Processing math: 100%
Research article

Existence of solution for fractional differential equations involving symmetric fuzzy numbers

  • Received: 28 February 2024 Revised: 06 April 2024 Accepted: 09 April 2024 Published: 23 April 2024
  • MSC : 35R13, 26E50, 34K37

  • Linear correlated fractional fuzzy differential equations (LCFFDEs) are one of the best tools for dealing with physical problems with uncertainty. The LCFFDEs mostly do not have unique solutions, especially if the basic fuzzy number is symmetric. The LCFFDEs of symmetric basic fuzzy numbers extend to the new system by extension and produce many solutions. The existing literature does not have any criteria to ensure the existence of unique solutions to LCFFDEs. In this study, we will explore the main causes of the extension and the unavailability of unique solutions. Next, we will discuss the existence and uniqueness conditions of LCFFDEs by using the concept of metric fixed point theory. For the useability of established results, we will also provide numerical examples and discuss their unique solutions. To show the authenticity of the solutions, we will also provide 2D and 3D plots of the solutions.

    Citation: Muhammad Sarwar, Noor Jamal, Kamaleldin Abodayeh, Manel Hleili, Thanin Sitthiwirattham, Chanon Promsakon. Existence of solution for fractional differential equations involving symmetric fuzzy numbers[J]. AIMS Mathematics, 2024, 9(6): 14747-14764. doi: 10.3934/math.2024717

    Related Papers:

    [1] Ahmed Ghezal, Mohamed Balegh, Imane Zemmouri . Solutions and local stability of the Jacobsthal system of difference equations. AIMS Mathematics, 2024, 9(2): 3576-3591. doi: 10.3934/math.2024175
    [2] Hashem Althagafi, Ahmed Ghezal . Solving a system of nonlinear difference equations with bilinear dynamics. AIMS Mathematics, 2024, 9(12): 34067-34089. doi: 10.3934/math.20241624
    [3] M. T. Alharthi . Correction: On the solutions of some systems of rational difference equations. AIMS Mathematics, 2025, 10(2): 2277-2278. doi: 10.3934/math.2025105
    [4] M. T. Alharthi . On the solutions of some systems of rational difference equations. AIMS Mathematics, 2024, 9(11): 30320-30347. doi: 10.3934/math.20241463
    [5] Eunjung Lee, Dojin Kim . Stability analysis of the implicit finite difference schemes for nonlinear Schrödinger equation. AIMS Mathematics, 2022, 7(9): 16349-16365. doi: 10.3934/math.2022893
    [6] Shulan Kong, Chengbin Wang, Yawen Sun . A recursive filter for a class of two-dimensional nonlinear stochastic systems. AIMS Mathematics, 2025, 10(1): 1741-1756. doi: 10.3934/math.2025079
    [7] Yeyang Jiang, Zhihua Liao, Di Qiu . The existence of entire solutions of some systems of the Fermat type differential-difference equations. AIMS Mathematics, 2022, 7(10): 17685-17698. doi: 10.3934/math.2022974
    [8] Abdulghani R. Alharbi . Traveling-wave and numerical solutions to nonlinear evolution equations via modern computational techniques. AIMS Mathematics, 2024, 9(1): 1323-1345. doi: 10.3934/math.2024065
    [9] Ibraheem M. Alsulami, E. M. Elsayed . On a class of nonlinear rational systems of difference equations. AIMS Mathematics, 2023, 8(7): 15466-15485. doi: 10.3934/math.2023789
    [10] Nan Li, Jiachuan Geng, Lianzhong Yang . Some results on transcendental entire solutions to certain nonlinear differential-difference equations. AIMS Mathematics, 2021, 6(8): 8107-8126. doi: 10.3934/math.2021470
  • Linear correlated fractional fuzzy differential equations (LCFFDEs) are one of the best tools for dealing with physical problems with uncertainty. The LCFFDEs mostly do not have unique solutions, especially if the basic fuzzy number is symmetric. The LCFFDEs of symmetric basic fuzzy numbers extend to the new system by extension and produce many solutions. The existing literature does not have any criteria to ensure the existence of unique solutions to LCFFDEs. In this study, we will explore the main causes of the extension and the unavailability of unique solutions. Next, we will discuss the existence and uniqueness conditions of LCFFDEs by using the concept of metric fixed point theory. For the useability of established results, we will also provide numerical examples and discuss their unique solutions. To show the authenticity of the solutions, we will also provide 2D and 3D plots of the solutions.



    This paper is devoted to study the expressions forms of the solutions and periodic nature of the following third-order rational systems of difference equations

    xn+1=yn1znzn±xn2,yn+1=zn1xnxn±yn2, zn+1=xn1ynyn±zn2,

    with initial conditions are non-zero real numbers.

    In the recent years, there has been great concern in studying the systems of difference equations. One of the most important reasons for this is a exigency for some mechanization which can be used in discussing equations emerge in mathematical models characterizing real life situations in economic, genetics, probability theory, psychology, population biology and so on.

    Difference equations display naturally as discrete peer and as numerical solutions of differential equations having more applications in ecology, biology, physics, economy, and so forth. For all that the difference equations are quite simple in expressions, it is frequently difficult to realize completely the dynamics of their solutions see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19] and the related references therein.

    There are some papers dealed with the difference equations systems, for example, The periodic nature of the solutions of the nonlinear difference equations system

    An+1=1Cn,Bn+1=BnAn1Bn1,Cn+1=1An1,

    has been studied by Cinar in [7].

    Almatrafi [3] determined the analytical solutions of the following systems of rational recursive equations

    xn+1=xn1yn3yn1(±1±xn1yn3),yn+1=yn1xn3xn1(±1±yn1xn3).

    In [20], Khaliq and Shoaib studied the local and global asymptotic behavior of non-negative equilibrium points of a three-dimensional system of two order rational difference equations

    xn+1=xn1ε+xn1yn1zn1,yn+1=yn1ζ+xn1yn1zn1, zn+1=zn1η+xn1yn1zn1.

    In [9], Elabbasy et al. obtained the form of the solutions of some cases of the following system of difference equations

    xn+1=a1+a2yna3zn+a4xn1zn, yn+1=b1zn1+b2znb3xnyn+b4xnyn1,zn+1=c1zn1+c2znc3xn1yn1+c4xn1yn+c5xnyn.

    In [12], Elsayed et al. have got the solutions of the systems of rational higher order difference equations

    An+1=1AnpBnp,Bn+1=AnpBnpAnqBnq,

    and

    An+1=1AnpBnpCnp,Bn+1=AnpBnpCnpAnqBnqCnq,Cn+1=AnqBnqCnqAnrBnrCnr.

    Kurbanli [25,26] investigated the behavior of the solutions of the following systems

    An+1=An1An1Bn1,Bn+1=Bn1Bn1An1,  Cn+1=1CnBn,An+1=An1An1Bn1,Bn+1=Bn1Bn1An1,  Cn+1=Cn1Cn1Bn1.

    In [32], Yalçınkaya has obtained the conditions for the global asymptotically stable of the system

    An+1=BnAn1+aBn+An1,Bn+1=AnBn1+aAn+Bn1.

    Zhang et al. [39] investigated the persistence, boundedness and the global asymptotically stable of the solutions of the following system

    Rn=A+1Qnp,   Qn=A+Qn1RnrQns.

    Similar to difference equations and systems were studied see [21,22,23,24,27,28,29,30,31,32,33,34,35,36,37,38].

    In this section, we obtain the expressions form of the solutions of the following three dimension system of difference equations

    xn+1=yn1znzn+xn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynyn+zn2, (1)

    where nN0 and the initial conditions are non-zero real numbers.

    Theorem 1. We assume that {xn,yn,zn} are solutions of system (1).Then

    x6n2=ak3nn1i=0(a+(6i)k)(a+(6i+2)k)(a+(6i+4)k),x6n1=bf3nn1i=0(g+(6i+1)f)(g+(6i+3)f)(g+(6i+5)f),x6n=c3n+1n1i=0(d+(6i+2)c)(d+(6i+4)c)(d+(6i+6)c),x6n+1=ek3n+1(a+k)n1i=0(a+(6i+3)k)(a+(6i+5)k)(a+(6i+7)k),
    x6n+2=f3n+2(g+2f)n1i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f),x6n+3=hc3n+2(d+c)(d+3c)n1i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c),
    y6n2=dc3nn1i=0(d+(6i)c)(d+(6i+2)c)(d+(6i+4)c),y6n1=ek3nn1i=0(a+(6i+1)k)(a+(6i+3)k)(a+(6i+5)k),y6n=f3n+1n1i=0(g+(6i+2)f)(g+(6i+4)f)(g+(6i+6)f),y6n+1=hc3n+1(d+c)n1i=0(d+(6i+3)c)(d+(6i+5)c)(d+(6i+7)c),y6n+2=k3n+2(a+2k)n1i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k),y6n+3=bf3n+2(g+f)(g+3f)n1i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f),

    and

    z6n2=gf3nn1i=0(g+(6i)f)(g+(6i+2)f)(g+(6i+4)f),z6n1=hc3nn1i=0(d+(6i+1)c)(d+(6i+3)c)(d+(6i+5)c),z6n=k3n+1n1i=0(a+(6i+2)k)(a+(6i+4)k)(a+(6i+6)k),z6n+1=bf3n+1(g+f)n1i=0(g+(6i+3)f)(g+(6i+5)f)(g+(6i+7)f),
    z6n+2=c3n+2(d+2c)n1i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c),z6n+3=ek3n+2(a+k)(a+3k)n1i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k),

    where x2=a, x1=b, x0=c, y2=d, y1=e, y0=f, z2=g, z1=h and z0=k.

    Proof. For n=0 the result holds. Now assume that n>1 and that our assumption holds for n1, that is,

    x6n8=ak3n3n2i=0(a+(6i)k)(a+(6i+2)k)(a+(6i+4)k),x6n7=bf3n3n2i=0(g+(6i+1)f)(g+(6i+3)f)(g+(6i+5)f),x6n6=c3n2n2i=0(d+(6i+2)c)(d+(6i+4)c)(d+(6i+6)c),x6n5=ek3n2(a+k)n2i=0(a+(6i+3)k)(a+(6i+5)k)(a+(6i+7)k),x6n4=f3n1(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f),x6n3=hc3n1(d+c)(d+3c)n2i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c),
    y6n8=dc3n3n2i=0(d+(6i)c)(d+(6i+2)c)(d+(6i+4)c),y6n7=ek3n3n2i=0(a+(6i+1)k)(a+(6i+3)k)(a+(6i+5)k),y6n6=f3n2n2i=0(g+(6i+2)f)(g+(6i+4)f)(g+(6i+6)f),
    y6n5=hc3n2(d+c)n2i=0(d+(6i+3)c)(d+(6i+5)c)(d+(6i+7)c),y6n4=k3n1(a+2k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k),y6n3=bf3n1(g+f)(g+3f)n2i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f),

    and

    z6n8=gf3n3n2i=0(g+(6i)f)(g+(6i+2)f)(g+(6i+4)f),z6n7=hc3n3n2i=0(d+(6i+1)c)(d+(6i+3)c)(d+(6i+5)c),z6n6=k3n2n2i=0(a+(6i+2)k)(a+(6i+4)k)(a+(6i+6)k),z6n5=bf3n2(g+f)n2i=0(g+(6i+3)f)(g+(6i+5)f)(g+(6i+7)f),z6n4=c3n1(d+2c)n2i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c),z6n3=ek3n1(a+k)(a+3k)n2i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k).

    It follows from Eq (1) that

    x6n2=y6n4z6n3z6n3+x6n5=(k3n1(a+2k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k)                            )(ek3n1(a+k)(a+3k)n2i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k)                            )(ek3n1(a+k)(a+3k)n2i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k)                            )+(ek3n2(a+k)n2i=0(a+(6i+3)k)(a+(6i+5)k)(a+(6i+7)k)                            )=(k3n(a+2k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k))(a+3k)n2i=0(a+(6i+9)k)[(k(a+3k)n2i=0(a+(6i+9)k))+(1n2i=0(a+(6i+3)k))]=(k3n(a+2k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k))[k+((a+3k)n2i=0(a+(6i+9)k)n2i=0(a+(6i+3)k))]=(k3n(a+2k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k))[k+(a+(6n3)k)]=ak3na(a+2k)(a+(6n2)k)n2i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k).

    Then we see that

    x6n2=k3nn1i=0(a+(6i)k)(a+(6i+2)k)(a+(6i+4)k).

    Also, we see from Eq (1) that

    y6n2=z6n4x6n3x6n3+y6n5=(c3n1(d+2c)n2i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c)                         )(hc3n1(d+c)(d+3c)n2i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c)                         )(hc3n1(d+c)(d+3c)n2i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c)                         )+(hc3n2(d+c)n2i=0(d+(6i+3)c)(d+(6i+5)c)(d+(6i+7)c)                         )=(c3n(d+2c)n2i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c))(d+3c)n2i=0(d+(6i+9)c)[(c(d+3c)n2i=0(d+(6i+9)c))+(1n2i=0(d+(6i+3)c))]=(c3n(d+2c)n2i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c))[c+d+(6n3)c]=c3n[d+(6n2)c](d+2c)n2i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c).

    Then

    y6n2=dc3nn1i=0(d+(6i)c)(d+(6i+2)c)(d+(6i+4)c).

    Finally from Eq (1), we see that

    z6n2=x6n4y6n3y6n3+z6n5=(f3n1(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f)                            )(bf3n1(g+f)(g+3f)n2i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f)                            )(bf3n1(g+f)(g+3f)n2i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f)                            )+(bf3n2(g+f)n2i=0(g+(6i+3)f)(g+(6i+5)f)(g+(6i+7)f)                            )=(f3n(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f))(g+3f)n2i=0(g+(6i+9)f)[(f(g+3f)n2i=0(g+(6i+9)f))+(1n2i=0(g+(6i+3)f))]=(f3n(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f))[f+((g+3f)n2i=0(g+(6i+9)f)n2i=0(g+(6i+3)f))]=(f3n(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f))[f+(g+(6n3)f)]=f3n(g+(6n2)f)(g+2f)n2i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f).

    Thus

    z3n2=gf3nn1i=0(g+(6i)f)(g+(6i+2)f)(g+(6i+4)f).

    By similar way, one can show the other relations. This completes the proof.

    Lemma 1. Let {xn,yn,zn} be a positive solution of system (1), then all solution of (1) is bounded and approaching to zero.

    Proof. It follows from Eq (1) that

    xn+1=yn1znzn+xn2yn1,     yn+1=zn1xnxn+yn2zn1,zn+1=xn1ynyn+zn2xn1,

    we see that

    xn+4yn+2,     yn+2zn,  znxn2,    xn+4<xn2,yn+4zn+2,   zn+2xn,   xnyn2,      yn+4<yn2,zn+4xn+2,   xn+2yn,   ynzn2,      zn+4<zn2,

    Then all subsequences of {xn,yn,zn} (i.e., for {xn} are {x6n2}, {x6n1}, {x6n}, {x6n+1}, {x6n+2}, {x6n+3}  are decreasing and at that time are bounded from above by K,L and M since K=max{x2,x1,x0,x1,x2,x3}, L=max{y2,y1,y0,y1,y2,y3} and M=max{z2,z1,z0,z1,z2,z3}.

    Example 1. We assume an interesting numerical example for the system (1) with x2=.22,x1=.4, x0=.12,y2=.62, y1=4, y0=.3,z2=.4,z1=.53 andz0=2. (See Figure 1).

    Figure 1.  This figure shows the behavior of the solutions of the system (1) with the initial conditions x2=.22,x1=.4, x0=.12,y2=.62, y1=4, y0=.3,z2=.4,z1=.53 andz0=2. (We see from this figure that all solutions converges to zero).

    In this section, we get the solution's form of the following system of difference equations

    xn+1=yn1znzn+xn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynynzn2, (2)

    where nN0 and the initial values are non-zero real numbers with x2±z0,2z0, z2y0,2y0,3y0 and y22x0,±x0.

    Theorem 2. Assume that {xn,yn,zn} are solutions of (2). Then for n=0,1,2,...,

    x6n2=(1)nk3na2n1(a+2k)n, x6n1=(1)nbf3n(fg)2n(3fg)n, x6n=(1)nc3n+1d2n(2cd)n,x6n+1=ek3n+1(ak)n(a+k)2n+1, x6n+2=(1)nf3n+2gn(2fg)2n+1, x6n+3=(1)nhc3n+2(cd)2n+1(c+d)n+1,
    y6n2=(1)nc3nd2n1(2cd)n, y6n1=ek3n(ak)n(a+k)2n, y6n=(1)nf3n+1gn(2fg)2n,y6n+1=(1)nhc3n+1(cd)2n(c+d)n+1, y6n+2=(1)nk3n+2a2n(a+2k)n+1, y6n+3=(1)nbf3n+2(fg)2n+1(3fg)n+1,

    and

    z6n2=(1)nf3ngn1(2fg)2n, z6n1=(1)nhc3n(cd)2n(c+d)n, z6n=(1)nk3n+1a2n(a+2k)n,z6n+1=(1)nbf3n+1(fg)2n+1(3fg)n, z6n+2=(1)n+1c3n+2d2n+1(2cd)n, z6n+3=ek3n+2(ak)n(a+k)2n+2,

    where x2=a, x1=b, x0=c, y2=d, y1=e, y0=f, z2=g, z1=h and z0=k.

    Proof. The result is true for n=0. Now suppose that n>0 and that our claim verified for n1. That is,

    x6n8=(1)n1k3n3a2n3(a+2k)n1, x6n7=(1)n1bf3n3(fg)2n2(3fg)n1, x6n6=(1)n1c3n2d2n2(2cd)n1,x6n5=ek3n2(ak)n1(a+k)2n1, x6n4=(1)n1f3n1gn1(2fg)2n1, x6n3=(1)n1hc3n1(cd)2n1(c+d)n,
    y6n8=(1)n1c3n3d2n3(2cd)n1, y6n7=ek3n3(ak)n1(a+k)2n2, y6n6=(1)n1f3n2gn1(2fg)2n2,y6n5=(1)n1hc3n2(cd)2n2(c+d)n, y6n4=(1)n1k3n1a2n2(a+2k)n, y6n3=(1)n1bf3n1(fg)2n1(3fg)n,

    and

    z6n8=(1)n1f3n3gn2(2fg)2n2, z6n7=(1)n1hc3n3(cd)2n2(c+d)n1, z6n6=(1)n1k3n2a2n2(a+2k)n1,z6n5=(1)n1bf3n2(fg)2n1(3fg)n1, z6n4=(1)nc3n1d2n1(2cd)n1, z6n3=ek3n1(ak)n1(a+k)2n.

    Now from Eq (2), it follows that

    x6n2=y6n4z6n3z6n3+x6n5=((1)n1k3n1a2n2(a+2k)n)(ek3n1(ak)n1(a+k)2n)(ek3n1(ak)n1(a+k)2n)+(ek3n2(ak)n1(a+k)2n1)=((1)nk3na2n2(a+2k)n)(k+a+k)=(1)nk3na2n1(a+2k)n,y6n2=z6n4x6n3x6n3+y6n5=((1)nc3n1d2n1(2cd)n1)((1)n1hc3n1(cd)2n1(c+d)n)((1)n1hc3n1(cd)2n1(c+d)n)+((1)n1hc3n2(cd)2n2(c+d)n)=((1)nc3nd2n1(2cd)n1)c+cd=(1)nc3nd2n1(2cd)n,z6n2=x6n4y6n3y6n3z6n5=((1)n1f3n1gn1(2fg)2n1)((1)n1bf3n1(fg)2n1(3fg)n)((1)n1bf3n1(fg)2n1(3fg)n)((1)n1bf3n2(fg)2n1(3fg)n1)=((1)n1f3ngn1(2fg)2n1)(f3f+g)=(1)nf3ngn1(2fg)2n.

    Also, we see from Eq (2) that

    x6n1=y6n3z6n2z6n2+x6n4=((1)n1bf3n1(fg)2n1(3fg)n)((1)nf3ngn1(2fg)2n)((1)nf3ngn1(2fg)2n)+((1)n1f3n1gn1(2fg)2n1)=((1)nbf3n(fg)2n1(3fg)n)(f+2fg)=(1)nbf3n(fg)2n(3fg)n,y6n1=z6n3x6n2x6n2+y6n4=(ek3n1(ak)n1(a+k)2n)((1)nk3na2n1(a+2k)n)((1)nk3na2n1(a+2k)n)+((1)n1k3n1a2n2(a+2k)n)=(ek3n(ak)n1(a+k)2n)k+a=ek3n(ak)n(a+k)2n,z6n1=x6n3y6n2y6n2z6n4=((1)n1hc3n1(cd)2n1(c+d)n)((1)nc3nd2n1(2cd)n)((1)nc3nd2n1(2cd)n)((1)nc3n1d2n1(2cd)n1)=((1)n1hc3n(cd)2n1(c+d)n)c(2cd)=(1)nhc3n(cd)2n(c+d)n.

    Also, we can prove the other relations.

    Example 2. See below Figure 2 for system (2) with the initial conditions x2=11,x1=5, x0=13,y2=6, y1=7, y0=3,z2=14, z1=9 andz0=2.

    Figure 2.  This figure shows the behavior of solutions of the systems of rational recursive sequence xn+1=yn1znzn+xn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynynzn2, when we take the initial conditions: x2=11,x1=5, x0=13,y2=6, y1=7, y0=3,z2=14, z1=9 andz0=2. (See the figure we can conclude that all the solutions unboundedness solutions).

    Here, we obtain the form of solutions of the system

    xn+1=yn1znzn+xn2,yn+1=zn1xnxnyn2, zn+1=xn1ynyn+zn2, (3)

    where nN0 and the initial values are non-zero real numbers with x2±z0,2z0, z2±y0,2y0 and y2x0,2x0,3x0.

    Theorem 3. If  {xn,yn,zn} are solutions of system (3) where x2=a, x1=b, x0=c, y2=d, y1=e, y0=f, z2=g, z1=h and z0=k. Then for n=0,1,2,...,

    x6n2=k3na2n1(a2k)n, x6n1=(1)nbf3n(fg)n(f+g)2n, x6n=(1)nc3n+1dn(d2c)2n,x6n+1=(1)nek3n+1(ak)2n(a+k)n+1, x6n+2=(1)nf3n+2g2n(2f+g)n+1, x6n+3=(1)nhc3n+2(cd)2n+1(3cd)n+1,
    y6n2=(1)nc3ndn1(d2c)2n, y6n1=(1)nek3n(ak)2n(a+k)n, y6n=(1)nf3n+1g2n(2f+g)n,y6n+1=(1)nhc3n+1(cd)2n+1(3cd)n, y6n+2=k3n+2a2n+1(a2k)n, y6n+3=(1)nbf3n+2(fg)n(f+g)2n+2,

    and

    z6n2=(1)nf3ng2n1(2f+g)n, z6n1=(1)nhc3n(cd)2n(3cd)n, z6n=k3n+1a2n(a2k)n,z6n+1=(1)nbf3n+1(fg)n(f+g)2n+1, z6n+2=(1)nc3n+2dn(2cd)2n+1, z6n+3=(1)n+1ek3n+2(ak)2n+1(a+k)n+1.

    Proof. As the proof of Theorem 2 and so will be left to the reader.

    Example 3. We put the initials x2=8,x1=15, x0=13,y2=6,y1=7, y0=3,z2=14,z1=19 andz0=2, for the system (3), see Figure 3.

    Figure 3.  This figure shows the unstable of the solutions of the difference equations system (3) with the initial values x2=8,x1=15, x0=13,y2=6,y1=7, y0=3,z2=14,z1=19 andz0=2.

    The following systems can be treated similarly.

    In this section, we deal with the solutions of the following system

    xn+1=yn1znznxn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynyn+zn2, (4)

    where nN0 and the initial values are non-zero real with x2z0,2z0,3z0, z2±y0,2y0 and y2±x0,2x0.

    Theorem 4. The solutions of system (4) are given by

    x6n2=(1)nk3nan1(a2k)2n, x6n1=(1)nbf3n(fg)2n(f+g)n, x6n=(1)nc3n+1d2n(d+2c)n,x6n+1=ek3n+1(ak)2n+1(a3k)n, x6n+2=(1)n+1f3n+2g2n+1(2fg)n, x6n+3=(1)n+1hc3n+2(cd)n(c+d)2n+2,
    y6n2=(1)nc3nd2n1(d+2c)n, y6n1=ek3n(ak)2n(a3k)n, y6n=(1)nf3n+1g2n(2fg)n,y6n+1=(1)nhc3n+1(c+d)2n+1(cd)n, y6n+2=k3n+2an(a2k)2n+1, y6n+3=(1)nbf3n+2(fg)2n+1(f+g)n+1,

    and

    z6n2=(1)nf3ng2n1(2fg)n, z6n1=(1)nhc3n(c+d)2n(cd)n, z6n=(1)nk3n+1an(a2k)2n,z6n+1=(1)nbf3n+1(fg)2n(f+g)n+1, z6n+2=(1)nc3n+2d2n(2c+d)n+1, z6n+3=ek3n+2(ak)2n+1(a3k)n+1,

    where x2=a, x1=b, x0=c, y2=d, y1=e, y0=f, z2=g, z1=h and z0=k.

    Example 4. Figure 4 shows the behavior of the solution of system (4) with x2=18,x1=15, x0=3,y2=6, y1=.7, y0=3, z2=4,z1=9 andz0=5.

    Figure 4.  This figure shows the behavior of the system xn+1=yn1znznxn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynyn+zn2 with the initial conditions:- x2=18,x1=15, x0=3, y2=6, y1=.7, y0=3, z2=4,z1=9 andz0=5.0.6, x1=0.2, x0=5. (From the figure, we see that all solutions goes to zero).

    In this section, we obtain the solutions of the difference system

    xn+1=yn1znznxn2,yn+1=zn1xnxnyn2, zn+1=xn1ynynzn2, (5)

    where the initials are arbitrary non-zero real numbers with x2z0, z2y0 and y2x0.

    Theorem 5. If  {xn,yn,zn} are solutions of system (5) where x2=a, x1=b, x0=c, y2=d, y1=e, y0=f, z2=g, z1=h and z0=k. Then

    x6n2=k3na3n1, x6n1=bf3n(fg)3n, x6n=c3n+1d3n,x6n+1=ek3n+1(ka)3n+1, x6n+2=f3n+2g3n+1, x6n+3=hc3n+2(cd)3n+2,
    y6n2=c3nd3n1, y6n1=ek3n(ka)3n, y6n=f3n+1g3n,y6n+1=hc3n+1(cd)3n+1, y6n+2=k3n+2a3n+1, y6n+3=bf3n+2(fg)3n+2,

    and

    z6n2=f3ng3n1, z6n1=hc3n(cd)3n, z6n=k3n+1a3n,z6n+1=bf3n+1(fg)3n+1, z6n+2=c3n+2d3n+1, z6n+3=ek3n+2(ka)3n+2.

    Example 5. Figure 5 shows the dynamics of the solution of system (5) with x2=18,x1=15,x0=3,y2=6,y1=.7, y0=3,z2=4,z1=9 andz0=5.

    Figure 5.  This figure shows the behavior of the system of nonlinear difference equations (5) with the initial conditions considered as follows:- x2=18,x1=15, x0=3,y2=6, y1=.7, y0=3,z2=4,z1=9 andz0=5.

    This paper discussed the expression's form and boundedness of some systems of rational third order difference equations. In Section 2, we studied the qualitative behavior of system xn+1=yn1znzn+xn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynyn+zn2, first we have got the form of the solutions of this system, studied the boundedness and gave numerical example and drew it by using Matlab. In Section 3, we have got the solution's of the system xn+1=yn1znzn+xn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynynzn2, and take a numerical example. In Sections 4–6, we obtained the solution of the following systems respectively, xn+1=yn1znzn+xn2,yn+1=zn1xnxnyn2, zn+1=xn1ynyn+zn2, xn+1=yn1znznxn2,yn+1=zn1xnxn+yn2, zn+1=xn1ynyn+zn2, and xn+1=yn1znznxn2,yn+1=zn1xnxnyn2, zn+1=xn1ynynzn2. Also, in each case we take a numerical example to illustrates the results.

    This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (G: 233–130–1441). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

    All authors declare no conflicts of interest in this paper.



    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] Q. Li, H. Wei, D. Hua, Stabilization of semi-markovian jumping uncertain complex-valued networks with time-varying delay: A sliding-mode control approach, Neural Process. Lett., 56 (2024). https://doi.org/10.21203/rs.3.rs-3244753/v1 doi: 10.21203/rs.3.rs-3244753/v1
    [3] Q. Li, J. Liang, W. Gong, K. Wang, J. Wang, Nonfragile state estimation for semi-Markovian switching CVNs with general uncertain transition rates: An event-triggered scheme, Math. Comput. Simul., 218 (2024), 204–222. https://doi.org/10.1016/j.matcom.2023.11.028 doi: 10.1016/j.matcom.2023.11.028
    [4] A. A. Sori, A. Ebrahimnejad, H. Motameni, Elite artificial bees' colony algorithm to solve robot's fuzzy constrained routing problem, Comput. Intell., 36 (2020), 659–681. https://doi.org/10.1111/coin.12258 doi: 10.1111/coin.12258
    [5] N. Jan, J. Gwak, D. Pamucar, A robust hybrid decision making model for Human-Computer interaction in the environment of Bipolar complex picture fuzzy soft Sets, Inf. Sci., 645 (2023), 119163. https://doi.org/10.1016/j.ins.2023.119163 doi: 10.1016/j.ins.2023.119163
    [6] S. H. Nasseri, A. Ebrahimnejad, O. Gholami, Fuzzy stochastic data envelopment analysis with undesirable outputs and its application to banking industry, Int. J. Fuzzy Syst., 20 (2018), 534–548. https://doi.org/10.1007/s40815-017-0367-1 doi: 10.1007/s40815-017-0367-1
    [7] Y. Xi, Y. Ding, Y. Cheng, J. Zhao, M. Zhou, S. Qin, Evaluation of the medical resource allocation: Evidence from China, Healthcare, 11 (2023), 829. https://doi.org/10.3390/healthcare11060829 doi: 10.3390/healthcare11060829
    [8] C. Carlsson, R. Fullér, P. Majlender, Additions of completely correlated fuzzy numbers, IEEE Int. Conf. Fuzzy Sys., 1 (2004), 535–539. https://doi.org/10.1109/FUZZY.2004.1375791 doi: 10.1109/FUZZY.2004.1375791
    [9] L. C. Barros, F. S. Pedro, Fuzzy differential equations with interactive derivative, Fuzzy Sets Syst., 309 (2017), 64–80. https://doi.org/10.1016/j.fss.2016.04.002 doi: 10.1016/j.fss.2016.04.002
    [10] E. Esmi, F. S. Pedro, L. C. Barros, W. Lodwick, Fréchet derivative for linearly correlated fuzzy function, Inf. Sci., 435 (2018), 150–160. https://doi.org/10.1016/j.ins.2017.12.051 doi: 10.1016/j.ins.2017.12.051
    [11] Y. H. Shen, Calculus for linearly correlated fuzzy number-valued functions, Fuzzy Sets Syst., 429 (2022), 101–135. https://doi.org/10.1016/j.fss.2021.02.017 doi: 10.1016/j.fss.2021.02.017
    [12] Y. H. Shen, A novel difference and derivative for linearly correlated fuzzy number-valued functions, J. Intell. Fuzzy Syst., 42 (2022), 6027–6043. https://doi.org/10.3233/JIFS-212908 doi: 10.3233/JIFS-212908
    [13] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets Syst., 230 (2013), 119–141. https://doi.org/10.1016/j.fss.2012.10.003 doi: 10.1016/j.fss.2012.10.003
    [14] Y. Shen, First-order linear fuzzy differential equations on the space of linearly correlated fuzzy numbers, Fuzzy Sets Syst., 429 (2022), 136–168. https://doi.org/10.1016/j.fss.2020.11.010 doi: 10.1016/j.fss.2020.11.010
    [15] N. Jamal, M. Sarwar, S. Hussain, Existence criteria for the unique solution of first order linear fuzzy differential equations on the space of linearly correlated fuzzy numbers, Fractals, 8 (2022), 1–13. https://doi.org/10.1142/S0218348X22402216 doi: 10.1142/S0218348X22402216
    [16] N. Jamal, M. Sarwar, N. Mlaiki, A. Aloqaily, Solution of linear correlated fuzzy differential equations in the linear correlated fuzzy spaces, AIMS Math., 9 (2023), 2695–2721. https://doi.org/10.3934/math.2024134 doi: 10.3934/math.2024134
    [17] H. Khan, J. F. Gomez-Aguilar, T. Abdeljawad, A. Khan, Existence results and stability criteria for ABC-fuzzy-Volterra integro-differential equation, Fractals, 28 (2020), 2040048. https://doi.org/10.1142/S0218348X20400484 doi: 10.1142/S0218348X20400484
    [18] D. Luo, M. Tian, Q. Zhu, Some results on finite-time stability of stochastic fractional-order delay differential equations, Chaos, Solitons Fract., 158 (2022), 111996. https://doi.org/10.1016/j.chaos.2022.111996 doi: 10.1016/j.chaos.2022.111996
    [19] G. Li, Y. Zhang, Y. Guan, W. Li, Stability analysis of multi-point boundary conditions for fractional differential equation with noninstantaneous integral impulse, Math. Biosci. Eng., 20 (2023), 7020–7041. https://doi.org/10.3934/mbe.2023303 doi: 10.3934/mbe.2023303
    [20] H. Fan, J. Tang, K. Shi, Y. Zhao, Hybrid impulsive feedback control for drive-response synchronization of fractional-order multi-link memristive neural networks with multi-delays, Fractal Fract., 495 (2023), 1–19. https://doi.org/10.3390/fractalfract7070495 doi: 10.3390/fractalfract7070495
    [21] H. Fan, Y. Rao, K. Shi, H. Wen, Global synchronization of fractional-order multi-delay coupled neural networks with multi-link complicated structures via hybrid impulsive control, Mathematics, 11 (2023), 3051. https://doi.org/10.3390/math11143051 doi: 10.3390/math11143051
    [22] L. C. Barrosa, R. C. Bassanezia, P. A. Tonelli, Fuzzy modelling in population dynamics, Ecol. Model., 128 (2000), 27–33. https://doi.org/10.1016/S0304-3800(99)00223-9 doi: 10.1016/S0304-3800(99)00223-9
    [23] D. L. Mon, C. H. Cheng, J. C. Lin, Evaluating weapon system using fuzzy analytic hierarchy process based on entropy weight, Fuzzy Sets Syst., 62 (1994), 127–134. https://doi.org/10.1016/0165-0114(94)90052-3 doi: 10.1016/0165-0114(94)90052-3
    [24] A. Tony Thomas, S. K. Thangarasu, T. Sowmithra, Simulation and experimental validation of electro hydraulic servo system using fuzzy logic controller, AIP Conf. Proc., 2336 (2021), 040021. https://doi.org/10.1063/5.0045724 doi: 10.1063/5.0045724
    [25] G. Narayanan, M. S. Ali, Q. Zhu, B. Priya, G. K. Thakur, Fuzzy observer-based consensus tracking control for fractional-order multi-agent systems under cyber-attacks and its application to electronic circuits, IEEE Trans. Netw. Sci. Eng., 10 (2023), 698–708. https://doi.org/10.1109/TNSE.2022.3217618 doi: 10.1109/TNSE.2022.3217618
    [26] M. Arfan, K. Shah, A. Ullah, T. Abdeljawad, Study of fuzzy fractional order diffusion problem under the Mittag-Leffler Kernel Law, Phys. Scr., 96 (2021), 074002. https://doi.org/10.1088/1402-4896/abf582 doi: 10.1088/1402-4896/abf582
    [27] N. Ahmad, A. Ullah, A. Ullah, S. Ahmad, K. Shah, I. Ahmad, On analysis of the fuzzy fractional order Volterra-Fredholm integro-differential equation, Alex. Eng. J., 60 (2021), 1827–1838. https://doi.org/10.1016/j.aej.2020.11.031 doi: 10.1016/j.aej.2020.11.031
    [28] N. T. K. Son, H. T. P. Thao, T. Allahviranloo, H. V. Long, State feedback control for fractional differential equation system in the space of linearly correlated fuzzy numbers, Fuzzy Sets Syst., 453 (2023), 164–191. https://doi.org/10.1016/j.fss.2022.06.022 doi: 10.1016/j.fss.2022.06.022
    [29] B. Bede, Mathematics of fuzzy sets and fuzzy logic, London: Springer, 2013.
    [30] O. Kaleva, A note on fuzzy differential equations, Nonlinear Anal., 64 (2006), 895–900. https://doi.org/10.1016/j.na.2005.01.003 doi: 10.1016/j.na.2005.01.003
    [31] A. Erdˊelyied, Higher transcendental functions, New York: McGraw-Hill, 1955.
  • This article has been cited by:

    1. Khalil S. Al-Basyouni, Elsayed M. Elsayed, On Some Solvable Systems of Some Rational Difference Equations of Third Order, 2023, 11, 2227-7390, 1047, 10.3390/math11041047
    2. Ibraheem M. Alsulami, E. M. Elsayed, On a class of nonlinear rational systems of difference equations, 2023, 8, 2473-6988, 15466, 10.3934/math.2023789
    3. E.M. Elsayed, B.S. Alofi, The periodic nature and expression on solutions of some rational systems of difference equations, 2023, 74, 11100168, 269, 10.1016/j.aej.2023.05.026
    4. Hashem Althagafi, Dynamics of difference systems: a mathematical study with applications to neural systems, 2025, 10, 2473-6988, 2869, 10.3934/math.2025134
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1239) PDF downloads(55) Cited by(1)

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog