
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(6): 14765–14785.
DOI: 10.3934/math.2024718
Received: 16 February 2024
Revised: 09 April 2024
Accepted: 15 April 2024
Published: 24 April 2024

Research article

Fixed-time consensus control of stochastic nonlinear multi-agent systems
with input saturation using command-filtered backstepping

Yifan Liu, Guozeng Cui* and Ze Li

School of Electronic and Information Engineering, Suzhou University of Science and Technology,
Suzhou 215009, China

* Correspondence: Email: guozengcui@gmail.com.

Abstract: In this paper, a fixed-time consensus control algorithm is proposed for non-triangular
structure stochastic nonlinear multi-agent systems (SNMASs) with input saturation via the command-
filtered backstepping design method. Fuzzy logic systems are employed to identify the nonlinear
dynamics of each agent. By introducing the fixed-time command filter and constructing the fractional
power error compensation mechanism, the “complexity explosion” problem is effectively avoided, and
the influence of filtered errors is eliminated in a fixed time. Based on the fixed-time stability theory,
it strictly proves that all signals in the closed-loop system are fixed-time bounded in probability, and
the consensus error converges to a sufficiently small neighborhood of the origin in probability within
a fixed time. Finally, a comparison simulation example verifies the effectiveness and superiority of the
proposed fixed-time consensus control strategy.
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1. Introduction

Multi-agent systems (MASs) possess autonomous perception, decision-making, and action
implementation capabilities, and these agents execute intricate control tasks through communication
and cooperation collectively [1]. Owing to their distinctive collaboration abilities, MASs have shown
significant potential applications in various areas, including formation control of unmanned aerial
vehicles [2, 3], coordinated control of multiple robotic arms [4], and synchronization control of
distributed spacecraft [5]. Given the prevalence of stochastic disturbances in engineering and most
actual control systems being nonlinear, many scholars are increasingly drawn to the control problems
of stochastic nonlinear multi-agent systems (SNMASs) [6–8]. The stochastic disturbances
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significantly complicate the control system design process, and the effective distributed control
algorithm for SNMASs has become both critical and challenging.

By employing the backstepping design method, a distributed adaptive containment control scheme
was presented for strict-feedback SNMASs [9]. Considering that the states of SNMASs are
unmeasurable, a distributed adaptive output-feedback control algorithm was devised in [10].
Nevertheless, the “complexity explosion” problem arises in classic backstepping-based distributed
control strategies. In [11], an event-triggered distributed containment control strategy was developed
by applying the dynamic surface control method, effectively avoiding the “complexity explosion”
problem. However, it should be noted that [11] does not consider the impact of filtered errors on
system performance. Moreover, the distributed control schemes [9–11] are only applicable to
strict-feedback SNMASs and cannot be extended to more general SNMASs in non-triangular form.
For non-triangular structure SNMASs, the nonlinear terms involve all state variables of each agent,
and directly employing the aforementioned distributed control algorithms may lead to the algebraic
loop problem.

Based on the command filter technique combined with state observers, the distributed
output-feedback control problem was studied for non-triangular structure SNMASs with
unmeasurable states [12, 13]. Considering non-triangular structure SNMASs are subject to unknown
control gains and output constraints, a command-filter-based distributed consensus algorithm was
proposed in [14]. By adopting the command filter technique, these distributed algorithms [12–14]
address the “complexity explosion” problem and remove the impact of filtered errors. Nonetheless,
they can only ensure the asymptotic convergence of SNMASs. Subsequently, a finite-time distributed
control strategy was presented for SNMASs with sensor faults [15]. In [16], the finite-time optimized
control for SNMASs with non-triangular structure and non-affine nonlinear faults was investigated. It
should be pointed out that the convergence time of finite-time distributed control strategies is closely
tied to the system’s initial states, and the control strategies may become ineffective when these initial
states are difficult to obtain or even unattainable. In [17], a fixed-time control theory was put forward,
and the upper bound of the system’s convergence time is unaffected by the initial states, which are
related to the controller’s parameters. Considering non-triangular structure SNMASs with actuator
faults, the fixed-time distributed fault-tolerant control issue was addressed in [18]. To lessen the
communication burden of non-triangular structure SNMASs, an event-trigger-based fixed-time
containment control algorithm was formulated [19]. In [20], the event-triggered fixed-time
containment control algorithm for SNMASs with input-delay was presented.

Note that SNMASs are prone to input saturation due to actuator constraints imposed by mechanical
structures or component performance. While collaboration among multi-agent systems heavily relies
on continuous and accurate control inputs, ignoring input saturation may directly impact the system’s
coordination capabilities. Thus, it is necessary to properly address the SNMASs with input saturation.
Considering state-constrained SNMASs with input saturation, by designing the saturation controller to
avoid the input limitation problem, a distributed event-triggered control scheme was proposed in [21].
By constructing compensation systems, the issues of finite-time control and prescribed performance
control for SNMASs with input saturation were investigated in [22, 23], respectively. For SNMASs
with input saturation and sensor faults, an adaptive fault-tolerant containment control strategy was
designed in [24], where the saturation function was approximated by a smooth function. By far, there
are few results available on the fixed-time distributed control of non-triangular structure SNMASs with
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an input saturation based on command-filtered backstepping design approach.
Inspired by the preceding discussions, for non-triangular structure SNMASs with input saturation,

this paper presents a fixed-time consensus control algorithm based on the command-filtered
backstepping design method. Compared to existing results, the main contributions of this paper are
given as follows:

(1) Unlike the backstepping control schemes [9,10] and the dynamic surface control strategies [11]
for strict-feedback SNMASs, this paper targets the more general non-triangular structure SNMASs.
By constructing a fixed-time command filter and a fractional power error compensation mechanism,
the proposed fixed-time distributed consensus control algorithm not only addresses the “complexity
explosion” problem but also removes the impact of filtered errors on the performance of SNMASs in a
fixed time.

(2) Different from the asymptotic convergence control schemes [12–14] and finite-time
convergence control schemes [15, 16] for non-triangular structure SNMASs, this paper proposes a
fixed-time distributed consensus control scheme, whose upper bound of convergence time is not
influenced by the initial states of each agent. By adjusting control parameters, it ensures that the
consensus error converges to a sufficiently small neighborhood of the origin in probability within a
fixed time.

(3) Compared with conventional approaches for anti-saturation algorithms [22, 23], this paper
designs a compensation system with fixed-time convergence that resolves the limitation of input
saturation.

2. Problem formulation and preliminaries

2.1. Graph theory

To denote the communication relations among N followers in SNMASs, a directed graph

ℵG = (VG,EG)

is employed, with EG ⊆ VG ×VG denoting the edge set andVG = {1, . . . ,N} being the node set.

Nm = {l | (l,m) ∈ EG}

is defined as the neighbors set for node m, where the directed edge (l,m) ∈ EG denotes that the m-th
follower can acquire information from the l-th follower. The adjacency matrix

CG =
[
cm,l

]
∈ RN×N

is defined as cm,l = 1 if (l,m) ∈ EG and cm,l = 0 if (l,m) < EG. The Laplacian matrix is represented as

PG = JG − CG,

in which

JG = diag { ȷ1, . . . , ȷN} , ȷm =

N∑
l=1

cm,l.
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Furthermore, an augmented directed graph

ℵG = (VG,EG)

is applied to describe the communication relations between the leader 0 and the N followers.

LG = diag {ℓ1, . . . , ℓN}

in which ℓm = 1, if the m-th follower can acquire information from the leader, otherwise ℓm = 0. If
there exists at least one directed path from the leader to other followers, then the augmented graph
contains a directed spanning tree.

2.2. Stochastic theory

Consider the following stochastic nonlinear system:

dζ = q(ζ)dt + p(ζ)dω, (2.1)

where ζ stands for the state vector; q(ζ) and p(ζ) are smooth nonlinear functions satisfying q(0) = 0
and p(0) = 0. ω represents an s-dimensional independent standard Brownian motion.

Definition 1. [25] For any continuous positive-definite Lyapunov function V(ζ) ∈ C2 associated with
system (2.1), define its differential operator LV(ζ) as

LV(ζ) =
∂V(ζ)
∂ζ

q(ζ) +
1
2

Tr
{

p⊤(ζ)
∂2V(ζ)
∂ζ2 p(ζ)

}
.

2.3. Problem formulation

Consider the following non-triangular SNMASs composed of one leader and N followers, where
the dynamics of the m-th follower are described as

dxm,b =
(
xm,b+1 + fm,b (xm)

)
dt + h⊤m,b (xm) dω,

dxm,nm =
(
um (℘m) + fm,nm (xm)

)
dt + h⊤m,nm

(xm) dω,
ym = xm,1,

(2.2)

where m = 1, . . . ,N, b = 1, . . . , nm − 1;

xm =
[
xm,1, . . . , xm,nm

]⊤
∈ Rnm

represents the state vector; ym ∈ R is the output signal of the m-th follower.

fm,b(·) : Rnm 7→ R and hm,b(·) : Rnm 7→ Rs

are unknown smooth nonlinear functions. um (℘m) is the system input affected by saturation
nonlinearity with

um (℘m) =


ummax, ℘m ≥ ummax ,

℘m, ummin < ℘m < ummax ,

ummin, ℘m ≤ ummin ,
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where ummax > 0 and ummin < 0 are constants; ℘m is the input of saturation nonlinearity. A smooth
hyperbolic tangent function ım(℘m) is introduced as

ım(℘m) =


ummax ∗ tanh

(
℘m

ummax

)
, ℘m ≥ 0,

ummin ∗ tanh
(
℘m

ummin

)
, ℘m < 0,

then um (℘m) can be rewritten as
um (℘m) = ım(℘m) + ı̄m(℘m),

where
|ı̄m(℘m)| = |um(℘m) − ım(℘m)| ≤ max{ummax(1 − tanh(1)), ummin(tanh(1) − 1)} = Dm.

Control objective. The aim of this paper is to develop a fixed-time distributed control scheme those
ensures the outputs of all followers are synchronized with those of the leader r(t), and the consensus
error ym − r(t) converges to a sufficiently small neighborhood of the origin in probability within a fixed
time.

Assumption 1. The augmented graph ℵG contains a spanning tree, and PG + LG is invertible.

Assumption 2. The leader’s signal r(t) is first-order continuously differentiable and bounded.

Lemma 1. [26,27] For a continuous function F(x) defined on a compact set Ω and any given constant
ε > 0, there exists a fuzzy logic system (FLS) ΦT (x)S (x) such that

F(x) = ΦT (x)S (x) + σ(x), |σ(x)| ≤ ε,

where
Φ =

[
ϕ1(x), . . . , ϕw(x)

]⊤
represents the ideal weight vector;

S (x) = [S 1(x), . . . , S w(x)]⊤ /
w∑

b=1

S b(x)

denotes the basis functions; w is the number of fuzzy rules;

S b(x) = exp
[
− (x − φb)⊤ (x − φb) /τ2

b

]
,

where φb is the center of the Gaussian function, and τb is the width.

Lemma 2. [28] For X1,X2 ∈ R and q1, q2, q3 > 0, the following inequality holds

|X1|
q1 |X2|

q2 ≤
q1

q1 + q2
q3|X1|

q1+q2 +
q2

q1 + q2
q
−

q1
q2

3 |X2|
q1+q2 .

Lemma 3. [29] For µb ∈ R, b = 1, . . . , ϖ, the following inequalities hold:
ϖ∑

b=1

|µb|
λ
≥

 ϖ∑
b=1

|µb|

λ , 0 < λ ≤ 1,

ϖ∑
b=1

|µb|
λ
≥ ϖ1−λ

 ϖ∑
b=1

|µb|

λ , λ > 1.
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Lemma 4. [30] For the radially unbounded Lyapunov function V(ζ) ∈ C2 associated with system (2.1),
if kd1 > 0, kd2 > 0, 0 < d1 < 1, d2 > 1, η > 0, satisfying

LV(ζ) ≤ −kd1V
d1(ζ) − kd2V

d2(ζ) + η,

then (2.1) is practical fixed-time stable in probability. Furthermore, the convergence time T satisfies

E(T ) ≤ Tmax =
1

kd1ς(1 − d1)
+

1
kd2ς(d2 − 1)

,

and the solution set is given by

ζ ∈

V(ζ) ≤ min


(

η

(1 − ς)d1

)1/d1

,

(
η

(1 − ς)d2

)1/d2

 , ς ∈ (0, 1).

3. Main results

In this section, a fixed-time distributed control algorithm for SNMASs with input saturation is
proposed. Before the command-filtered backstepping design process, define the following constants:

θm,b =
∥∥∥Φm,b

∥∥∥2
, θm = max

{
θm,1, θm,2, ..., θm,nm

}
,

in which m = 1, . . . ,N, b = 1, . . . , nm. θ̂m,b represents the estimated value of θm,b, and θ̃m,b = θm,b − θ̂m,b

is the estimation error.
Define the following synchronization errors for the m-th follower:

sm,1 =

N∑
l=1

cm,l (ym − yl) + ℓm (ym − r) , (3.1)

sm,b = xm,b − πm,b, b = 2, . . . , nm, (3.2)

where πm,b is the output signal of a fixed-time command filter and the distributed virtual control signal
αm,b is the input signal. Design the fixed-time command filter as follows:{

µ̇m,b,1 = −Bm,b,1ℜm,b,1
(
χm,b

)
+ µm,b,2,

µ̇m,b,2 = −Bm,b,2ℜm,b,2
(
χm,b

)
,

(3.3)

where b = 1, . . . , nm − 1,

ℜm,b,1
(
χm,b

)
=

(∣∣∣χm,b

∣∣∣ 1
2 + κm,b

∣∣∣χm,b

∣∣∣ 3
2

)
sign

(
χm,b

)
,

ℜm,b,2
(
χm,b

)
= 2κm,bχm,b +

(1
2
+

3
2
κ2

m,b

∣∣∣χm,b

∣∣∣2) sign
(
χm,b

)
,

χm,b = µm,b,1 − αm,b, µm,b,1 = πm,b,

and Bm,b,1 > 0, Bm,b,2 > 0, κm,b > 0 are the filter parameters.
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Remark 1. After introducing the fixed-time command filter (3.3), the derivative of the virtual control
signal αm,b can be quickly approximated by the filter output signal, as a result the “complexity
explosion” problem encountered in traditional backstepping approaches [9, 10] is skillfully
addressed.

To eliminate the impact of filtered errors on system performance, design the error compensation
signal ξm,b as follows:

ξ̇m,1 = −νm,1ξ
4d1−3
m,1 − km,1ξ

4d2−3
m,1 + (ℓm + ȷm)

(
ξm,2 + πm,2 − αm,1

)
, (3.4)

ξ̇m,b = −νm,bξ
4d1−3
m,b − km,bξ

4d2−3
m,b + ξm,b+1 + πm,b+1 − αm,b, (3.5)

ξ̇m,nm = −νm,nmξ
4d1−3
m,nm

− km,nmξ
4d2−3
m,nm

, (3.6)

where b = 2, . . . , nm − 1, 3/4 < d1 < 1, d2 > 1, νm, j and km, j, j = 1, . . . , nm are positive design
parameters.

Define the compensation tracking errors as follows:

vm,b = sm,b − ξm,b, b = 1, . . . , nm − 1, (3.7)
vm,nm = sm,nm − ξm,nm − ψm, (3.8)

where ψm is the saturation compensation signal, which is designed as

ψ̇m = −ψ
d1
m − ψ

d2
m + ım (℘m) − ℘m.

Remark 2. Different from asymptotically convergent saturation compensation systems [22, 23],
fractional power terms −ψd1

m − ψ
d2
m are constructed to ensure that the compensation system converges

within a fixed time.

Design the distributed virtual control signal αm,b and the fixed-time distributed controller ℘m as
follows:

αm,1 =
1

(ℓm + ȷm)

(
−νm,1v4d1−3

m,1 − km,1v4d2−3
m,1 −

1
2a2

m,1

v3
m,1θ̂m,1S ⊤m,1S m,1 +

∑
l∈Nm

cm,lxl,2 + ℓmṙ
)
−

3
4

vm,1, (3.9)

αm,2 = − νm,2v4d1−3
m,2 − km,2v4d2−3

m,2 −
1

2a2
m,2

v3
m,2θ̂m,2S ⊤m,2S m,2 −

(
1
4

(ℓm + ȷm) +
3
4

)
vm,2 + π̇m,2, (3.10)

αm,b = − νm,bv4d1−3
m,b − km,bv4d2−3

m,b −
1

2a2
m,b

v3
m,bθ̂m,bS ⊤m,bS m,b + π̇m,b − vm,b, (3.11)

℘m = − νm,nmv4d1−3
m,nm
− km,nmv4d2−3

m,nm
−

1
2a2

m,nm

v3
m,nm

θ̂m,nmS ⊤m,nm
S m,nm + π̇m,nm − vm,nm − ψ

d1
m − ψ

d2
m , (3.12)

where b = 3, . . . , nm − 1. The adaptive law θ̂m,b is designed as

˙̂θm,b =
λm,b

2a2
m,b

v6
m,bS ⊤m,bS m,b − γm,bθ̂m,b, b = 1, . . . , nm, (3.13)

where am,b, γm,b and λm,b are positive design parameters.
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4. Stability analysis

Theorem 1. For non-triangular SNMASs with input saturation satisfying Assumptions 1 and 2, the
error compensation signals (3.4)–(3.6), the virtual control signals (3.9)–(3.11), the designed distributed
controller (3.12), and the adaptive law (3.13) ensure that all signals in the closed-loop system are fixed-
time bounded in probability, and the consensus error between followers and the leader converges to a
sufficiently small neighborhood of the origin in probability within a fixed time.

Proof. The detailed proof is presented as follows:
Step 1. From (2.2), (3.1) and (3.7), one has

dvm,1 =

(
(ℓm + ȷm)

(
vm,2 + ξm,2 + πm,2 + fm,1 − αm,1 + αm,1

)
− ℓmṙ − ξ̇m,1

−
∑
l∈Nm

cm,l
(
xl,2 + fl,1

))
dt +

(ℓm + ȷm) hm,1 −
∑
l∈Nm

cm,lhl,1

 dω. (4.1)

Choose the Lyapunov function as

Vm,1 =
1
4

v4
m,1 +

1
4
ξ4

m,1 +
1

2λm,1
θ̃2

m,1.

According to Definition 1, LVm,1 is computed as

LVm,1 =v3
m,1

(
(ℓm + ȷm)

(
vm,2 + ξm,2 + πm,2 + fm,1 − αm,1 + αm,1

)
− ℓmṙ − ξ̇m,1

−
∑
l∈Nm

cm,l
(
xl,2 + fl,1

))
+ ξ3

m,1ξ̇m,1 −
1
λm,1

θ̃m,1
˙̂θm,1

+
3
2

v2
m,1

(ℓm + ȷm) hm,1 −
∑
l∈Nm

cm,lhl,1


⊤ (ℓm + ȷm) hm,1 −

∑
l∈Nm

cm,lhl,1

 . (4.2)

By utilizing Lemma 2, one yields

3
2

v2
m,1

(ℓm + ȷm) hm,1 −
∑
l∈Nm

cm,lhl,1


⊤ (ℓm + ȷm) hm,1 −

∑
l∈Nm

cm,lhl,1


≤

3
4

v4
m,1

∥∥∥∥∥∥∥(ℓm + ȷm) hm,1 −
∑
l∈Nm

cm,lhl,1

∥∥∥∥∥∥∥
4

+
3
4
. (4.3)

Define
f̄m,1= (ℓm + ȷm) fm,1 −

∑
l∈Nm

cm,l fl,1 +
3
4

vm,1

∥∥∥(ℓm+ ȷm) hm,1 −
∑
l∈Nm

cm,lhl,1

∥∥∥4
+

3
4

vm,1.

According to Lemma 1, a FLS being used to identify f̄m,1, it follows that

f̄m,1 = Φ
⊤
m,1 S m,1 (xm, xl) + σm,1 (xm, xl) ,

∣∣∣σm,1 (xm, xl)
∣∣∣ ≤ εm,1.
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According to the property of the FLS, one has

S ⊤m,1 (xm, xl) S m,1 (xm, xl) ≤ S ⊤m,1
(
xm,1, xl,1

)
S m,1

(
xm,1, xl,1

)
.

Based on Lemma 2, it can be concluded that

v3
m,1 f̄m,1 ≤

1
2a2

m,1

v6
m,1

∥∥∥Φm,1

∥∥∥2
S ⊤m,1

(
xm,1, xl,1

)
S m,1

(
xm,1, xl,1

)
+

1
2

a2
m,1 +

3
4

v4
m,1 +

1
4
ε4

m,1, (4.4)

(ℓm + ȷm) v3
m,1vm,2 ≤ (ℓm + ȷm)

(
3
4

v4
m,1 +

1
4

v4
m,2

)
. (4.5)

According to (4.2)–(4.5), the following inequality can be acquired:

LVm,1 ≤v3
m,1

(
(ℓm + ȷm)

(
3
4

vm,1 + ξm,2 + πm,2 − αm,1 + αm,1

)
− ℓmṙ

−
∑
l∈Nm

cm,lxl,2 − ξ̇m,1 +
1

2a2
m,1

v3
m,1θm,1S ⊤m,1S m,1

 + 1
4

(ℓm + ȷm) v4
m,2

−
1
λm,1

θ̃m,1
˙̂θm,1 +

3
4
+

1
2

a2
m,1 +

1
4
ε4

m,1 + ξ
3
m,1ξ̇m,1. (4.6)

By substituting (3.4), (3.9) and (3.13) into (4.6), it yields

LVm,1 ≤ − νm,1v4d1
m,1 − km,1v4d2

m,1 + νm,1ξ
4d1−3
m,1 v3

m,1 + km,1ξ
4d2−3
m,1 v3

m,1

+
γm,1

λm,1
θ̃m,1θ̂m,1 +

1
4

(ℓm + ȷm) v4
m,2 +

1
2

a2
m,1 +

1
4
ε4

m,1 +
3
4

+ ξ3
m,1 (ℓm + ȷm)

(
πm,2 − αm,1 + ξm,2

)
− km,1ξ

4d2
m,1 − νm,1ξ

4d1
m,1. (4.7)

Based on Lemma 2, the following inequalities are satisfied:

νm,1ξ
4d1−3
m,1 v3

m,1 ≤
4d1 − 3

4d1
νm,1ξ

4d1
m,1 +

3
4d1

νm,1v4d1
m,1, (4.8)

km,1ξ
4d2−3
m,1 v3

m,1 ≤
4d2 − 3

4d2
km,1ξ

4d2
m,1 +

3
4d2

km,1v4d2
m,1. (4.9)

By substituting (4.8) and (4.9) into (4.7), it follows that

LVm,1 ≤ −

(
1 −

3
4d1

)
νm,1v4d1

m,1 −
3

4d1
νm,1ξ

4d1
m,1 +

γm,1

λm,1
θ̃m,1θ̂m,1

−

(
1 −

3
4d2

)
km,1v4d2

m,1 −
3

4d2
km,1ξ

4d2
m,1 +

1
4

(ℓm + ȷm) v4
m,2

+
3
4
+

1
2

a2
m,1 +

1
4
ε4

m,1 + ξ
3
m,1 (ℓm + ȷm)

(
πm,2 − αm,1 + ξm,2

)
. (4.10)

Step b (2 ≤ b ≤ nm − 1). Base on (2.2), (3.2) and (3.7), one has

dvm,b = dxm,b − dξm,b − dπm,b =
(
xm,b+1 + fm,b − π̇m,b − ξ̇m,b

)
dt + hm,bdω. (4.11)
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Choose the Lyapunov function as

Vm,b = Vm,b−1 +
1
4

v4
m,b +

1
4
ξ4

m,b +
1

2λm,b
θ̃2

m,b.

According to Definition 1, LVm,b is calculated as

LVm,b =LVm,b−1 + v3
m,b

(
vm,b+1 + ξm,b+1 + πm,b+1 − αm,b + αm,b − π̇m,b − ξ̇m,b

)
+

3
2

v2
m,bh⊤m,bhm,b + ξ

3
m,bξ̇m,b −

1
λm,b

θ̃m,b
˙̂θm,b. (4.12)

By using Lemma 2, one yields

3
2

v2
m,bh⊤m,bhm,b ≤

3
4

v4
m,b

∥∥∥hm,b

∥∥∥4
+

3
4
. (4.13)

Define
f̄m,b = fm,b +

3
4

vm,b

∥∥∥hm,b

∥∥∥4
+

3
4

vm,b.

By applying a FLS to identify f̄m,b, it can be acquired that

f̄m,b = Φ
⊤
m,bS m,b (xm) + σm,b (xm) ,

∣∣∣σm,b (xm)
∣∣∣ ≤ εm,b.

According to the property of the FLS, one has

S ⊤m,b (xm) S m,b (xm) ≤ S ⊤m,b
(
x̄m,b

)
S m,1

(
x̄m,b

)
,

where
x̄m,b =

[
xm,1, . . . , xm,b

]⊤ .
Based on Lemma 2, the following inequalities are satisfied:

v3
m,b f̄m,b ≤

1
2a2

m,b

v6
m,b

∥∥∥Φm,b

∥∥∥2
S ⊤m,b

(
x̄m,b

)
S m,b

(
x̄m,b

)
+

1
2

a2
m,b +

3
4

v4
m,b +

1
4
ε4

m,b, (4.14)

v3
m,bvm,b+1 ≤

3
4

v4
m,b +

1
4

v4
m,b+1. (4.15)

By utilizing (3.5), (3.10), (3.11) and (3.13), it follows that

LVm,b ≤ −

b∑
j=1

(
1 −

3
4d1

)
νm, jv

4d1
m, j −

b∑
j=1

3
4d1

νm, jξ
4d1
m, j −

b∑
j=1

(
1 −

3
4d2

)
km, jv

4d2
m, j

−

b∑
j=1

3
4d2

km, jξ
4d2
m, j +

b∑
j=1

(
3
4
+

1
2

a2
m, j +

1
4
ε4

m, j

)
+

b∑
j=1

γm, j

λm, j
θ̃m, jθ̂m, j

+
1
4

v4
m,b+1 +

b∑
j=1

ξ3
m, j

(
ℓm, j + ȷm, j

) (
πm, j+1 − αm, j + ξm, j+1

)
. (4.16)
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Step nm. According to (2.2), (3.2) and (3.8), one has

dvm,nm =
(
um (℘m) + fm,nm − π̇m,nm − ξ̇m,nm − ψ̇m

)
dt + hm,nmdω

=
(
℘m + ı̄m (℘m) + ψd1

m + ψ
d2
m − π̇m,nm − ξ̇m,nm

)
dt + hm,nmdω. (4.17)

Choose the Lyapunov function as

Vm,nm = Vm,nm−1 +
1
4

v4
m,nm
+

1
4
ξ4

m,nm
+

1
2λm,nm

θ̃2
m,nm

.

Based on Definition 1, LVm,nm is computed as

LVm,nm =LVm,nm−1 + v3
m,nm

(
℘m + ı̄m (℘m) + ψd1

m + ψ
d2
m − π̇m,nm − ξ̇m,nm

)
+

3
2

v2
m,nm

h⊤m,nm
hm,nm + ξ

3
m,nm

ξ̇m,nm −
1

λm,nm

θ̃m,nm
˙̂θm,nm . (4.18)

By utilizing Lemma 2, the following inequalities are satisfied:

3
2

v2
m,nm

h⊤m,nm
hm,nm ≤

3
4

v4
m,nm

∥∥∥hm,nm

∥∥∥4
+

3
4
, (4.19)

v3
m,nm

Dm ≤
3
4

v4
m,nm
+

1
4

D4
m. (4.20)

Define
f̄m,nm = fm,nm +

3
4

vm,nm

∥∥∥hm,nm

∥∥∥4
+

3
4

vm,nm

with a FLS utilized to identify f̄m,nm , one yields

f̄m,nm = Φ
⊤
m,nm

S m,nm (xm) + σm,nm (xm) ,
∣∣∣σm,nm (xm)

∣∣∣ ≤ εm,nm .

According to Lemma 2, it can be obtained that

v3
m,nm

f̄m,nm ≤
1

2a2
m,nm

v6
m,nm

∥∥∥Φm,nm

∥∥∥2
S ⊤m,nm

(xm) S m,nm (xm) +
1
2

a2
m,nm
+

3
4

v4
m,nm
+

1
4
ε4

m,nm
. (4.21)

By substituting (3.6), (3.12) and (3.13) into (4.18) and based on (4.19)–(4.21), the following
inequality can be acquired:

LVm,nm ≤ −

nm∑
b=1

(
1 −

3
4d1

)
νm,bv4d1

m,b −

nm∑
b=1

3
4d1

νm,bξ
4d1
m,b −

nm∑
b=1

(
1 −

3
4d2

)
km,bv4d2

m,b

+

nm∑
b=1

(
3
4
+

1
2

a2
m,b +

1
4
ε4

m,b

)
+

nm∑
b=1

γm,b

λm,b
θ̃m,bθ̂m,b +

1
4

D4
m

−

nm∑
b=1

3
4d2

km,bξ
4d2
m,b +

nm−1∑
b=1

ξ3
m,b

(
ℓm,b + ȷm,b

) (
πm,b+1 − αm,b + ξm,b+1

)
. (4.22)

By using
θ̃m,b = θm,b − θ̂m,b,
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and combined with Lemma 2, one has

θ̃m,bθ̂m,b = θ̃m,bθm,b − θ̃
2
m,b

≤

(
1
2
θ̃2

m,b +
1
2
θ2

m,b

)
− θ̃2

m,b

≤ −
1
2
θ̃2

m,b +
1
2
θ2

m,b. (4.23)

By substituting (4.23) into (4.22), one yields

LVm,nm ≤ −

nm∑
b=1

(
1 −

3
4d1

)
νm,bv4d1

m,b −

nm∑
b=1

3
4d1

νm,bξ
4d1
m,b −

nm∑
b=1

γm,b

2λm,b
θ̃2

m,b −

nm∑
b=1

(
1 −

3
4d2

)
km,bv4d2

m,b

−

nm∑
b=1

3
4d2

km,bξ
4d2
m,b −

nm∑
b=1

(γm,b

2

)d2
 θ̃2

m,b

2λm,b

d2

+

nm∑
b=1

(γm,b

2

)d1
 θ̃2

m,b

2λm,b

d1

−

nm∑
b=1

(γm,b

2

)d1
 θ̃2

m,b

2λm,b

d1

+

nm∑
b=1

γm,b

2λm,b
θ2

m,b +

nm−1∑
b=1

ξ3
m,b

(
ℓm,b + ȷm,b

) (
πm,b+1 − αm,b + ξm,b+1

)
+

1
4

D4
m

+

nm∑
b=1

(
3
4
+

1
2

a2
m,b +

1
4
ε4

m,b

)
+

nm∑
b=1

(γm,b

2

)d2
 θ̃2

m,b

2λm,b

d2

. (4.24)

Based on Lemma 3, it follows that

LVm,nm ≤ − kd1

 nm∑
b=1

v4
m,b

4

d1

− kd1

 nm∑
b=1

ξ4
m,b

4

d1

+

nm∑
b=1

γm,b

2λm,b
θ2

m,b −

nm∑
b=1

γm,b

2λm,b
θ̃2

m,b

− k̄d2

 nm∑
b=1

ξ4
m,b

4

d2

− kd1

 nm∑
b=1

θ̃2
m,b

2λm,b

d1

− k̄d2

 nm∑
b=1

v4
m,b

4

d2

− k̄d2

 nm∑
b=1

θ̃2
m,b

2λm,b

d2

+

nm∑
b=1

(γm,b

2

)d1
 θ̃2

m,b

2λm,b

d1

+

nm−1∑
b=1

ξ3
m,b

(
ℓm,b + ȷm,b

) (
πm,b+1 − αm,b + ξm,b+1

)
+

nm∑
b=1

(
3
4
+

1
2

a2
m,b +

1
4
ε4

m,b

)
+

nm∑
b=1

(γm,b

2

)d2
 θ̃2

m,b

2λm,b

d2

+
1
4

D4
m, (4.25)

where

kd1 = min
{
(1 − 3/4d1) 4d1νm,b, (3/4d1) 4d1νm,b,

(
γm,b/2

)d1
}
,

k̄d2 = n1−d2
m min

{
(1 − 3/4d2) 4d2km,b, (3/4d2) 4d2km,b,

(
γm,b/2

)d2
}
.

According to Lemma 2, let X1 = 1, X2 =
γm,b

4λm,b
θ̃2

m,b, q1 = 1 − d1, q2 = d1, q3 = d1

d1
1−d1 , and one yields

nm∑
b=1

(
γm,b

4λm,b
θ̃2

m,b

)d1

≤ nm(1 − d1)d1

d1
1−d1 +

nm∑
b=1

γm,b

4λm,b
θ̃2

m,b. (4.26)
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By substituting (4.26) into (4.25) and utilizing Lemma 3, LVm,nm can be expressed as

LVm,nm ≤ − kd1V
d1
m,nm
− kd2V

d2
m,nm
+

nm∑
b=1

(
γm,b

4λm,b
θ̃2

m,b

)d2

−

nm∑
b=1

γm,b

4λm,b
θ̃2

m,b + Λ̂m, (4.27)

where

kd2 =31−d2 k̄d2 ,

Λ̂m =

nm∑
b=1

(
3
4
+

1
2

a2
m,b +

1
4
ε4

m,b

)
+

nm−1∑
b=1

ξ3
m,b

(
ℓm,b + ȷm,b

) (
πm,b+1 − αm,b + ξm,b+1

)
+

nm∑
b=1

γm,b

2λm,b
θ2

m,b +
1
4

D4
m + nm(1 − d1)d1

d1
1−d1 .

Assume that there exists a positive constant ρm,b such that∣∣∣θ̃m,b

∣∣∣ ≤ ρm,b.

Consider the first case, if ∣∣∣θ̃m,b

∣∣∣ ≤ 2
√
λm,b/γm,b,

it is easily seen that

nm∑
b=1

(
γm,b

4λm,b
θ̃2

m,b

)d2

−

nm∑
b=1

γm,b

4λm,b
θ̃2

m,b ≤ 0. (4.28)

Therefore, one has
LVm,nm ≤ −kd1V

d1
m,nm
− kd2V

d2
m,nm
+ Λ̂m.

For the second case, when ∣∣∣θ̃m,b

∣∣∣ > 2
√
λm,b/γm,b,

it follows that
nm∑

b=1

(
γm,b

4λm,b
θ̃2

m,b

)d2

−

nm∑
b=1

γm,b

4λm,b
θ̃2

m,b ≤

nm∑
b=1

(
γm,b

4λm,b
ρ2

m,b

)d2

−

nm∑
b=1

γm,b

4λm,b
ρ2

m,b. (4.29)

Consequently, (4.27) can be rewritten as

LVm,nm ≤ −kd1V
d1
m,nm
− kd2V

d2
m,nm
+ Λm,

where

Λm =

nm∑
b=1

(
γm,b

4λm,b
ρ2

m,b

)d2

−

nm∑
b=1

γm,b

4λm,b
ρ2

m,b + Λ̂m.

Based on the above discussion, the following result can be obtained:

LVm,nm ≤ −kd1V
d1
m,nm
− kd2V

d2
m,nm
+ Λm, (4.30)
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where

Λm =


Λ̂m,

∣∣∣θ̃m,b

∣∣∣ ≤ 2

√
λm,b

γm,b
,

nm∑
b=1

(
γm,b

4λm,b
ρ2

m,b

)d2

−

nm∑
b=1

γm,b

4λm,b
ρ2

m,b + Λ̂m,
∣∣∣θ̃m,b

∣∣∣ > 2

√
λm,b

γm,b
.

(4.31)

According to Lemma 4, all signals in the closed-loop system are fixed-time bounded in probability,
and the convergence time satisfies

E (Tm) ≤ Tmax =
1

kd1ςm(1 − d1)
+

1
kd2ςm(d2 − 1)

.

Define
s1 =

[
s1,1, . . . , sN,1

]⊤ ,
it follows that

E |s1|
4 = E

∣∣∣s2
1,1 + . . . + s2

N,1

∣∣∣2
≤ 2E

(
s4

1,1 + . . . + s4
N,1

)
≤ 2E

(
v4

1,1 + ξ
4
1,1 + . . . + v4

N,1 + ξ
4
N,1

)
≤ 8EV(t) ≤ 8Ξ. (4.32)

From (3.1), it can be deduced that the consensus error

ȳ =
[
y1 − r, . . . , yN − r

]⊤
= y − (1N ⊗ r) = (PG + LG)−1s1,

where ⊗ is the Kronecker product and 1N represents an N-dimensional unit column vector. According
to (4.32), it yields

E |y − 1N ⊗ r|4 ≤
(
|PG + LG|

−1
)4

E |s1|
4

≤ 8
(
|PG + LG|

−1
)4
Ξ. (4.33)

For any constant ε̌m > 0, one has

E |ym(t) − r(t)|4 < ε̌m, ∀t > T, m = 1, . . . ,N. (4.34)

Therefore, by selecting proper control parameters, the consensus error of the follower could be
converged to a sufficiently small neighborhood of the origin in probability within a fixed-time. □

5. Simulation results

To validate the effectiveness of the fixed-time distributed control algorithm, consider the
non-triangular SNMASs with the communication topology shown in Figure 1. In this topology, there
is one leader denoted as “L” and four followers denoted as “F1–F4”.
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F1 F3 F4 F2 

L 

Figure 1. The communication topology of non-triangular SNMASs.

Consider the following non-triangular SNMASs with input saturation:
dxm,1 =

(
xm,2 + fm,1 (xm)

)
dt + h⊤m,1 (xm) dω,

dxm,2 =
(
um (℘m) + fm,2 (xm)

)
dt + h⊤m,2 (xm) dω,

ym = xm,1,

where

m = 1, . . . , 4, xm = [xm,1, xm,2]⊤, f1,1 = x4
1,1x1,2, h1,1 = cos(x1,1x1,2), f1,2 = x1,1x2

1,2,

h1,2 = x1,1x1,2, f2,1 = x2
2,1x2,2, h2,1 = sin(x2,1x2,2), f2,2 = x2,1x2

2,2, h2,2 = x3
2,1x2,2,

f3,1 = x2
3,1x3,2, h3,1 = cos(x2

3,1x3,2), f3,2 = x2
3,1x3,2, h3,2 = x3

3,1x3,2, f4,1 = x2
4,1x4,2,

h4,1 = sin(x4,1x4,2), f4,2 = x2
4,1x4,2, h4,2 = x3

4,1x4,2.

The leader’s signal is given as

r(t) =
1
2

sin (t) + sin
(
1
2

t
)
.

The initial conditions for the followers are given as follows:[
x1,1, x1,2

]⊤
= [0.2, 0]⊤,

[
x2,1, x2,2

]⊤
= [−0.6, 0]⊤,

[
x3,1, x3,2

]⊤
= [0.7, 0]⊤,

[
x4,1, x4,2

]⊤
= [−0.62, 0]⊤.

A FLS with seven fuzzy rules uniformly distributed between -3 and 3 with a width of 4 is selected.
The design parameters are chosen as follows: d1 = 0.8, d2 = 1.5, ν1,1 = 1, k1,1 = 1, ν1,2 = 2, k1,2 = 2,
ν2,1 = 0.5, k2,1 = 0.5, ν2,2 = 1, k2,2 = 1, ν3,1 = 1, k3,1 = 1, ν3,2 = 3, k3,2 = 3, ν4,1 = 0.5, k4,1 = 0.5,
ν4,2 = 1, k4,2 = 1, am,1 = 0.5, am,2 = 0.5, Bm,1,1 = 14, Bm,1,2 = 14, κm,1 = 10, ummax = 50, ummin = −30.

To demonstrate the superiority of the proposed control algorithm, a comparison is carried out with
the command filter backstepping (CFB) control scheme in [12]. Define the overall tracking error

OTE =

√√
4∑

m=1

|ym − r|2,

and the root-mean-square error

RMSE =

√√
4∑

m=1

ω∑
k=1

(ym(k) − r(k))2 ω,
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where k is the sample index and ω is the number of total samples. Assuming that the system’s settling
time is denoted by a settling time with OTE ≤ 0.15.

The simulation results are shown in Figures 2–6 and Table 1. Figures 2 and 3 display the tracking
curves of the followers and the curves of the consensus error ym − r using the proposed algorithm
and CFB method, respectively. Figure 4 shows the curves of the adaptive law θ̂m. Figure 5 illustrates
the curves of the designed control input ℘m and saturation input um (℘m). Figure 6 displays the OTE
curves for different control schemes, and the comparison of the settling time and RMSE is presented
in Table 1.
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Figure 2. (a) Curves of follower’s output signal ym and leader’s signal r (proposed). (b)
Curves of follower’s output signal ym and leader’s signal r (CFB).
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Figure 3. (a) Curves of consensus error ym − r (proposed). (b) Curves of consensus error
ym − r (CFB).
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Figure 4. Curves of adaptation law θ̂m.
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Figure 5. Curves of designed control input ℘m and saturation input um (℘m).
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Figure 6. Curves of the OTE with different control schemes.
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Table 1. Performance comparisons of settling time and RMSE.
Scheme Settling time (s) RMSE
Proposed 0.306 0.0475
CFB in [12] 0.965 0.2196

From the simulation results, it can be observed that all followers can precisely track the leader
within 2.5 seconds, and the consensus error converges to a sufficiently small neighborhood of the
origin within a fixed time. Compared to the CFB control scheme in [12], the proposed fixed-time
control algorithm achieves a faster convergence rate and better consensus performance. These
simulation results indicate that despite the non-triangular SNMASs being subject to input saturation
and the nonlinear terms being unknown, the designed fixed-time distributed control algorithm still
achieves the consensus control objective.

6. Conclusions

This paper has investigated the fixed-time distributed control problem for non-triangular structure
SNMASs with input saturation. Based on the backstepping design method, the fixed-time command
filter, and a fractional power error compensation mechanism, a fixed-time distributed consensus
control algorithm has been proposed. The proposed distributed control scheme has ensured that all
signals in the closed-loop system are fixed-time bounded in probability. In addition, the consensus
error has converged to a sufficiently small neighborhood of the origin in probability within a fixed
time. Although the proposed fixed-time distributed control algorithm achieves good consensus
control, it is difficult to predetermine an expected convergence time due to the complicated
relationship between the upper bound of the convergence time and various control parameters. In the
future, we will focus on the predefined-time control of SNMASs on the basis of [31, 32].
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