., 23 (2019), 5367–5384. https://doi.org/10.1007/s00500-018-3490-5 doi: 10.1007/s00500-018-3490-5
    [5] X. Zhou, X. Li, J. Wang, Trajectory tracking control for electro-optical tracking system based on fractional-order sliding mode controller with super-twisting extended state observer, ISA Trans., 117 (2021), 85–95. https://doi.org/10.1016/j.isatra.2021.01.062 doi: 10.1016/j.isatra.2021.01.062
    [6] M. Al-Raeei, Applying fractional quantum mechanics to systems with electrical screening effects, Chaos Soliton. Fract., 150 (2021), 111209. https://doi.org/10.1016/j.chaos.2021.111209 doi: 10.1016/j.chaos.2021.111209
    [7] M. Pouzesh, S. Mobayen, Event-triggered fractional-order sliding mode control technique for stabilization of disturbed quadrotor unmanned aerial vehicles, Aerospace Sci. Tech., 121 (2022), 107337. https://doi.org/10.1016/j.ast.2022.107337 doi: 10.1016/j.ast.2022.107337
    [8] Y. L. Wang, H. Jahanshahi, S. Bekiros, F. Bezzina, Y. M. Chu, A. A. Aly, Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence, Chaos Soliton. Fract., 146 (2021), 110881. https://doi.org/10.1016/j.chaos.2021.110881 doi: 10.1016/j.chaos.2021.110881
    [9] K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever, Nonlinear Dyn., 71 (2013), 613–619. https://doi.org/10.1007/s11071-012-0475-2 doi: 10.1007/s11071-012-0475-2
    [10] Z. Esfahani, M. Roohi, M. Gheisarnejad, T. Dragičević, M. H. Khooban, Optimal non-integer sliding mode control for frequency regulation in stand-alone modern power grids, Appl. Sci., 9 (2019), 3411. https://doi.org/10.3390/app9163411 doi: 10.3390/app9163411
    [11] M. Roohi, C. Zhang, Y. Chen, Adaptive model-free synchronization of different fractional-order neural networks with an application in cryptography, Nonlinear Dyn., 100 (2020), 3979–4001. https://doi.org/10.1007/s11071-020-05719-y doi: 10.1007/s11071-020-05719-y
    [12] M. Roohi, M. P. Aghababa, A. R. Haghighi, Switching adaptive controllers to control fractional-order complex systems with unknown structure and input nonlinearities, Complexity, 21 (2015), 211–223. https://doi.org/10.1002/cplx.21598 doi: 10.1002/cplx.21598
    [13] Y. Chen, C. Tang, M. Roohi, Design of a model-free adaptive sliding mode control to synchronize chaotic fractional-order systems with input saturation: an application in secure communications, J. Franklin Inst., 358 (2021), 8109–8137. https://doi.org/10.1016/j.jfranklin.2021.08.007 doi: 10.1016/j.jfranklin.2021.08.007
    [14] M. Haris, M. Shafiq, I. Ahmad, A. Ibrahim, M. Misiran, A nonlinear adaptive controller for the synchronization of unknown identical chaotic systems, Arab. J. Sci. Eng., 46 (2021), 10097–10112. https://doi.org/10.1007/s13369-020-05222-x doi: 10.1007/s13369-020-05222-x
    [15] H. Alsubaie, A. Yousefpour, A. Alotaibi, N. D. Alotaibi, H. Jahanshahi, Stabilization of nonlinear vibration of a fractional-order arch mems resonator using a new disturbance-observer-based finite-time sliding mode control, Mathematics, 11 (2023), 978. https://doi.org/10.3390/math11040978 doi: 10.3390/math11040978
    [16] I. Ahmad, M. Shafiq, Robust adaptive anti-synchronization control of multiple uncertain chaotic systems of different orders, Automatika, 61 (2020), 396–414. https://doi.org/10.1080/00051144.2020.1765115 doi: 10.1080/00051144.2020.1765115
    [17] Z. Rasooli Berardehi, C. Zhang, M. Taheri, M. Roohi, M. H. Khooban, Implementation of T-S fuzzy approach for the synchronization and stabilization of non-integer-order complex systems with input saturation at a guaranteed cost, Trans. Inst. Meas. Control, 45 (2023), 2536–2553. https://doi.org/10.1177/01423312231155273 doi: 10.1177/01423312231155273
    [18] M. Taheri, Y. Chen, C. Zhang, Z. R. Berardehi, M. Roohi, M. H. Khooban, A finite-time sliding mode control technique for synchronization chaotic fractional-order laser systems with application on encryption of color images, Optik, 285 (2023), 170948. https://doi.org/10.1016/j.ijleo.2023.170948 doi: 10.1016/j.ijleo.2023.170948
    [19] M. Shafiq, I. Ahmad, Multi-switching combination anti-synchronization of unknown hyperchaotic systems, Arab. J. Sci. Eng., 44 (2019), 7335–7350. https://doi.org/10.1007/s13369-019-03824-8 doi: 10.1007/s13369-019-03824-8
    [20] M. Roohi, S. Mirzajani, A. Basse-O'Connor, A no-chatter single-input finite-time PID sliding mode control technique for stabilization of a class of 4D chaotic fractional-order laser systems, Mathematics, 11 (2023), 4463. https://doi.org/10.3390/math11214463 doi: 10.3390/math11214463
    [21] Z. Rasooli Berardehi, C. Zhang, M. Taheri, M. Roohi, M. H. Khooban, A fuzzy control strategy to synchronize fractional-order nonlinear systems including input saturation, Int. J. Intell. Syst., 2023 (2023), 1550256. https://doi.org/10.1155/2023/1550256 doi: 10.1155/2023/1550256
    [22] M. Roohi, M. H. Khooban, Z. Esfahani, M. P. Aghababa, T. Dragicevic, A switching sliding mode control technique for chaos suppression of fractional-order complex systems, Trans. Inst. Meas. Control, 41 (2019), 2932–2946. https://doi.org/10.1177/0142331219834606 doi: 10.1177/0142331219834606
    [23] J. Li, Y. Wang, J. Zhang, Event-triggered sliding mode control for a class of uncertain switching systems, AIMS Math., 8 (2023), 29424–29439. https://doi.org/10.3934/math.20231506 doi: 10.3934/math.20231506
    [24] S. Ahmed, A. T. Azar, I. K. Ibraheem, Nonlinear system controlled using novel adaptive fixed-time SMC, AIMS Math., 9 (2024), 7895–7916. https://doi.org/10.3934/math.2024384 doi: 10.3934/math.2024384
    [25] P. Anbalagan, Y. H. Joo, Design of memory-based adaptive integral sliding-mode controller for fractional-order T-S fuzzy systems and its applications, J. Franklin Inst., 359 (2022), 8819–8847. https://doi.org/10.1016/j.jfranklin.2022.08.040 doi: 10.1016/j.jfranklin.2022.08.040
    [26] Y. Hao, X. Zhang, T-S fuzzy control of uncertain fractional-order systems with time delay, J. Math., 2021 (2021), 6636882. https://doi.org/10.1155/2021/6636882 doi: 10.1155/2021/6636882
    [27] X. Zhang, Z. Wang, Stabilisation of Takagi-Sugeno fuzzy singular fractional-order systems subject to actuator saturation, Int. J. Syst. Sci., 51 (2020), 3225–3236. https://doi.org/10.1080/00207721.2020.1809749 doi: 10.1080/00207721.2020.1809749
    [28] Y. Yan, H. Zhang, Z. Ming, Y. Wang, Observer-based adaptive control and faults estimation for T-S fuzzy singular fractional order systems, Neural Comput. Appl., 34 (2022), 4265–4275. https://doi.org/10.1007/s00521-021-06527-0 doi: 10.1007/s00521-021-06527-0
    [29] X. Zhang, K. Jin, State and output feedback controller design of Takagi-Sugeno fuzzy singular fractional order systems, Int. J. Control Autom. Syst., 19 (2021), 2260–2268. https://doi.org/10.1007/s12555-020-0078-5 doi: 10.1007/s12555-020-0078-5
    [30] S. Mirzajani, M. P. Aghababa, A. Heydari, Adaptive T-S fuzzy control design for fractional-order systems with parametric uncertainty and input constraint, Fuzzy Sets Syst., 365 (2019), 22–39. https://doi.org/10.1016/j.fss.2018.03.018 doi: 10.1016/j.fss.2018.03.018
    [31] X. Fan, Z. Wang, A fuzzy Lyapunov function method to stability analysis of fractional-order T-S fuzzy systems, IEEE Trans. Fuzzy Syst., 30 (2022), 2769–2776. https://doi.org/10.1109/TFUZZ.2021.3078289 doi: 10.1109/TFUZZ.2021.3078289
    [32] H. Liu, Y. Pan, J. Cao, Y. Zhou, H. Wang, Positivity and stability analysis for fractional-order delayed systems: a TS fuzzy model approach, IEEE Trans. Fuzzy Syst., 29 (2021), 927–939. https://doi.org/10.1109/TFUZZ.2020.2966420 doi: 10.1109/TFUZZ.2020.2966420
    [33] R. Li, X. Zhang, Adaptive sliding mode observer design for a class of T-S fuzzy descriptor fractional order systems, IEEE Trans. Fuzzy Syst., 28 (2020), 1951–1960. https://doi.org/10.1109/TFUZZ.2019.2928511 doi: 10.1109/TFUZZ.2019.2928511
    [34] R. Majdoub, H. Gassara, M. Rhaima, L. Mchiri, H. Arfaoui, A. Ben Makhlouf, Observer-based control of polynomial fuzzy fractional-order systems, Trans. Inst. Meas. Control, 46 (2023), 442–452. https://doi.org/10.1177/01423312231181972 doi: 10.1177/01423312231181972
    [35] X. Fan, T. Li, Fuzzy switching sliding mode control of T-S fuzzy systems via an event-triggered strategy, IEEE Trans. Fuzzy Syst., 2024, 1–12. https://doi.org/10.1109/TFUZZ.2024.3441721 doi: 10.1109/TFUZZ.2024.3441721
    [36] N. M. Moawad, W. M. Elawady, A. M. Sarhan, Development of an adaptive radial basis function neural network estimator-based continuous sliding mode control for uncertain nonlinear systems, ISA Trans., 87 (2019), 200–216. https://doi.org/10.1016/j.isatra.2018.11.021 doi: 10.1016/j.isatra.2018.11.021
    [37] X. Fan, Z. Wang, Asynchronous event-triggered fuzzy sliding mode control for fractional order fuzzy systems, IEEE Trans. Circuits Syst. II: Express Briefs, 69 (2022), 1094–1098. https://doi.org/10.1109/TCSII.2021.3099530 doi: 10.1109/TCSII.2021.3099530
    [38] X. Zhang, W. Huang, Adaptive sliding mode fault tolerant control for interval Type-2 fuzzy singular fractional-order systems, J. Vib. Control, 28 (2021), 465–475. https://doi.org/10.1177/1077546320980181 doi: 10.1177/1077546320980181
    [39] S. Song, B. Zhang, X. Song, Y. Zhang, Z. Zhang, W. Li, Fractional-order adaptive neuro-fuzzy sliding mode H control for fuzzy singularly perturbed systems, J. Franklin Inst., 356 (2019), 5027–5048. https://doi.org/10.1016/j.jfranklin.2019.03.020 doi: 10.1016/j.jfranklin.2019.03.020
    [40] V. N. Giap, Text message secure communication based on fractional-order chaotic systems with Takagi-Sugeno fuzzy disturbance observer and sliding mode control, Int. J. Dynam. Control, 11 (2023), 3109–3123. https://doi.org/10.1007/s40435-023-01170-0 doi: 10.1007/s40435-023-01170-0
    [41] Y. Hao, Z. Fang, H. Liu, Stabilization of delayed fractional-order T-S fuzzy systems with input saturations and system uncertainties, Asian J. Control, 26 (2024), 246–264. https://doi.org/10.1002/asjc.3196 doi: 10.1002/asjc.3196
    [42] Y. Yan, H. Zhang, J. Sun, Y. Wang, Sliding mode control based on reinforcement learning for TS fuzzy fractional-order multiagent system with time-varying delays, IEEE Trans. Neur. Net. Learn. Syst., 35 (2023), 10368–10379. https://doi.org/10.1109/TNNLS.2023.3241070 doi: 10.1109/TNNLS.2023.3241070
    [43] B. Li, X. Zhao, Neural network based adaptive sliding mode control for T-S fuzzy fractional order systems, IEEE Trans. Circuits Syst. II: Express Briefs, 70 (2023), 4549–4553. https://doi.org/10.1109/TCSII.2023.3289988 doi: 10.1109/TCSII.2023.3289988
    [44] P. Wan, Z. Zeng, Stability and stabilization of Takagi-Sugeno fuzzy second-fractional-order linear networks via nonreduced-order approach, IEEE Trans. Syst. Man Cybern.: Syst., 52 (2022), 6524–6533. https://doi.org/10.1109/TSMC.2022.3147222 doi: 10.1109/TSMC.2022.3147222
    [45] J. Sabatier, C. Farges, J. C. Trigeassou, Fractional systems state space description: some wrong ideas and proposed solutions, J. Vib. Control, 20 (2013), 1076–1084. https://doi.org/10.1177/1077546313481839 doi: 10.1177/1077546313481839
    [46] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Vol. 198, Elsevier, 1999.
    [47] A. Kajouni, A. Chafiki, K. Hilal, M. Oukessou, A new conformable fractional derivative and applications, Int. J. Differ. Equ., 2021 (2021), 6245435. https://doi.org/10.1155/2021/6245435 doi: 10.1155/2021/6245435
    [48] L. S. Shieh, Y. T. Tsay, R. Yates, Some properties of matrix sign functions derived from continued fractions, IEE Proc. D-Control Theory Appl., 3 (1983), 111–118.
    [49] H. J. Lee, J. B. Park, G. Chen, Robust fuzzy control of nonlinear systems with parametric uncertainties, IEEE Trans. Fuzzy Syst., 9 (2001), 369–379. https://doi.org/10.1109/91.919258 doi: 10.1109/91.919258
    [50] S. Xu, J. Lam, Robust H/sub/spl infin//control for uncertain discrete-time-delay fuzzy systems via output feedback controllers, IEEE Trans. Fuzzy Syst., 13 (2005), 82–93. https://doi.org/10.1109/TFUZZ.2004.839661 doi: 10.1109/TFUZZ.2004.839661
    [51] Y. Li, Y. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810–1821. https://doi.org/10.1016/j.camwa.2009.08.019 doi: 10.1016/j.camwa.2009.08.019
    [52] M. S. Abdelouahab, N. E. Hamri, J. Wang, Hopf bifurcation and chaos in fractional-order modified hybrid optical system, Nonlinear Dyn., 69 (2012), 275–284. https://doi.org/10.1007/s11071-011-0263-4 doi: 10.1007/s11071-011-0263-4
    [53] M. S. Abdelouahab, N. Hamri, Fractional-order hybrid optical system and its chaos control synchronization, Electron. J. Theor. Phys., 11 (2014), 49–62.
    [54] F. Yang, J. Mou, C. Ma, Y. Cao, Dynamic analysis of an improper fractional-order laser chaotic system and its image encryption application, Opt. Lasers Eng., 129 (2020), 106031. https://doi.org/10.1016/j.optlaseng.2020.106031 doi: 10.1016/j.optlaseng.2020.106031
    [55] M. S. Asl, M. Javidi, An improved PC scheme for nonlinear fractional differential equations: Error and stability analysis, J. Comput. Appl. Math., 324 (2017), 101–117. https://doi.org/10.1016/j.cam.2017.04.026 doi: 10.1016/j.cam.2017.04.026
    [56] M. S. Asl, M. Javidi, Numerical evaluation of order six for fractional differential equations: stability and convergency, Bull. Belg. Math. Soc.-Simon Stevin, 26 (2019), 203–221. https://doi.org/10.36045/bbms/1561687562 doi: 10.36045/bbms/1561687562
    [57] H. Liu, S. Li, H. Wang, Y. Sun, Adaptive fuzzy control for a class of unknown fractional-order neural networks subject to input nonlinearities and dead-zones, Inf. Sci., 454 (2018), 30–45. https://doi.org/10.1016/j.ins.2018.04.069 doi: 10.1016/j.ins.2018.04.069
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(543) PDF downloads(30) Cited by(3)

Article outline

Figures and Tables

Figures(9)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog