Research article

Fixed-time consensus control of stochastic nonlinear multi-agent systems with input saturation using command-filtered backstepping

  • Received: 16 February 2024 Revised: 09 April 2024 Accepted: 15 April 2024 Published: 24 April 2024
  • MSC : 93B52, 93C42

  • In this paper, a fixed-time consensus control algorithm is proposed for non-triangular structure stochastic nonlinear multi-agent systems (SNMASs) with input saturation via the command-filtered backstepping design method. Fuzzy logic systems are employed to identify the nonlinear dynamics of each agent. By introducing the fixed-time command filter and constructing the fractional power error compensation mechanism, the "complexity explosion" problem is effectively avoided, and the influence of filtered errors is eliminated in a fixed time. Based on the fixed-time stability theory, it strictly proves that all signals in the closed-loop system are fixed-time bounded in probability, and the consensus error converges to a sufficiently small neighborhood of the origin in probability within a fixed time. Finally, a comparison simulation example verifies the effectiveness and superiority of the proposed fixed-time consensus control strategy.

    Citation: Yifan Liu, Guozeng Cui, Ze Li. Fixed-time consensus control of stochastic nonlinear multi-agent systems with input saturation using command-filtered backstepping[J]. AIMS Mathematics, 2024, 9(6): 14765-14785. doi: 10.3934/math.2024718

    Related Papers:

  • In this paper, a fixed-time consensus control algorithm is proposed for non-triangular structure stochastic nonlinear multi-agent systems (SNMASs) with input saturation via the command-filtered backstepping design method. Fuzzy logic systems are employed to identify the nonlinear dynamics of each agent. By introducing the fixed-time command filter and constructing the fractional power error compensation mechanism, the "complexity explosion" problem is effectively avoided, and the influence of filtered errors is eliminated in a fixed time. Based on the fixed-time stability theory, it strictly proves that all signals in the closed-loop system are fixed-time bounded in probability, and the consensus error converges to a sufficiently small neighborhood of the origin in probability within a fixed time. Finally, a comparison simulation example verifies the effectiveness and superiority of the proposed fixed-time consensus control strategy.



    加载中


    [1] S. D. J. McArthur, E. M. Davidson, V. M. Catterson, A. L. Dimeas, N. D. Hatziargyriou, F. Ponci, et al., Multi-agent systems for power engineering applications-part Ⅰ: concepts, approaches, and technical challenges, IEEE Trans. Power Syst., 22 (2007), 1743–1752. https://doi.org/10.1109/TPWRS.2007.908471 doi: 10.1109/TPWRS.2007.908471
    [2] Z. Pan, C. Zhang, Y. Xia, H. Xiong, X. Shao, An improved artificial potential field method for path planning and formation control of the multi-UAV systems, IEEE Trans. Circuits Syst. II, 69 (2022), 1129–1133. https://doi.org/10.1109/TCSII.2021.3112787 doi: 10.1109/TCSII.2021.3112787
    [3] J. Zhang, J. Yan, P. Zhang, Multi-UAV formation control based on a novel back-stepping approach, IEEE Trans. Veh. Technol., 69 (2020), 2437–2448. https://doi.org/10.1109/TVT.2020.2964847 doi: 10.1109/TVT.2020.2964847
    [4] Y. Yang, C. Hua, X. Guan, Multi-manipulators coordination for bilateral teleoperation system using fixed-time control approach, Int. J. Robust Nonlinear Control, 28 (2018), 5667–5687. https://doi.org/10.1002/rnc.4336 doi: 10.1002/rnc.4336
    [5] J. Wu, S. Qiu, M. Liu, H. Li, Y. Liu, Finite-time velocity-free relative position coordinated control of spacecraft formation with dynamic event triggered transmission, Math. Biosci. Eng., 19 (2022), 6883–6906. https://doi.org/10.3934/mbe.2022324 doi: 10.3934/mbe.2022324
    [6] K. Sun, H. Yu, X. Xia, Distributed control of nonlinear stochastic multi-agent systems with external disturbance and time-delay via event-triggered strategy, Neurocomputing, 452 (2021), 275–283. https://doi.org/10.1016/j.neucom.2021.04.100 doi: 10.1016/j.neucom.2021.04.100
    [7] W. Zou, C. K. Ahn, Z. Xiang, Event-triggered consensus tracking control of stochastic nonlinear multiagent systems, IEEE Syst. J., 13 (2019), 4051–4059. https://doi.org/10.1109/JSYST.2019.2910723 doi: 10.1109/JSYST.2019.2910723
    [8] K. Li, Y. Li, Adaptive NN optimal consensus fault-tolerant control for stochastic nonlinear multiagent systems, IEEE Trans. Neural Netw. Learn. Syst., 34 (2021), 947–957. https://doi.org/10.1109/TNNLS.2021.3104839 doi: 10.1109/TNNLS.2021.3104839
    [9] Y. Yang, S. Miao, D. Yue, C. Xu, D. Ye, Adaptive neural containment seeking of stochastic nonlinear strict-feedback multi-agent systems, Neurocomputing, 400 (2020), 393–400. https://doi.org/10.1016/j.neucom.2019.03.091 doi: 10.1016/j.neucom.2019.03.091
    [10] X. Guo, H. Liang, Y. Pan, Observer-based adaptive fuzzy tracking control for stochastic nonlinear multi-agent systems with dead-zone input, Appl. Math. Comput., 379 (2020), 125269. https://doi.org/10.1016/j.amc.2020.125269 doi: 10.1016/j.amc.2020.125269
    [11] Y. Yang, X. Xi, S. Miao, J. Wu, Event-triggered output feedback containment control for a class of stochastic nonlinear multi-agent systems, Appl. Math. Comput., 418 (2022), 126817. https://doi.org/10.1016/j.amc.2021.126817 doi: 10.1016/j.amc.2021.126817
    [12] M. Shahvali, J. Askari, Distributed containment output-feedback control for a general class of stochastic nonlinear multi-agent systems, Neurocomputing, 179 (2016), 202–210. https://doi.org/10.1016/j.neucom.2015.12.014 doi: 10.1016/j.neucom.2015.12.014
    [13] Q. Wang, C. Gao, Y. Cui, L. B. Wu, Observer-based adaptive fuzzy command filtered backstepping control for stochastic nonlinear systems with event-triggered mechanism, Int. J. Fuzzy Syst., 25 (2023), 1612–1623. https://doi.org/10.1007/s40815-023-01462-9 doi: 10.1007/s40815-023-01462-9
    [14] Y. Zhu, B. Niu, Z. Shang, Z. Wang, H. Wang, Distributed adaptive asymptotic consensus tracking control for stochastic nonlinear MASs with unknown control gains and output constraints, IEEE Trans. Autom. Sci. Eng., 2024. https://doi.org/10.1109/TASE.2024.3350547 doi: 10.1109/TASE.2024.3350547
    [15] Y. Wu, Y. Pan, M. Chen, H. Li, Quantized adaptive finite-time bipartite NN tracking control for stochastic multiagent systems, IEEE Trans. Cybern., 51 (2021), 2870–2881. https://doi.org/10.1109/TCYB.2020.3008020 doi: 10.1109/TCYB.2020.3008020
    [16] X. Wang, W. Guang, T. Huang, J. Kurths, Optimized adaptive finite-time consensus control for stochastic nonlinear multiagent systems with non-affine nonlinear faults, IEEE Trans. Autom. Sci. Eng., 2023. https://doi.org/10.1109/TASE.2023.3306101 doi: 10.1109/TASE.2023.3306101
    [17] A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Autom. Control, 57 (2011), 2106–2110. https://doi.org/10.1109/TAC.2011.2179869 doi: 10.1109/TAC.2011.2179869
    [18] B. Cui, L. Mao, Y. Xia, T. Ma, H. Gao, Fixed-time fault-tolerant consensus control for high-order nonlinear multi-agent systems under directed topology, IEEE Trans. Control Netw. Syst., 11 (2024), 197–209. https://doi.org/10.1109/TCNS.2023.3274700 doi: 10.1109/TCNS.2023.3274700
    [19] X. Guo, H. Ma, H. Liang, H. Zhang, Command-filter-based fixed-time bipartite containment control for a class of stochastic multiagent systems, IEEE Trans. Syst. Man Cybern. Syst., 52 (2021), 3519–3529. https://doi.org/10.1109/TSMC.2021.3072650 doi: 10.1109/TSMC.2021.3072650
    [20] X. Yu, G. Wang, L. Jia, H. Zhang, Event-triggered practical fixed-time containment control for stochastic multi-agent systems with input delay, IEEE Trans. Fuzzy Syst., 2024. https://doi.org/10.1109/TFUZZ.2024.3357716 doi: 10.1109/TFUZZ.2024.3357716
    [21] Y. Zhao, H. Yu, X. Xia, Event-triggered adaptive consensus for stochastic multi-agent systems with saturated input and partial state constraints, Inf. Sci., 603 (2022), 16–41. https://doi.org/10.1016/j.ins.2022.04.035 doi: 10.1016/j.ins.2022.04.035
    [22] X. Song, L. Zhao, Adaptive fuzzy finite-time consensus tracking for high-order stochastic multi-agent systems with input saturation, Int. J. Fuzzy Syst., 24 (2022), 3781–3795. https://doi.org/10.1007/s40815-022-01368-y doi: 10.1007/s40815-022-01368-y
    [23] X. Yue, H. Zhang, J. Sun, L. Zhang, Distributed saturation-tolerant fuzzy control for constrained stochastic multi-agent systems with resilient quantitative behaviors, IEEE Trans. Fuzzy Syst., 2024. https://doi.org/10.1109/TFUZZ.2023.3347581 doi: 10.1109/TFUZZ.2023.3347581
    [24] S. Cheng, Z. Cheng, H. Ren, R. Lu, Adaptive fault-tolerant containment control for stochastic nonlinear multi-agent systems with input saturation, Optim. Control Appl. Meth., 44 (2023), 1491–1509. https://doi.org/10.1002/oca.2899 doi: 10.1002/oca.2899
    [25] X. Mao, Stochastic differential equations and applications, Cambridge: Woodhead Publishing, 2008. https://doi.org/10.1533/9780857099402
    [26] K. T. Yu, Y. M. Li, Adaptive fuzzy control for nonlinear systems with sampled data and time-varying input delay, AIMS Math., 5 (2020), 2307–2325. https://doi.org/10.3934/math.2020153 doi: 10.3934/math.2020153
    [27] W. Yan, T. Zhao, B. Niu, X. Wang, Adaptive T-S fuzzy control for an unknown structure system with a self-adjusting control accuracy, IEEE Trans. Autom. Sci. Eng., 2024. https://doi.org/10.1109/TASE.2024.3356752 doi: 10.1109/TASE.2024.3356752
    [28] C. Qian, W. Lin, A continuous feedback approach to global strong stabilization of nonlinear systems, IEEE Trans. Autom. Control, 46 (2001), 1061–1079. https://doi.org/10.1109/9.935058 doi: 10.1109/9.935058
    [29] L. Zhang, B. Chen, C. Lin, Y. Shang, Fuzzy adaptive fixed-time consensus tracking control of high-order multiagent systems, IEEE Trans. Fuzzy Syst., 30 (2020), 567–578. https://doi.org/10.1109/TFUZZ.2020.3042239 doi: 10.1109/TFUZZ.2020.3042239
    [30] D. Yao, C. Dou, D. Yue, X. Xie, Event-triggered practical fixed-time fuzzy containment control for stochastic multiagent systems, IEEE Trans. Fuzzy Syst., 30 (2022), 3052–3062. https://doi.org/10.1109/TFUZZ.2021.3100930 doi: 10.1109/TFUZZ.2021.3100930
    [31] Y. Pan, C. Chen, Y. Yue, H. Liang, Event-triggered predefined-time control for full-state constrained nonlinear systems: a novel command filtering error compensation method, Sci. China Technol. Sci., 2024. https://doi.org/10.1007/s11431-023-2607-8 doi: 10.1007/s11431-023-2607-8
    [32] S. Yang, Y. Pan, L. Cao, L. Chen, Predefined-time fault-tolerant consensus tracking control for Multi-UAV systems with prescribed performance and attitude constraints, IEEE Trans. Aerosp. Electron. Syst., 2024. https://doi.org/10.1109/TAES.2024.3371406 doi: 10.1109/TAES.2024.3371406
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(526) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog