In this paper, we considered some systems of rational difference equations of higher order as follows
$ \begin{eqnarray*} u_{n+1} & = &\frac{v_{n-6}}{1\pm v_{n}u_{n-1}v_{n-2}u_{n-3}v_{n-4}u_{n-5}v_{n-6}}, \\ v_{n+1} & = &\frac{u_{n-6}}{1\pm u_{n}v_{n-1}u_{n-2}v_{n-3}u_{n-4}v_{n-5}u_{n-6}}, \end{eqnarray*} $
where the initial conditions $ u_{0, } $ $ u_{-1}, $ $ u_{-2}, $ $ u_{-3}, $ $ u_{-4}, $ $ u_{-5}, $ $ u_{-6}, $ $ v_{0, } $ $ v_{-1}, $ $ v_{-2}, $ $ v_{-3}, $ $ v_{-4}, $ $ v_{-5} $ and $ v_{-6} $ were arbitrary real numbers. We obtained a closed form of the solutions for each considered system and also some periodic solutions of some systems were found. We presented some numerical examples to explain the obtained theoretical results.
Citation: M. T. Alharthi. On the solutions of some systems of rational difference equations[J]. AIMS Mathematics, 2024, 9(11): 30320-30347. doi: 10.3934/math.20241463
In this paper, we considered some systems of rational difference equations of higher order as follows
$ \begin{eqnarray*} u_{n+1} & = &\frac{v_{n-6}}{1\pm v_{n}u_{n-1}v_{n-2}u_{n-3}v_{n-4}u_{n-5}v_{n-6}}, \\ v_{n+1} & = &\frac{u_{n-6}}{1\pm u_{n}v_{n-1}u_{n-2}v_{n-3}u_{n-4}v_{n-5}u_{n-6}}, \end{eqnarray*} $
where the initial conditions $ u_{0, } $ $ u_{-1}, $ $ u_{-2}, $ $ u_{-3}, $ $ u_{-4}, $ $ u_{-5}, $ $ u_{-6}, $ $ v_{0, } $ $ v_{-1}, $ $ v_{-2}, $ $ v_{-3}, $ $ v_{-4}, $ $ v_{-5} $ and $ v_{-6} $ were arbitrary real numbers. We obtained a closed form of the solutions for each considered system and also some periodic solutions of some systems were found. We presented some numerical examples to explain the obtained theoretical results.
[1] | H. N. Agiza, E. M. Elabbasy, H. El-Metwally, A. A. Elsadany, Chaotic dynamics of a discrete prey-predator model with Holling type Ⅱ, Nonlinear Anal. Real, 10 (2009), 116–129. https://doi.org/10.1016/j.nonrwa.2007.08.029 doi: 10.1016/j.nonrwa.2007.08.029 |
[2] | Y. Akrour, N. Touafek, Y. Halim, On a system of difference equations of third order solved in closed form, J. Innov. Appl. Math. Comput. Sci., 1 (2021), 1–15. https://doi.org/10.58205/jiamcs.v1i1.8 doi: 10.58205/jiamcs.v1i1.8 |
[3] | E. M. Elsayed, M. T. Alharthi, The form of the solutions of fourth order rational system of difference equations, Ann. Commun. Math., 5 (2022), 161–180. https://doi.org/10.62072/acm.2022.050304 doi: 10.62072/acm.2022.050304 |
[4] | A. Asiri, M. M. El-Dessoky, E. M. Elsayed, Solution of a third order fractional system of difference equations, J. Comput. Anal. Appl., 24 (2018), 444–453. |
[5] | N. Battaloglu, C. Cinar, I. Yalcınkaya, The dynamics of the difference equation, Ars Comb., 97 (2010), 281–288. |
[6] | F. Belhannache, Asymptotic stability of a higher order rational difference equation, Electron. J. Math. Anal. Appl., 7 (2019), 1–8. |
[7] | R. J. Beverton, S. J. Holt, On the dynamics of exploited fish populations, Dordrecht : Springer Science & Business Media, 1993. https://doi.org/10.1007/978-94-011-2106-4 |
[8] | E. M. Elabbasy, H. N. Agiza, A. A. Elsadany, H. El-Metwally, The dynamics of triopoly game with heterogeneous players, Int. J. Nonlinear Sci., 3 (2007), 83–90. |
[9] | S. Elaydi, A. A. Yakubu, Open problems and conjectures, J. Differ. Equ. Appl., 8 (2002), 755–760. https://doi.org/10.1080/1023619021000000762 doi: 10.1080/1023619021000000762 |
[10] | I. M. Elbaz, H. El-Metwally, M. A. Sohaly, Dynamics of delayed Nicholson$^{\prime }$s blowflies models, J. Biol. Syst., 30 (2022), 741–759. https://doi.org/10.1142/S0218339022500279 doi: 10.1142/S0218339022500279 |
[11] | H. El-Metwally, Global behavior of an economic model, Chaos Soliton. Fract., 33 (2007), 994–1005. https://doi.org/10.1016/j.chaos.2006.01.060 doi: 10.1016/j.chaos.2006.01.060 |
[12] | H. El-Metwally, M. A. Sohaly, I. M. Elbaz, Stochastic global exponential stability of disease-free equilibrium of HIV/AIDS model, Eur. Phys. J. Plus, 135 (2020), 840. https://doi.org/10.1140/epjp/s13360-020-00856-0 doi: 10.1140/epjp/s13360-020-00856-0 |
[13] | H. El-Metwally, E. M. Elsayed, Form of solutions and periodicity for systems of difference equations, J. Comput. Anal. Appl., 15 (2013), 1. |
[14] | K. N Alharbi, E. M Elsayed, The expressions and behavior of solutions for nonlinear systems of rational difference equations, J. Innov. Appl. Math. Comput. Sci., 2 (2022), 78–91. https://doi.org/10.58205/jiamcs.v2i1.24 doi: 10.58205/jiamcs.v2i1.24 |
[15] | J. E. Franke, A. A. Yakubu, Sis epidemic attractors in periodic environments, J. Biol. Dyn., 1 (2007), 394–412. https://doi.org/10.1080/17513750701605630 doi: 10.1080/17513750701605630 |
[16] | A. Friedman, A. A. Yakubu, Host demographic Allee effect, fatal disease and migration, Persistence or extinction, SIAM. J. Appl. Math., 72 (2012), 1644–1666. https://doi.org/10.1137/120861382 doi: 10.1137/120861382 |
[17] | M. Gumus, O. Ocalan, The qualitative analysis of a rational system of difference equations, J. Fract. Calc. Appl., 9 (2018), 113–126. |
[18] | N. Haddad, N. Touafek, J. F. T. Rabago, Well-defined solutions of a system of difference equations, J. Appl. Math. Comput., 56 (2018), 439–458. https://doi.org/10.1007/s12190-017-1081-8 doi: 10.1007/s12190-017-1081-8 |
[19] | M. Y. Hamada, T. El-Azab, H. El-Metwally, Bifurcations analysis of a two-dimensional discrete time predator-prey model, Math. Method. Appl. Sci., 46 (2023), 4815–4833. https://doi.org/10.1002/mma.8807 doi: 10.1002/mma.8807 |
[20] | M. Y. Hamada, Tamer El- Azab, H. El-Metwally, Bifurcations and dynamics of a discrete predator-prey model of ricker type, J. Appl. Math. Comput., 69 (2023), 113–135. https://doi.org/10.1007/s12190-022-01737-8 doi: 10.1007/s12190-022-01737-8 |
[21] | A. Khelifa, Y. Halim, M. Berkal, Solutions of a system of two higher-order difference equations in terms of Lucas sequence, Univ. J. Math. Appl., 2 (2019), 202–211. https://doi.org/10.32323/ujma.610399 doi: 10.32323/ujma.610399 |
[22] | M. R. S. Kulenovic, G. Ladas, Dynamics of second order rational difference equations, New York: Chapman and Hall, 2001. https://doi.org/10.1201/9781420035384 |
[23] | A. S. Kurbanli, C. Cinar, M. E. Erdogan, On the behavior of solutions of the system of rational difference equations $u_{n+1} = \frac{ u_{n-1}}{v_{n}u_{n-1}-1}, $ $v_{n+1} = \frac{v_{n-1}}{u_{n}v_{n-1}-1}, $ $ w_{n+1} = \frac{u_{n}}{v_{n}w_{n-1}}, $ Appl. Math., 2 (2011), 1031–1038. https://doi.org/10.4236/am.2011.28143 doi: 10.4236/am.2011.28143 |
[24] | R. C. Lyness, 1581. Cycles, Math. Gaz., 26 (1942), 268. https://doi.org/10.2307/3606036 doi: 10.2307/3606036 |
[25] | E. C. Pielou, An introduction to mathematical ecology, 1969. |
[26] | E. C. Pielou, Population and community ecology: Principles and methods, CRC Press, 1974. |
[27] | T. L. Saaty, Modern nonlinear equations, 1967. |
[28] | N. Touafek, E. M. Elsayed, On the periodicity of some systems of nonlinear difference equations, B. Math. Soc. Sci. Math., 2 (2012), 217–224. |
[29] | A. A. Yakubu, Allee effects in a discrete-time sis epidemicmodel with infected newborns, J. Differ. Equ. Appl., 13 (2007), 341–356. https://doi.org/10.1080/10236190601079076 doi: 10.1080/10236190601079076 |