Research article

Blow-up criterion for incompressible nematic type liquid crystal equations in three-dimensional space

  • Received: 08 October 2019 Accepted: 19 December 2019 Published: 24 December 2019
  • MSC : 35B65, 35Q35, 76A15

  • In this paper, we consider two incompressible nematic type liquid crystal models in threedimensional space. Blow-up criterions for weak and smooth solutions are established in homogenous and nonhomogenous Besov space with negative regular index, respectively. As a result, we improve some previous results in Besov space.

    Citation: Tariq Mahmood, Zhaoyang Shang. Blow-up criterion for incompressible nematic type liquid crystal equations in three-dimensional space[J]. AIMS Mathematics, 2020, 5(2): 746-765. doi: 10.3934/math.2020051

    Related Papers:

  • In this paper, we consider two incompressible nematic type liquid crystal models in threedimensional space. Blow-up criterions for weak and smooth solutions are established in homogenous and nonhomogenous Besov space with negative regular index, respectively. As a result, we improve some previous results in Besov space.


    加载中


    [1] H. Bahouri, J. Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Heidelberg: Springer, 2011.
    [2] H. Brezis, P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., 1 (2001), 387-404. doi: 10.1007/PL00001378
    [3] K. C. Chang, W. Y. Ding, R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differ. Geom., 36 (1992), 507-515. doi: 10.4310/jdg/1214448751
    [4] D. Coutand, S. Shkoller, Well-posedness of the full Ericksen-Leslie model of nematic liquid crystals, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 919-924. doi: 10.1016/S0764-4442(01)02161-9
    [5] M. Dai, J. Qing, M. Schonbek, Asymptotic behavior of solutions to liquid crystal systems in $\mathbb{R}^3$, Commun. Part. Diff. Eq., 37 (2012), 2138-2164.
    [6] M. Dai, M. Schonbek, Asymptotic behavior of solutions to the liquid crystal system in Hm($\mathbb{R}^3$), SIAM J. Math. Anal., 46 (2014), 3131-3150.
    [7] J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheol., 5 (1961), 23-34. doi: 10.1122/1.548883
    [8] J. L. Ericksen, Continuum theory of liquid crystals of nematic type, Mol. Cryst. Liq. Cryst., 7 (1969), 153-164.
    [9] J. Fan, T. Ozawa, Regularity criteria for a simplified Ericksen-Leslie system modeling the flow of liquid crystals, Discrete Cont. Dyn. Syst., 25 (2009), 859-867. doi: 10.3934/dcds.2009.25.859
    [10] J. Fan, T. Ozawa, Regularity criterion for the 3D nematic liquid crystal flows, ISRN Math. Anal., 2012 (2012), 935045.
    [11] F. C. Frank, Liquid crystals: On the theory of liquid crystals, Discuss. Faraday Soc., 25 (1958), 19-28. doi: 10.1039/df9582500019
    [12] F. Guillén-González, M. A. Rodríguez-Bellido, M. A. Rojas-Medar, Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model, Math. Nachr., 282 (2009), 846-867. doi: 10.1002/mana.200610776
    [13] H. Hajaiej, L. Molinet, T. Ozawa, et al. Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations, In: Harmonic Analysis and Nonlinear Partial Differential Equations, Kyoto: RIMS Kôkyûroku Bessatsu, B26 (2011), 159-175.
    [14] J. L. Hineman, C. Wang, Well-posedness of nematic liquid crystal flow in ${L_{uloc}^{3}(\mathbb{R}^{3})}$, Arch. Ration. Mech. Anal., 210 (2013), 177-218.
    [15] X. Hu, D. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals, Commun. Math. Phys., 296 (2010), 861-880. doi: 10.1007/s00220-010-1017-8
    [16] J. Huang, C. Wang, H. Wen, Time decay rate of global strong solutions to nematic liquid crystal flows in ${\Bbb{R}_+^3}$, J. Differ. Equations, 267 (2019), 1767-1804.
    [17] T. Huang, C. Wang, Blow up criterion for nematic liquid crystal flows, Commun. Part. Diff. Eq., 37 (2012), 875-884. doi: 10.1080/03605302.2012.659366
    [18] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704
    [19] F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283. doi: 10.1007/BF00251810
    [20] X. Li, D. Wang, Global solution to the incompressible flow of liquid crystals, J. Differ. Equations, 252 (2012), 745-767. doi: 10.1016/j.jde.2011.08.045
    [21] F. H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Commun. Pure Appl. Math., 42 (1989), 789-814. doi: 10.1002/cpa.3160420605
    [22] F. H. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun. Pure Appl. Math., 48 (1995), 501-537. doi: 10.1002/cpa.3160480503
    [23] F. H. Lin, C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete Cont. Dyn. Syst., 2 (1996), 1-22. doi: 10.1007/BF02259620
    [24] F. Lin, J. Lin, C. Wang, Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.
    [25] Q. Liu, On blow-up criteria for the 3D nematic liquid crystal flows, IMA J. Appl. Math., 80 (2015), 1855-1870.
    [26] Q. Liu, Global well-posedness and temporal decay estimates for the 3D nematic liquid crystal flows, J. Math. Fluid Mech., 20 (2018), 1459-1485.
    [27] Q. Liu, A logarithmical blow-up criterion for the 3D nematic liquid crystal flows, B. Malays. Math. Sci. Soc., 41 (2018), 29-47.
    [28] Q. Liu, T. Zhang, J. Zhao, Global solutions to the 3D incompressible nematic liquid crystal system, J. Differ. Equations, 258 (2015), 1519-1547. doi: 10.1016/j.jde.2014.11.002
    [29] Q. Liu, J. Zhao, A regularity criterion for the solution of nematic liquid crystal flows in terms of the ${\dot B_{\infty,\infty}^{-1}}$-norm, J. Math. Anal. Appl., 407 (2013), 557-566. doi: 10.1016/j.jmaa.2013.05.048
    [30] Q. Liu, J. Zhao, Logarithmically improved blow-up criteria for the nematic liquid crystal flows, Nonlinear Anal. Real, 16 (2014), 178-190. doi: 10.1016/j.nonrwa.2013.09.017
    [31] Q. Liu, J. Zhao, S. Cui, A regularity criterion for the three-dimensional nematic liquid crystal flow in terms of one directional derivative of the velocity, J. Math. Phys., 52 (2011), 033102.
    [32] S. Liu, X. Xu, Global existence and temporal decay for the nematic liquid crystal flows, J. Math. Anal. Appl., 426 (2015), 228-246. doi: 10.1016/j.jmaa.2015.01.001
    [33] T. Ogawa, Y. Taniuchi, On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain, J. Differ. Equations, 190 (2003), 39-63. doi: 10.1016/S0022-0396(03)00013-5
    [34] C. W. Oseen, The theory of liquid crystals, Trans. Faraday Soc., 29 (1933), 883-899. doi: 10.1039/tf9332900883
    [35] Z. Shang, Osgood type blow-up criterion for the 3d boussinesq equations with partial viscosity, AIMS Mathematics, 3 (2018), 1-11. doi: 10.3934/Math.2018.1.1
    [36] S. Shkoller, Well-posedness and global attractors for liquid crystals on Riemannian manifolds, Commun. Part. Diff. Eq., 27 (2002), 1103-1137. doi: 10.1081/PDE-120004895
    [37] H. Sun, C. Liu, On energetic variational approaches in modeling the nematic liquid crystal flows, Discrete Cont. Dyn. Syst., 23 (2009), 455-475.
    [38] C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Ration. Mech. Anal., 200 (2011), 1-19. doi: 10.1007/s00205-010-0343-5
    [39] R. Wei, Y. Li, Z. Yao, Two new regularity criteria for nematic liquid crystal flows, J. Math. Anal. Appl., 424 (2015), 636-650. doi: 10.1016/j.jmaa.2014.10.089
    [40] H. Wen, S. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals, Nonlinear Anal. Real, 12 (2011), 1510-1531. doi: 10.1016/j.nonrwa.2010.10.010
    [41] J. Wu, Regularity criteria for the generalized MHD equations, Commun. Part. Diff. Eq., 33 (2008), 285-306. doi: 10.1080/03605300701382530
    [42] B. Yuan, C. Wei, BKM's criterion for the 3D nematic liquid crystal flows in Besov spaces of negative regular index, J. Nonlinear Sci. Appl., 10 (2017), 3030-3037. doi: 10.22436/jnsa.010.06.17
    [43] Z. Zhang, Regularity criteria for the three dimensional Ericksen-Leslie system in homogeneous Besov spaces, Comput. Math. Appl., 75 (2018), 1060-1065. doi: 10.1016/j.camwa.2017.10.029
    [44] Z. Zhang, T. Tang, L. Liu, An Osgood type regularity criterion for the liquid crystal flows, NoDEA, 21 (2014), 253-262. doi: 10.1007/s00030-013-0245-y
    [45] Z. Zhang, X. Yang, Navier-Stokes equations with vorticity in Besov spaces of negative regular indices, J. Math. Anal. Appl., 440 (2016), 415-419. doi: 10.1016/j.jmaa.2016.03.037
    [46] J. Zhao, BKM's criterion for the 3D nematic liquid crystal flows via two velocity components and molecular orientations, Math. Method. Appl. Sci., 40 (2017), 871-882. doi: 10.1002/mma.4014
    [47] J. Zhao, Q. Liu, S. Cui, Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows, Commun. Pure Appl. Anal., 12 (2013), 341-357.
    [48] L. Zhao, F. Li, On the regularity criteria for liquid crystal flows, Z. Angew. Math. Phys., 69 (2018), 125.
    [49] L. Zhao, W. Wang, S. Wang, Blow-up criteria for the 3D liquid crystal flows involving two velocity components, Appl. Math. Lett., 96 (2019), 75-80. doi: 10.1016/j.aml.2019.04.012
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3613) PDF downloads(523) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog