Research article

Existence of solution for fractional differential equations involving symmetric fuzzy numbers

  • Received: 28 February 2024 Revised: 06 April 2024 Accepted: 09 April 2024 Published: 23 April 2024
  • MSC : 35R13, 26E50, 34K37

  • Linear correlated fractional fuzzy differential equations (LCFFDEs) are one of the best tools for dealing with physical problems with uncertainty. The LCFFDEs mostly do not have unique solutions, especially if the basic fuzzy number is symmetric. The LCFFDEs of symmetric basic fuzzy numbers extend to the new system by extension and produce many solutions. The existing literature does not have any criteria to ensure the existence of unique solutions to LCFFDEs. In this study, we will explore the main causes of the extension and the unavailability of unique solutions. Next, we will discuss the existence and uniqueness conditions of LCFFDEs by using the concept of metric fixed point theory. For the useability of established results, we will also provide numerical examples and discuss their unique solutions. To show the authenticity of the solutions, we will also provide 2D and 3D plots of the solutions.

    Citation: Muhammad Sarwar, Noor Jamal, Kamaleldin Abodayeh, Manel Hleili, Thanin Sitthiwirattham, Chanon Promsakon. Existence of solution for fractional differential equations involving symmetric fuzzy numbers[J]. AIMS Mathematics, 2024, 9(6): 14747-14764. doi: 10.3934/math.2024717

    Related Papers:

  • Linear correlated fractional fuzzy differential equations (LCFFDEs) are one of the best tools for dealing with physical problems with uncertainty. The LCFFDEs mostly do not have unique solutions, especially if the basic fuzzy number is symmetric. The LCFFDEs of symmetric basic fuzzy numbers extend to the new system by extension and produce many solutions. The existing literature does not have any criteria to ensure the existence of unique solutions to LCFFDEs. In this study, we will explore the main causes of the extension and the unavailability of unique solutions. Next, we will discuss the existence and uniqueness conditions of LCFFDEs by using the concept of metric fixed point theory. For the useability of established results, we will also provide numerical examples and discuss their unique solutions. To show the authenticity of the solutions, we will also provide 2D and 3D plots of the solutions.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] Q. Li, H. Wei, D. Hua, Stabilization of semi-markovian jumping uncertain complex-valued networks with time-varying delay: A sliding-mode control approach, Neural Process. Lett., 56 (2024). https://doi.org/10.21203/rs.3.rs-3244753/v1 doi: 10.21203/rs.3.rs-3244753/v1
    [3] Q. Li, J. Liang, W. Gong, K. Wang, J. Wang, Nonfragile state estimation for semi-Markovian switching CVNs with general uncertain transition rates: An event-triggered scheme, Math. Comput. Simul., 218 (2024), 204–222. https://doi.org/10.1016/j.matcom.2023.11.028 doi: 10.1016/j.matcom.2023.11.028
    [4] A. A. Sori, A. Ebrahimnejad, H. Motameni, Elite artificial bees' colony algorithm to solve robot's fuzzy constrained routing problem, Comput. Intell., 36 (2020), 659–681. https://doi.org/10.1111/coin.12258 doi: 10.1111/coin.12258
    [5] N. Jan, J. Gwak, D. Pamucar, A robust hybrid decision making model for Human-Computer interaction in the environment of Bipolar complex picture fuzzy soft Sets, Inf. Sci., 645 (2023), 119163. https://doi.org/10.1016/j.ins.2023.119163 doi: 10.1016/j.ins.2023.119163
    [6] S. H. Nasseri, A. Ebrahimnejad, O. Gholami, Fuzzy stochastic data envelopment analysis with undesirable outputs and its application to banking industry, Int. J. Fuzzy Syst., 20 (2018), 534–548. https://doi.org/10.1007/s40815-017-0367-1 doi: 10.1007/s40815-017-0367-1
    [7] Y. Xi, Y. Ding, Y. Cheng, J. Zhao, M. Zhou, S. Qin, Evaluation of the medical resource allocation: Evidence from China, Healthcare, 11 (2023), 829. https://doi.org/10.3390/healthcare11060829 doi: 10.3390/healthcare11060829
    [8] C. Carlsson, R. Fullér, P. Majlender, Additions of completely correlated fuzzy numbers, IEEE Int. Conf. Fuzzy Sys., 1 (2004), 535–539. https://doi.org/10.1109/FUZZY.2004.1375791 doi: 10.1109/FUZZY.2004.1375791
    [9] L. C. Barros, F. S. Pedro, Fuzzy differential equations with interactive derivative, Fuzzy Sets Syst., 309 (2017), 64–80. https://doi.org/10.1016/j.fss.2016.04.002 doi: 10.1016/j.fss.2016.04.002
    [10] E. Esmi, F. S. Pedro, L. C. Barros, W. Lodwick, Fréchet derivative for linearly correlated fuzzy function, Inf. Sci., 435 (2018), 150–160. https://doi.org/10.1016/j.ins.2017.12.051 doi: 10.1016/j.ins.2017.12.051
    [11] Y. H. Shen, Calculus for linearly correlated fuzzy number-valued functions, Fuzzy Sets Syst., 429 (2022), 101–135. https://doi.org/10.1016/j.fss.2021.02.017 doi: 10.1016/j.fss.2021.02.017
    [12] Y. H. Shen, A novel difference and derivative for linearly correlated fuzzy number-valued functions, J. Intell. Fuzzy Syst., 42 (2022), 6027–6043. https://doi.org/10.3233/JIFS-212908 doi: 10.3233/JIFS-212908
    [13] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets Syst., 230 (2013), 119–141. https://doi.org/10.1016/j.fss.2012.10.003 doi: 10.1016/j.fss.2012.10.003
    [14] Y. Shen, First-order linear fuzzy differential equations on the space of linearly correlated fuzzy numbers, Fuzzy Sets Syst., 429 (2022), 136–168. https://doi.org/10.1016/j.fss.2020.11.010 doi: 10.1016/j.fss.2020.11.010
    [15] N. Jamal, M. Sarwar, S. Hussain, Existence criteria for the unique solution of first order linear fuzzy differential equations on the space of linearly correlated fuzzy numbers, Fractals, 8 (2022), 1–13. https://doi.org/10.1142/S0218348X22402216 doi: 10.1142/S0218348X22402216
    [16] N. Jamal, M. Sarwar, N. Mlaiki, A. Aloqaily, Solution of linear correlated fuzzy differential equations in the linear correlated fuzzy spaces, AIMS Math., 9 (2023), 2695–2721. https://doi.org/10.3934/math.2024134 doi: 10.3934/math.2024134
    [17] H. Khan, J. F. Gomez-Aguilar, T. Abdeljawad, A. Khan, Existence results and stability criteria for ABC-fuzzy-Volterra integro-differential equation, Fractals, 28 (2020), 2040048. https://doi.org/10.1142/S0218348X20400484 doi: 10.1142/S0218348X20400484
    [18] D. Luo, M. Tian, Q. Zhu, Some results on finite-time stability of stochastic fractional-order delay differential equations, Chaos, Solitons Fract., 158 (2022), 111996. https://doi.org/10.1016/j.chaos.2022.111996 doi: 10.1016/j.chaos.2022.111996
    [19] G. Li, Y. Zhang, Y. Guan, W. Li, Stability analysis of multi-point boundary conditions for fractional differential equation with noninstantaneous integral impulse, Math. Biosci. Eng., 20 (2023), 7020–7041. https://doi.org/10.3934/mbe.2023303 doi: 10.3934/mbe.2023303
    [20] H. Fan, J. Tang, K. Shi, Y. Zhao, Hybrid impulsive feedback control for drive-response synchronization of fractional-order multi-link memristive neural networks with multi-delays, Fractal Fract., 495 (2023), 1–19. https://doi.org/10.3390/fractalfract7070495 doi: 10.3390/fractalfract7070495
    [21] H. Fan, Y. Rao, K. Shi, H. Wen, Global synchronization of fractional-order multi-delay coupled neural networks with multi-link complicated structures via hybrid impulsive control, Mathematics, 11 (2023), 3051. https://doi.org/10.3390/math11143051 doi: 10.3390/math11143051
    [22] L. C. Barrosa, R. C. Bassanezia, P. A. Tonelli, Fuzzy modelling in population dynamics, Ecol. Model., 128 (2000), 27–33. https://doi.org/10.1016/S0304-3800(99)00223-9 doi: 10.1016/S0304-3800(99)00223-9
    [23] D. L. Mon, C. H. Cheng, J. C. Lin, Evaluating weapon system using fuzzy analytic hierarchy process based on entropy weight, Fuzzy Sets Syst., 62 (1994), 127–134. https://doi.org/10.1016/0165-0114(94)90052-3 doi: 10.1016/0165-0114(94)90052-3
    [24] A. Tony Thomas, S. K. Thangarasu, T. Sowmithra, Simulation and experimental validation of electro hydraulic servo system using fuzzy logic controller, AIP Conf. Proc., 2336 (2021), 040021. https://doi.org/10.1063/5.0045724 doi: 10.1063/5.0045724
    [25] G. Narayanan, M. S. Ali, Q. Zhu, B. Priya, G. K. Thakur, Fuzzy observer-based consensus tracking control for fractional-order multi-agent systems under cyber-attacks and its application to electronic circuits, IEEE Trans. Netw. Sci. Eng., 10 (2023), 698–708. https://doi.org/10.1109/TNSE.2022.3217618 doi: 10.1109/TNSE.2022.3217618
    [26] M. Arfan, K. Shah, A. Ullah, T. Abdeljawad, Study of fuzzy fractional order diffusion problem under the Mittag-Leffler Kernel Law, Phys. Scr., 96 (2021), 074002. https://doi.org/10.1088/1402-4896/abf582 doi: 10.1088/1402-4896/abf582
    [27] N. Ahmad, A. Ullah, A. Ullah, S. Ahmad, K. Shah, I. Ahmad, On analysis of the fuzzy fractional order Volterra-Fredholm integro-differential equation, Alex. Eng. J., 60 (2021), 1827–1838. https://doi.org/10.1016/j.aej.2020.11.031 doi: 10.1016/j.aej.2020.11.031
    [28] N. T. K. Son, H. T. P. Thao, T. Allahviranloo, H. V. Long, State feedback control for fractional differential equation system in the space of linearly correlated fuzzy numbers, Fuzzy Sets Syst., 453 (2023), 164–191. https://doi.org/10.1016/j.fss.2022.06.022 doi: 10.1016/j.fss.2022.06.022
    [29] B. Bede, Mathematics of fuzzy sets and fuzzy logic, London: Springer, 2013.
    [30] O. Kaleva, A note on fuzzy differential equations, Nonlinear Anal., 64 (2006), 895–900. https://doi.org/10.1016/j.na.2005.01.003 doi: 10.1016/j.na.2005.01.003
    [31] A. Erd$\acute{e}$lyied, Higher transcendental functions, New York: McGraw-Hill, 1955.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(760) PDF downloads(55) Cited by(0)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog