Research article

Optimal decay rates of higher–order derivatives of solutions for the compressible nematic liquid crystal flows in $ \mathbb R^3 $

  • Received: 30 November 2021 Revised: 03 January 2022 Accepted: 12 January 2022 Published: 18 January 2022
  • MSC : 35Q35, 35B40, 76A15

  • In this paper, we are concerned with optimal decay rates of higher–order derivatives of the smooth solutions to the $ 3D $ compressible nematic liquid crystal flows. The main novelty of this paper is three–fold: First, under the assumptions that the initial perturbation is small in $ H^N $–norm $ (N\geq3) $ and bounded in $ L^1 $–norm, we show that the highest–order spatial derivatives of density and velocity converge to zero at the $ L^2 $–rates is $ (1+t)^{-\frac{3}{4}-\frac{N }{2 }} $, which are the same as ones of the heat equation, and particularly faster than the $ L^2 $–rate $ (1+t)^{-\frac{1}{4}-\frac{N }{2 }} $ in [J.C. Gao, et al., J. Differential Equations, 261: 2334-2383, 2016]. Second, if the initial data satisfies some additional low frequency assumption, we also establish the lower optimal decay rates of solution as well as its all–order spatial derivatives. Therefore, our decay rates are optimal in this sense. Third, we prove that the lower bound of the time derivatives of density, velocity and macroscopic average converge to zero at the $ L^2 $–rate is $ (1+t)^{-\frac{5}{4}} $. Our method is based on low-frequency and high-frequency decomposition and energy methods.

    Citation: Zhengyan Luo, Lintao Ma, Yinghui Zhang. Optimal decay rates of higher–order derivatives of solutions for the compressible nematic liquid crystal flows in $ \mathbb R^3 $[J]. AIMS Mathematics, 2022, 7(4): 6234-6258. doi: 10.3934/math.2022347

    Related Papers:

  • In this paper, we are concerned with optimal decay rates of higher–order derivatives of the smooth solutions to the $ 3D $ compressible nematic liquid crystal flows. The main novelty of this paper is three–fold: First, under the assumptions that the initial perturbation is small in $ H^N $–norm $ (N\geq3) $ and bounded in $ L^1 $–norm, we show that the highest–order spatial derivatives of density and velocity converge to zero at the $ L^2 $–rates is $ (1+t)^{-\frac{3}{4}-\frac{N }{2 }} $, which are the same as ones of the heat equation, and particularly faster than the $ L^2 $–rate $ (1+t)^{-\frac{1}{4}-\frac{N }{2 }} $ in [J.C. Gao, et al., J. Differential Equations, 261: 2334-2383, 2016]. Second, if the initial data satisfies some additional low frequency assumption, we also establish the lower optimal decay rates of solution as well as its all–order spatial derivatives. Therefore, our decay rates are optimal in this sense. Third, we prove that the lower bound of the time derivatives of density, velocity and macroscopic average converge to zero at the $ L^2 $–rate is $ (1+t)^{-\frac{5}{4}} $. Our method is based on low-frequency and high-frequency decomposition and energy methods.



    加载中


    [1] R. Adams, J. F. Fournier, Sobolev spaces, 2 Eds., New York: Academic Press, 2003.
    [2] S. J. Ding, J. L. Lin, C. Y. Wang, H. Y. Wen, Compressible hydrodynamic flow of liquid crystals in $1$–D, Discrete Contin. Dyn. Syst., 32 (2012), 539–563. http://dx.doi.org/10.3934/dcds.2012.32.539 doi: 10.3934/dcds.2012.32.539
    [3] R. J. Duan, H. X. Liu, S. Ukai, T. Yang, Optimal $L^p-L^q$ convergence rate for the compressible Navier-Stokes quations with potential force, J. Differential Equations., 238 (2007), 220–223. https://doi.org/10.1016/j.jde.2007.03.008 doi: 10.1016/j.jde.2007.03.008
    [4] J. L. Ericksen, Hydrostatic theory of liquid crystals, Arch. Ration. Mech. Anal., 9 (1962), 371–378. https://doi.org/10.1007/BF00253358 doi: 10.1007/BF00253358
    [5] J. S. Fan, F. Jiang, Large-time behavior of liquid crystal flows with a trigonometric condition in two dimensions, Commun. Pure Appl. Anal., 15 (2016), 73–90. http://dx.doi.org/10.3934/cpaa.2016.15.73 doi: 10.3934/cpaa.2016.15.73
    [6] E. Feireisl, A. Novotný, H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358–392. https://doi.org/10.1007/PL00000976 doi: 10.1007/PL00000976
    [7] Y. Guo, Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differential Equations, 37 (2012), 2165–2208. https://doi.org/10.1080/03605302.2012.696296 doi: 10.1080/03605302.2012.696296
    [8] J. Gao, Q. Tao, Z. A. Yao, Long-time behavior of solution for the compressible nematic liquid crystal flows in $\mathbb{R}^{3}$, J. Differential Equations., 261 (2016), 2334–2383. https://doi.org/10.1016/j.jde.2016.04.033. doi: 10.1016/j.jde.2016.04.033
    [9] J. Gao, Z. Y. Lyu, Z. A. Yao, Lower bound of decay rate for higher–order derivatives of solution to the compressible fluid models of Korteweg type, Z. Angew. Math. Phys., 71 (2020), 1–19. https://doi.org/10.1007/s00033-020-01330-8 doi: 10.1007/s00033-020-01330-8
    [10] D. Hoff, Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differential Equations., 200 (1995), 215–254. https://doi.org/10.1006/jdeq.1995.1111. doi: 10.1006/jdeq.1995.1111
    [11] X. P. Hu, H. Wu, Global solution to the three-dimensional compressible flow of liquid crystals, SIAM J. Math. Anal., 45 (2013), 2678–2699. https://doi.org/10.1137/120898814 doi: 10.1137/120898814
    [12] W. T. Huang, X. Y. Lin, W. W. Wang, Decay-in-time of the highest-order derivatives of solutions for the compressible isentropic MHD equations, J. Math. Anal. Appl., 502 (2021), 125273. https://doi.org/10.1016/j.jmaa.2021.125273. doi: 10.1016/j.jmaa.2021.125273
    [13] T. Huang, C. Y. Wang, H. Y. Wen, Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch. Ration. Mech. Anal., 204 (2012), 285–311. https://doi.org/10.1007/s00205-011-0476-1 doi: 10.1007/s00205-011-0476-1
    [14] X. D. Huang, J. Li, Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier–Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549–585. https://doi.org/10.1002/cpa.21382 doi: 10.1002/cpa.21382
    [15] F. Jiang, S. Jiang, Asymptotic behaviors of global solutions to the two-dimensional non-resistive MHD equations with large initial perturbations, Adv. Math., 393 (2021), 108084. https://doi.org/10.1016/j.aim.2021.108084 doi: 10.1016/j.aim.2021.108084
    [16] F. Jiang, S. Jiang, D. H. Wang, On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013), 3369–3397. https://doi.org/10.1016/j.jfa.2013.07.026 doi: 10.1016/j.jfa.2013.07.026
    [17] F. Jiang, S. Jiang, D. H. Wang, Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions, Arch. Ration. Mech. Anal., 214 (2014), 403–451. https://doi.org/10.1007/s00205-014-0768-3 doi: 10.1007/s00205-014-0768-3
    [18] F. Jiang, G. C. Wu, X. Zhong, On exponential stability of gravity driven viscoelastic flows, J. Differential Equations., 260 (2016), 7498–7534. https://doi.org/10.1016/j.jde.2016.01.030. doi: 10.1016/j.jde.2016.01.030
    [19] N. Ju, Existence and uniqueness of the solution to the dissipative $2D$ quasi-geostrophic equations in the Sobolev space, Comm. Math. Phys., 251 (2004), 365–376. https://doi.org/10.1007/s00220-004-1062-2 doi: 10.1007/s00220-004-1062-2
    [20] F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265–283. https://doi.org/10.1007/BF00251810 doi: 10.1007/BF00251810
    [21] H. Li, T. Zhang, Large time behavior of isentropic compressible Navier–Stokes system in $\mathbb{R}^{3}$, Math. Meth. Appl. Sci., 34 (2011), 670–682. https://doi.org/10.1002/mma.1391 doi: 10.1002/mma.1391
    [22] J. Li, Z. Xu, J. Zhang, Global existence of classical solutions with large oscillations and vacuum to the three–dimensional compressible nematic liquid crystal flows, J. Math. Fluid Mech., 20 (2018), 2105–2145. https://doi.org/10.1007/s00021-018-0400-7 doi: 10.1007/s00021-018-0400-7
    [23] A. Matsumura, T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive fluids, Proc. Jpn. Acad. Ser. A, 55 (1979), 337–342. https://doi.org/10.3792/pjaa.55.337 doi: 10.3792/pjaa.55.337
    [24] A. Matsumura, T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67–104. https://doi.org/10.1215/kjm/1250522322 doi: 10.1215/kjm/1250522322
    [25] L. Nirenberg, On elliptic partial diferential equations, Annali della Scuola Normale Superiore di Pisa, 13 (1959), 115–162. https://doi.org/10.1007/978-3-642-10926-3_1 doi: 10.1007/978-3-642-10926-3_1
    [26] M. E. Schonbek, Large time behaviour of solutions to the Navier–Stokes equations, Comm. Partial Differential Equations, 11 (1986), 733–763. https://doi.org/10.1080/03605308608820443 doi: 10.1080/03605308608820443
    [27] J. Wang, C. G. Xiao, Y. H. Zhang, Optimal large time behavior of the compressible Navier–Stokes–Korteweg system in $\mathbb{ R }^{3}$, Appl. Math. Lett., 120 (2021), 107274. https://doi.org/10.1016/j.aml.2021.107274. doi: 10.1016/j.aml.2021.107274
    [28] Y. J. Wang, Z. Tan, Global existence and optimal decay rate for the strong solutions in $ H^{2} $ to the compressible Navier-Stokes equations, Appl. Math. Lett., 24 (2011), 1778–1784. https://doi.org/10.1016/j.aml.2011.04.028. doi: 10.1016/j.aml.2011.04.028
    [29] X. Y. Wang, W. W. Wang, On global behavior of weak solutions to the Navier–Stokes equations of compressible fluid for $\gamma = 5/3$, Bound. Value Probl., 2015 (2015), 1–13. https://doi.org/10.1186/s13661-015-0443-0 doi: 10.1186/s13661-015-0443-0
    [30] W. W. Wang, On global behavior of weak solutions of compressible flows of nematic liquid crystals, Acta Math. Sci. Ser. B (Engl. Ed.), 35 (2015), 650–672. https://doi.org/10.1016/S0252-9602(15)30011-4 doi: 10.1016/S0252-9602(15)30011-4
    [31] W. W. Wang, Y. Y. Zhao, Time-decay solutions of the initial-boundary value problem of rotating magnetohydrodynamic fluids, Bound. Value Probl., 2017 (2017), 1–31. https://doi.org/10.1186/s13661-017-0845-2 doi: 10.1186/s13661-017-0845-2
    [32] G. C. Wu, Z. Tan, Global low–energy weak solution and large–time behavior for the compressible flow of liquid crystals, J. Differential Equations, 264 (2018), 6603–6632. https://doi.org/10.1016/j.jde.2018.01.045 doi: 10.1016/j.jde.2018.01.045
    [33] E. Zuazua, Time asymptotics for heat and dissipative wave equations, Preprint Boling Guo Institute of Applied Physics and Computational Mathematics PO Box, 8009, 2003. Available from: http://www.uam.es/enrique.zuazua.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1395) PDF downloads(80) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog