Citation: Tariq Mahmood, Zhaoyang Shang. Blow-up criterion for incompressible nematic type liquid crystal equations in three-dimensional space[J]. AIMS Mathematics, 2020, 5(2): 746-765. doi: 10.3934/math.2020051
[1] | H. Bahouri, J. Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Heidelberg: Springer, 2011. |
[2] | H. Brezis, P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., 1 (2001), 387-404. doi: 10.1007/PL00001378 |
[3] | K. C. Chang, W. Y. Ding, R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differ. Geom., 36 (1992), 507-515. doi: 10.4310/jdg/1214448751 |
[4] | D. Coutand, S. Shkoller, Well-posedness of the full Ericksen-Leslie model of nematic liquid crystals, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 919-924. doi: 10.1016/S0764-4442(01)02161-9 |
[5] | M. Dai, J. Qing, M. Schonbek, Asymptotic behavior of solutions to liquid crystal systems in $\mathbb{R}^3$, Commun. Part. Diff. Eq., 37 (2012), 2138-2164. |
[6] | M. Dai, M. Schonbek, Asymptotic behavior of solutions to the liquid crystal system in Hm($\mathbb{R}^3$), SIAM J. Math. Anal., 46 (2014), 3131-3150. |
[7] | J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheol., 5 (1961), 23-34. doi: 10.1122/1.548883 |
[8] | J. L. Ericksen, Continuum theory of liquid crystals of nematic type, Mol. Cryst. Liq. Cryst., 7 (1969), 153-164. |
[9] | J. Fan, T. Ozawa, Regularity criteria for a simplified Ericksen-Leslie system modeling the flow of liquid crystals, Discrete Cont. Dyn. Syst., 25 (2009), 859-867. doi: 10.3934/dcds.2009.25.859 |
[10] | J. Fan, T. Ozawa, Regularity criterion for the 3D nematic liquid crystal flows, ISRN Math. Anal., 2012 (2012), 935045. |
[11] | F. C. Frank, Liquid crystals: On the theory of liquid crystals, Discuss. Faraday Soc., 25 (1958), 19-28. doi: 10.1039/df9582500019 |
[12] | F. Guillén-González, M. A. Rodríguez-Bellido, M. A. Rojas-Medar, Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model, Math. Nachr., 282 (2009), 846-867. doi: 10.1002/mana.200610776 |
[13] | H. Hajaiej, L. Molinet, T. Ozawa, et al. Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations, In: Harmonic Analysis and Nonlinear Partial Differential Equations, Kyoto: RIMS Kôkyûroku Bessatsu, B26 (2011), 159-175. |
[14] | J. L. Hineman, C. Wang, Well-posedness of nematic liquid crystal flow in ${L_{uloc}^{3}(\mathbb{R}^{3})}$, Arch. Ration. Mech. Anal., 210 (2013), 177-218. |
[15] | X. Hu, D. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals, Commun. Math. Phys., 296 (2010), 861-880. doi: 10.1007/s00220-010-1017-8 |
[16] | J. Huang, C. Wang, H. Wen, Time decay rate of global strong solutions to nematic liquid crystal flows in ${\Bbb{R}_+^3}$, J. Differ. Equations, 267 (2019), 1767-1804. |
[17] | T. Huang, C. Wang, Blow up criterion for nematic liquid crystal flows, Commun. Part. Diff. Eq., 37 (2012), 875-884. doi: 10.1080/03605302.2012.659366 |
[18] | T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704 |
[19] | F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283. doi: 10.1007/BF00251810 |
[20] | X. Li, D. Wang, Global solution to the incompressible flow of liquid crystals, J. Differ. Equations, 252 (2012), 745-767. doi: 10.1016/j.jde.2011.08.045 |
[21] | F. H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Commun. Pure Appl. Math., 42 (1989), 789-814. doi: 10.1002/cpa.3160420605 |
[22] | F. H. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun. Pure Appl. Math., 48 (1995), 501-537. doi: 10.1002/cpa.3160480503 |
[23] | F. H. Lin, C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete Cont. Dyn. Syst., 2 (1996), 1-22. doi: 10.1007/BF02259620 |
[24] | F. Lin, J. Lin, C. Wang, Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336. |
[25] | Q. Liu, On blow-up criteria for the 3D nematic liquid crystal flows, IMA J. Appl. Math., 80 (2015), 1855-1870. |
[26] | Q. Liu, Global well-posedness and temporal decay estimates for the 3D nematic liquid crystal flows, J. Math. Fluid Mech., 20 (2018), 1459-1485. |
[27] | Q. Liu, A logarithmical blow-up criterion for the 3D nematic liquid crystal flows, B. Malays. Math. Sci. Soc., 41 (2018), 29-47. |
[28] | Q. Liu, T. Zhang, J. Zhao, Global solutions to the 3D incompressible nematic liquid crystal system, J. Differ. Equations, 258 (2015), 1519-1547. doi: 10.1016/j.jde.2014.11.002 |
[29] | Q. Liu, J. Zhao, A regularity criterion for the solution of nematic liquid crystal flows in terms of the ${\dot B_{\infty,\infty}^{-1}}$-norm, J. Math. Anal. Appl., 407 (2013), 557-566. doi: 10.1016/j.jmaa.2013.05.048 |
[30] | Q. Liu, J. Zhao, Logarithmically improved blow-up criteria for the nematic liquid crystal flows, Nonlinear Anal. Real, 16 (2014), 178-190. doi: 10.1016/j.nonrwa.2013.09.017 |
[31] | Q. Liu, J. Zhao, S. Cui, A regularity criterion for the three-dimensional nematic liquid crystal flow in terms of one directional derivative of the velocity, J. Math. Phys., 52 (2011), 033102. |
[32] | S. Liu, X. Xu, Global existence and temporal decay for the nematic liquid crystal flows, J. Math. Anal. Appl., 426 (2015), 228-246. doi: 10.1016/j.jmaa.2015.01.001 |
[33] | T. Ogawa, Y. Taniuchi, On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain, J. Differ. Equations, 190 (2003), 39-63. doi: 10.1016/S0022-0396(03)00013-5 |
[34] | C. W. Oseen, The theory of liquid crystals, Trans. Faraday Soc., 29 (1933), 883-899. doi: 10.1039/tf9332900883 |
[35] | Z. Shang, Osgood type blow-up criterion for the 3d boussinesq equations with partial viscosity, AIMS Mathematics, 3 (2018), 1-11. doi: 10.3934/Math.2018.1.1 |
[36] | S. Shkoller, Well-posedness and global attractors for liquid crystals on Riemannian manifolds, Commun. Part. Diff. Eq., 27 (2002), 1103-1137. doi: 10.1081/PDE-120004895 |
[37] | H. Sun, C. Liu, On energetic variational approaches in modeling the nematic liquid crystal flows, Discrete Cont. Dyn. Syst., 23 (2009), 455-475. |
[38] | C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Ration. Mech. Anal., 200 (2011), 1-19. doi: 10.1007/s00205-010-0343-5 |
[39] | R. Wei, Y. Li, Z. Yao, Two new regularity criteria for nematic liquid crystal flows, J. Math. Anal. Appl., 424 (2015), 636-650. doi: 10.1016/j.jmaa.2014.10.089 |
[40] | H. Wen, S. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals, Nonlinear Anal. Real, 12 (2011), 1510-1531. doi: 10.1016/j.nonrwa.2010.10.010 |
[41] | J. Wu, Regularity criteria for the generalized MHD equations, Commun. Part. Diff. Eq., 33 (2008), 285-306. doi: 10.1080/03605300701382530 |
[42] | B. Yuan, C. Wei, BKM's criterion for the 3D nematic liquid crystal flows in Besov spaces of negative regular index, J. Nonlinear Sci. Appl., 10 (2017), 3030-3037. doi: 10.22436/jnsa.010.06.17 |
[43] | Z. Zhang, Regularity criteria for the three dimensional Ericksen-Leslie system in homogeneous Besov spaces, Comput. Math. Appl., 75 (2018), 1060-1065. doi: 10.1016/j.camwa.2017.10.029 |
[44] | Z. Zhang, T. Tang, L. Liu, An Osgood type regularity criterion for the liquid crystal flows, NoDEA, 21 (2014), 253-262. doi: 10.1007/s00030-013-0245-y |
[45] | Z. Zhang, X. Yang, Navier-Stokes equations with vorticity in Besov spaces of negative regular indices, J. Math. Anal. Appl., 440 (2016), 415-419. doi: 10.1016/j.jmaa.2016.03.037 |
[46] | J. Zhao, BKM's criterion for the 3D nematic liquid crystal flows via two velocity components and molecular orientations, Math. Method. Appl. Sci., 40 (2017), 871-882. doi: 10.1002/mma.4014 |
[47] | J. Zhao, Q. Liu, S. Cui, Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows, Commun. Pure Appl. Anal., 12 (2013), 341-357. |
[48] | L. Zhao, F. Li, On the regularity criteria for liquid crystal flows, Z. Angew. Math. Phys., 69 (2018), 125. |
[49] | L. Zhao, W. Wang, S. Wang, Blow-up criteria for the 3D liquid crystal flows involving two velocity components, Appl. Math. Lett., 96 (2019), 75-80. doi: 10.1016/j.aml.2019.04.012 |