Citation: Muhammad Uzair Awan, Muhammad Aslam Noor, Tingsong Du, Khalida Inayat Noor. On $\mathscr{M}$-convex functions[J]. AIMS Mathematics, 2020, 5(3): 2376-2387. doi: 10.3934/math.2020157
[1] | M. Alp, M. Z. Sarikaya, M. Kunt, et al. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ., Sci., 30 (2018), 193-203. doi: 10.1016/j.jksus.2016.09.007 |
[2] | M. U. Awan, G. Cristescu, M. A. Noor, et al. Upper and lower bounds for Riemann type quantum integrals of preinvex and preinvex dominated functions, UPB Sci. Bull., Ser. A., 79 (2017), 33-44. |
[3] | F. Al-Azemi, O. Calin, Asian options with harmonic average, Appl. Math. Inf. Sci., 9 (2015), 1-9. |
[4] | G. Cristescu, M. A. Noor, M. U. Awan, Bounds of the second degree cumulative frontier gaps of functions with generalized convexity, Carpath. J. Math., 31 (2015), 173-180. |
[5] | G. Cristescu, L. Lupsa, Non-connected Convexities and Applications, Kluwer Academic Publishers, Dordrecht, Holland, 2002. |
[6] | S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. lett., 11 (1998), 91-95. |
[7] | S. S. Dragomir, B. Mond, Integral inequalities of Hadamard's type for log-convex functions, Demonstration Math., 2 (1998), 354-364. |
[8] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Victoria University, Australia, 2000. |
[9] | T. S. Du, J. G. Liao, Y. J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions, J. Nonlinear Sci. Appl., 9 (2016), 3112-3126. doi: 10.22436/jnsa.009.05.102 |
[10] | T. S. Du, Y. J. Li, Z. Q. Yang, A generalization of Simpson's inequality via differentiable mapping using extended (s, m)-convex functions, Appl. Math. Comput., 293 (2017), 358-369. |
[11] | A. Guessab, G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory, 115 (2002), 260-288. doi: 10.1006/jath.2001.3658 |
[12] | A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in approximate multivariate integration, Math. Comp., 73 (2004), 1365-1384. |
[13] | I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe J. Math. Stat., 43 (2014), 935-942. |
[14] | M. Khaled, P. Agarwal, New Hermite-Hadamard type integral inequalities for convex functions and their applications, J. Comput. Appl. Math., 350 (2019), 274-285. doi: 10.1016/j.cam.2018.10.022 |
[15] | A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional dierential equations, Elsevier B.V., Amsterdam, Netherlands, 2006. |
[16] | K. Liu, J. R. Wang, D. O'Regan, On the Hermite-Hadamard type inequality for ψ-RiemannLiouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019), 27. |
[17] | M. V. Mihai, M. A. Noor, K. I. Noor, et al. Some integral inequalities for harmonic h-convex functions involving hypergeometric functions, Appl. Math. Comput., 252 (2015), 257-262. |
[18] | C. P. Niculescu, L. E. Persson, Convex Functions and Their Applications. A Contemporary Approach, 2 Eds. CMS Books in Mathematics, vol. 23. Springer, New York, 2018. |
[19] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675-679. |
[20] | M. A. Noor, K. I. Noor, M. U. Awan, et al. Fractional Hermite-Hadamard inequalities for some new classes of Godunova-Levin functions, Appl. Math. Inf. Sci., 8 (2014), 2865-2872. doi: 10.12785/amis/080623 |
[21] | C. E. M. Pearce, J. Pecaric, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13 (2000), 51-55. |
[22] | J. E. Pecaric, F. Prosch, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, NewYork, 1992. |
[23] | L. Riahi, M. U. Awan, M. A. Noor, Some complementary q-bounds via different classes of convex functions, UPB Sci. Bull., Ser. A, 79 (2017), 171-182. |
[24] | M. Z. Sarikaya, E. Set, H. Yaldiz, et al. Hermite-Hadamards inequalities for fractional in- tegrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403-2407. doi: 10.1016/j.mcm.2011.12.048 |
[25] | J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121. |
[26] | Y. Zhang, T. S. Du, H. Wang, et al. Different types of quantum integral inequalities via (α, m)- convexity, J. Inequal. Appl., 2018 (2018), 264. |