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1. Introduction

Liquid crystal is classified as an intermediate state of matter between the crystalline solid and the
isotropic fluid state. It flows like a liquid and their molecules are oriented in a crystal like structure,
showing kinematic behavior. Generally, liquid crystals are categorized as nematic, smectic and
cholesteric forms. The nematic form is the most common in hydrodynamic theory of liquid crystal.
The simplest model to study nematic liquid crystals equilibrium phenomena was introduced by
Oseen [34] in 1933 and Frank [11] in 1958. A few years later, Ericksen and Leslie proposed
conservation laws and the hydrodynamics theory of nematic liquid crystals, see [7, 8, 19].

The evolution of liquid crystal material flow under the influence of velocity field and director field
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is governed by the set of following partial differential equations:

ut − ν∆u + u · ∇u + ∇p = ∇ · (∇d � ∇d),

dt − ∆d + u · ∇d = |∇d|2d,

∇ · u = 0, |d|2 = 1,

u(x, 0) = u0(x), d(x, 0) = d0(x),

(1.1)

where u : R3 × [0,∞) → R3 denotes the velocity vector field, p : R3 × [0,∞) → R is the scalar
pressure field, d : R3 × [0,∞) → S2 represents kinematic variable or director field, ν is kinematic
viscosity respectively. u0, d0 are the initial data and u0 satisfies divergence free condition ∇ · u0 = 0.
The notation ∇d � ∇d is 3 × 3 matrix with (i, j)-th entries, given by ∂id · ∂ jd (1 ≤ i, j ≤ 3).

The system (1.1) is the reduced form of general Ericksen-Leslie system, proposed by Lin [21]
in 1989. The local existence of solutions can be found in [24, 40]. For the global well-posedness,
Wang [38] proved the global-in-time existence of strong solutions in the whole space provided that the
initial data are suitably small in BMO space. In 2012, the initial-boundary value problem is considered
by Li and Wang [20] in a bounded smooth domain, where the existence and uniqueness are established
for both the local strong solution with large initial data and the global strong solution with small
initial data. In 2013, Hineman and Wang [14] studied the Cauchy problem and showed that there
exists a unique, global smooth solution with small initial data ‖(u0,∇d0)‖L3(R3). Moreover, the global
solution has monotone decreasing L3-energy for t ≥ 0. In 2015, Liu and Xu [32], by using Fourier
splitting technique and energy method, established the global well-posedness and time decay rates of
the classical solutions with smooth initial data which are of small energy. In the same year, Liu et
al. [28] established the global well-posedness with initial data in critical homogeneous Besov space
B

1
2
2,1(R3)× B

3
2
2,1(R3) and the vertical component of the initial velocity u3

0 may be large, which are further
discussed in [26] and the temporal decay estimates in Besov space are also proved. Recently, Huang et
al. [16] obtained optimal time-decay rates in Lr(R3

+) for r ≥ 1 of global strong solutions to the nematic
liquid crystal flows in R3

+, provided the initial data has small L3(R3
+)-norm. For more results on the

asymptotic behavior of solutions, we refer to [5, 6] and the references therein.
However, the system (1.1) can be viewed as Navier-Stokes equations coupling the heat flow of a

harmonic map and the strong solutions of a harmonic map must be blow up at finite time [3], we
cannot expect that (1.1) has a global strong solution with general initial data. Therefore, it is important
to study the mechanism of blow-up for strong or smooth solutions. First, we review some previous
results which related to our main results in this paper. In 2012, Huang and Wang [17] proved the
following BKM criterion

∇ × u ∈ L1
(
0,T ; L∞(R3)

)
, ∇d ∈ L2

(
0,T ; L∞(R3)

)
. (1.2)

In 2013, Liu and Zhao [29] established the blow-up criterion in Besov space

u ∈ L∞
(
0,T ; Ḃ−1

∞,∞(R3)
)
, ∇d ∈ L∞

(
0,T ; Ḃ−1

∞,∞(R3)
)
, (1.3)

which is improved in [30] by giving the logarithmically blow-up criterion∫ T

0

‖∇u‖2
Ḃ−1
∞,∞

+ ‖∇d‖2
Ḃ0
∞,∞

ln
(
e + ‖∇u‖Ḃ−1

∞,∞
+ ‖∇d‖Ḃ0

∞,∞

)dt < +∞, (1.4)

AIMS Mathematics Volume 5, Issue 2, 746–765.



748

In 2017, BKM criterion in Besov spaces of negative regular index is given by Yuan and Wei in [42],
the authors proved that if

ω ∈ L
2

2−r
(
0,T ; Ḃ−r

∞,∞(R3)
)
, ∇d ∈ L2

(
0,T ; Ḃ0

∞,∞(R3)
)
, (1.5)

then the solution remains smooth after time T , where ω = ∇ × u and r ∈ (0, 2). In the same year,
Zhao [46] proved the following blow-up criterion in terms of the horizontal gradient of two horizontal
velocity components and the gradient of liquid crystal molecular orientation field∫ T

0

(
‖∇huh‖

q
Ḃ0

p, 2p
3

+ ‖∇d‖2Ḃ0
∞,∞

)
dt < +∞, with

3
p

+
2
q

= 2,
3
2
< p ≤ ∞. (1.6)

where uh = (u1, u2) and ∇h = (∂1, ∂2). For the blow-up criterion in terms of the pressure, we refer
to [25, 27], and the references therein.

Because of nonlinearly, the term |∇d|2d in Eq. (1.1)2 makes the system more complex. For the
simplification of the model, the term |∇d|2d can be replaced by Ginzburg-Landau function f (d) in
Ericksen terminology, see [7, 8]. In particular, Dirichlet energy for director field, d : R3 × (0,∞)→ S2

E(d) =
1
2

∫
R3
|∇d|2dx,

is replaced by Ginzburg-Landau energy for d : R3 × [0,∞)→ R3

Eε(d) =
1
2

∫
R3
|∇d|2 +

1
4ε2 (1 − |d|2)2dx, ε > 0.

Then, the reduced system with Ginzburg-Landau approximation is written for (u, d) : R3 × (0,∞) →
R3 × R3 as follows: 

ut − ν∆u + u · ∇u + ∇p = ∇ · (∇d � ∇d),

dt − ∆d + u · ∇d = − f (d),

∇ · u = 0, |d| ≤ 1,

u(x, 0) = u0(x), d(x, 0) = d0(x).

(1.7)

whereas f (d) is defined as f (d) = 1
ε2 (|d|2 − 1)d for some positive constant ε > 0.

Next, let us recall some well-posedness results about Ginzburg-Landau approximation system
(1.7). The mathematical analysis was first initiated by Lin and Liu [22] in 1995, they proved the
global existence of weak solution and local in time smooth solution. Moreover, they also proved the
existence and uniqueness of global classical solution when viscosity is large. Later on, Lin and
Liu [23] established the partial regularity of suitable weak solutions, which is a natural generalization
of an earlier work of Caffarelli-Kohn-Nirenberg on the Navier-Stokes system. In 2001, Coutand and
Shkoller [4] showed the local well-posedness of initial-boundary value problem for any regular initial
data. Moreover, they also gave sufficient conditions for the global existence of the solution and some
stability conditions additionally. In 2010, Hu and Wang [15] proved the existence and uniqueness of
global strong solution with smallness assumption on initial data in bounded domain. In 2013, Zhao et
al. [47] proved that when initial data belongs to the critical Besov spaces with negative order, there
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exists a unique local solution, and the solution is globally in time when initial data is small enough.
For more results on the global well-posedness of system (1.7), we refer to [36, 37] and the references
therein.

At last, we review some known results about blow-up criterion of the system (1.7). In 2009, Guillén-
González et al. [12] proved the following two kinds of blow-up criterion

u ∈ L
2p
p−3

(
0,T ; Lp(R3)) , 3 < p ≤ ∞, or ∇u ∈ L

2q
q−3

(
0,T ; Lq(R3)) , 3

2
< q ≤ ∞. (1.8)

and blow-up criterion for d

∇d ∈ L
2p
p−3

(
0,T ; Lp(R3)) , 3 < p ≤ ∞, or ∆d ∈ L

2q
q−3

(
0,T ; Lq(R3)) , 3

2
< q ≤ ∞. (1.9)

Later, Fan and Ozawa [9] improved these results in homogenous Besov spaces by showing that
smoothness of solution beyond T implies

u ∈ L2
(
0,T ; Ḃ0

∞,∞

(
R3)) , or ∇u ∈ L1

(
0,T ; Ḃ0

∞,∞

(
R3)) , (1.10)

which are further refined by

∫ T

0

‖u‖
2

1−s

Ḃ−s
∞,∞

1 + ln
(
e + ‖u‖Ḃ−s

∞,∞

)dt < +∞, 0 < s < 1, (1.11)

in paper [10]. In 2014, Zhang [44] gave the following Osgood type regularity criterion for liquid crystal
flow if

sup
2≤q<∞

∫ T

0

‖S̄ q∇u(t)‖L∞
q ln q

dt < +∞,

then the smooth solution can be extended beyond time T , where S̄ q =

q∑
k=−q

4̇k, 4̇k denotes the frequency

localization operator. Recently, Zhang [43] also proved that if

u ∈ L
2

1+s
(
0,T ; Ḃs

∞,∞

(
R3)) , 0 < s < 1, (1.12)

then the solution remains smooth after time T . For the blow-up criterion in terms of one direction of
the velocity, we refer to [31, 39, 48, 49] and references therein.

Motivated by the above mentioned results, in this paper we study the blow-up criterion for Ericksen-
Leslie system (1.1) and Ericksen-Leslie system with Ginzburg-Landau approximation system (1.7) in
both homogenous and nonhomogenous Besov space. In [29] and [42], the authors proved the blow-up
criterions in Besov space with negative regular index. However, there is no evidence shows that the
inequality (2.4) in Lemma 2.3 is still valid in nonhomogenous Besov space at this moment. Hence,
the methods in the references [29, 42] can not be used in nonhomogenous Besov space directly when
we consider the regular index is negative. Inspired by work [33], in this paper, we first introduce the
Besov type space VΘ with ‖ · ‖VΘ

-norm to establish the blow-up criterion of approximation system (1.7)
in nonhomogenous Besov space. It is worth mentioning that when α belongs to (0, 1), the norm ‖ · ‖VΘ
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is weaker than Bα−1
∞,∞-norm. Moreover, ‖ · ‖VΘ

-norm can also be extended to homogenous Besov space,
then the result in [44] can be improved. On the other hand, we consider Ericksen-Leslie system (1.1)
and establish the blow-up criterion in terms of velocity field and director field, which extend the result
in [45] to liquid crystal equations and improve the blow-up criterion (1.5) in [42].

The rest of this paper is organized as follows. In section 2, we introduce some preliminaries and
state our main results for Ginzburg-Landau approximation equations. In section 3, we give the proofs
of Theorem 2.1 in nonhomogeneous Besov space and Theorem 2.2 in homogenous Besov space,
respectively. Finally, in section 4, we establish the blow-up criterion for Ericksen-Leslie model which
extend some previous results.

2. Preliminaries and main results

Before presenting our results, we introduce some function spaces and some notations, see [1] and
[35]. First, we are going to recall some basic facts on Littlewood-Paley theory. Let S

(
R3) be the

Schwartz class of rapidly decreasing functions. Given f ∈ S, its Fourier transform F f = f̂ is defined
by

f̂ (ξ) = (2π)−
3
2

∫
R3

e−ix·ξ f (ξ)dx.

Choose two nonnegative radial functions χ and ϕ ,valued in the interval [0,1], supported in
B = {ξ ∈ R3, |ξ| 6 4

3 }, C = {ξ ∈ R3, 3
4 6 |ξ| 6

8
3 }, respectively, such that

χ(ξ) +
∑
j>0

ϕ(2− jξ) = 1, ∀ξ ∈ R3,

∑
j∈Z

ϕ(2− jξ) = 1, ∀ξ ∈ R3 \ {0}.

Let h = F −1ϕ and h̃ = F −1χ. The nonhomogeneous dyadic blocks ∆ j are defined by

∆ j = 0 if j 6 −2, ∆−1u = χ(D)u =

∫
R3

h̃(y)u(x − y)dy,

and
∆ ju = ϕ(2− jD)u = 23 j

∫
R3

h(2 jy)u(x − y)dy if j > 0.

The nonhomogeneous low-frequency cut-off operator S j is defined by

S ju = χ(2− jD)u =
∑

k6 j−1

∆ku.

The homogenous dyadic blocks ∆̇ j and the homogeneous low-frequency cut-off operators Ṡ j are
defined for all j ∈ Z by

∆̇ ju = ϕ(2− jD)u = 23 j
∫
R3

h(2 jy)u(x − y)dy,

Ṡ ju = χ(2− jD)u = 23 j
∫
R3

h̃(2 jy)u(x − y)dy.
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Formally, ∆ j is a frequency projection to the annulus{|ξ| ≈ 2 j}, and S j is a frequency projection to the
ball {|ξ| . 2 j}. Then, from Littlewood-Paley’s decomposition implies that

u = ∆−1u +

∞∑
j=0

∆ ju and u =
∑
j∈Z

∆̇ ju. (2.1)

Let s ∈ R, 1 6 p, q 6 ∞. The nonhomogenous Besov space Bs
p,q is defined by

Bs
p,q = {u ∈ S

′(
R3); ‖u‖Bs

p,q < +∞},

where

‖u‖Bs
p,q =


( ∞∑

j=−1

2 jsq‖∆ ju‖
q
Lp

) 1
q

, for q < +∞,

sup
j>−1

2 js‖∆ ju‖Lp , for q = +∞.

The homogenous Besov space Ḃs
p,q is defined by

Ḃs
p,q = {u ∈ S

′

h
(
R3); ‖u‖Ḃs

p,q
< +∞},

where

‖u‖Ḃs
p,q

=


(∑

j∈Z

2 jsq‖∆̇ ju‖
q
Lp

) 1
q

, for q < +∞,

sup
j∈Z

2 js‖∆̇ ju‖Lp , for q = +∞.

Next we introduce the modified nonhomogenous space of Besov type which is derived from the
reference [33].

Definition 2.1. We denote the space by VΘ, it consists of all tempered distributions u such that {u ∈
S
′(
R3); ‖u‖VΘ

< ∞} and it’s norm defined by

‖u‖VΘ
= sup

N≥2

∥∥∥∑N
j=−1 ∆ ju

∥∥∥
∞

Θ(N)
,

where ‖ · ‖∞ denotes the L∞
(
R3)-norm, and Θ is a nondecreasing function on [1,∞).

Next, we present the well-known commutator estimate which will be used in the energy estimate.
The details can be found in [18] for example.

Lemma 2.1. Suppose that s > 0 and p ∈ (1,∞). Let f, g be two smooth functions such that ∇ f ∈ Lp1 ,
Λs f ∈ Lp3 , Λs−1g ∈ Lp2 and g ∈ Lp4 , then there exist a constant C independent of f and g such that

‖[Λs, f ]g‖Lp 6 C(‖∇ f ‖Lp1 ‖Λ
s−1g‖Lp2 + ‖Λs f ‖Lp3 ‖g‖Lp4 ), (2.2)

where Λ = (−∆)
1
2 , p2, p3 ∈ (1,∞) such that

1
p

=
1
p1

+
1
p2

=
1
p3

+
1
p4
,

here [Λs, f ]g = Λs( f g) − f Λsg.
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In order to prove our results, we will use the following fractional version of the Gagliardo-Nirenberg
inequality which is due to Brezis-Mironescu [2] and Hajaiej-Molinet-Ozawa-Wang [13].

Lemma 2.2. Let 1 < p, q, r < ∞, 0 6 θ 6 1 and s, s1 ∈ R. Assume that u ∈ C∞c
(
R3), Then

‖Λsu‖Lp 6 C‖u‖1−θLq ‖Λ
s1u‖θLr , (2.3)

where

1
p
−

s
n

=
1 − θ

q
+ θ

(
1
r
−

s1

n

)
, s 6 θs1.

We now present a generalization of the refined Sobolev embedding stated in [1].

Lemma 2.3. Let 1 ≤ p < ∞ and r be a positive real number. Then there exists a constant C such that

‖ f ‖Lp ≤ C‖ f ‖1−θḂ−r
∞,∞
‖ f ‖θ

Ḃβq,q
, β = r

(
p
q
− 1

)
and θ =

q
p
. (2.4)

In particular, for q = 2 and p = 3, we have

‖ f ‖3L3 ≤ C‖ f ‖1−θḂ−r
∞,∞
‖ f ‖2

Ḣ
r
2
, with r > 0.

The following logarithmic Sobolev inequality which plays an important role in the control of the
L∞-norm of velocity u.

Lemma 2.4. Let m > 3
2 , then there exists C depending only on m, p and Θ such that

‖u‖
L∞

(
R3
) 6 C

(
1 + ‖u‖VΘ

Θ(log(‖u‖Hm + e))
)
, (2.5)

for all u ∈ Hm(
R3).

Proof. First, by using Littlewood-Paley theory, we decompose the function into low and high
frequencies. More precisely, we write

u(x) = ul(x) + uh(x), (2.6)

where

ul(x) =

N∑
j=−1

∆ ju and uh(x) =
∑
j>N

∆ ju,

and the integer N will be determined later.
For the high frequency part uh(x), we can show that

‖uh(x)‖∞ 6
∑
j>N

‖∆ ju‖∞ 6 C
∑
j>N

2−(m−3/2) j‖u‖Bm
2,∞
6 C2−(m−3/2)N‖u‖Hm , (2.7)

for j > 0 and m > 3
2 , where we have used the following Bernstein estimate

‖∆ ju‖Lp2 6 C2 jd( 1
p1
− 1

p2
)
‖∆ ju‖Lp1 for j > 0, 1 6 p1 6 p2 6 ∞,
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and the space embedding relationship W s,p ↪→ Bs
p,max(p,2) ↪→ Bm

p,∞, see [41].
From definition 2.1, we have

‖ul(x)‖∞ 6 Θ(N)‖u‖VΘ
. (2.8)

Taking (2.6), (2.7) and (2.8) into consideration, we get

‖u(x)‖∞ 6 C
(
2−(m−3/2)N‖u‖Hm + Θ(N)‖u‖VΘ

)
. (2.9)

If we take N =
[

log(‖u‖Hm +e)
(m−3/2)

]
+ 1, where [ · ] denotes Gauss symbol, then we have the desired estimate

(2.5). �

Remark 2.1. In this paper, we consider the case Θ(N) = 2(1−α)N , 0 < α < 1, m = 2, then from
inequalities (2.5) and (2.9), we have

‖u‖
L∞

(
R3
) 6 C + C‖u‖VΘ

(
‖u‖

H2
(
R3
) + e

)2(1−α)
. (2.10)

Now, we state our main results in the framework of nonhomogenous Besov space.

Theorem 2.1. Let the initial data (u0, d0) ∈ H1(R3) × H2(R3) with ∇ · u0 = 0 and the pair (u, d) be the
weak solution to the nematic liquid crystal flows (1.7) on time [0,T ∗) for some 0 < T ∗ < +∞. If there
exists a positive constant M such that∫ T ∗

0
‖u(t)‖

4
4α−3
VΘ

dt ≤ M < +∞,
3
4
< α < 1, (2.11)

then (u, d) can be extended beyond T ∗.

Remark 2.2. Here the norm ‖ · ‖VΘ
is weaker than Bα−1

∞,∞-norm, for 0 < α < 1, since the following
equivalent norm

C−|s|‖u‖Bs
p,r ≤

∥∥∥∥(2 js‖S ju‖Lp

)
j

∥∥∥∥
lr
≤ C

(
1 +

1
|s|

)
‖u‖Bs

p,r , (2.12)

holds for some constant C provided s < 0, see [1].

Remark 2.3. When we take Θ(N) = 2(1−α)N , 0 < α < 1, then the following inequality holds

‖
∑N

j=−1 ∆ ju‖∞
2(1−α)N ≤

C‖
∑N

j=−1 ∆ ju‖∞
N log N

≤
C‖

∑N
j=−1 ∆ ju‖∞
N + 1

6 C‖u‖B0
∞,∞
,

for N ≥ 2. We should point out that Theorem 2.1 can also be applied to homogenous Besov space, as
a consequence, we improve the result given by Zhang et.al. in reference [44].

For the homogenous case, we have the following result.

Theorem 2.2. Let the initial data (u0, d0) ∈ H1(R3) × H2(R3) with ∇ · u0 = 0 and the pair (u, d) be the
weak solution to the nematic liquid crystal flows (1.7) on time [0,T ∗) for some 0 < T ∗ < +∞. If there
exists a positive constant M such that∫ T ∗

0
‖∇u(t)‖

2
2−r

Ḃ−r
∞,∞

dt ≤ M < +∞, 0 < r < 2, (2.13)

then (u, d) is smooth up to time t = T ∗.
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Remark 2.4. When the macroscopic average of the nematic liquid crystal orientation d is a constant,
the nematic liquid crystal flow reduces to the incompressible Navier-Stokes equations, the result proved
in [45] is a straightforward consequence of Theorem 2.2.

Noticing the fact ‖∇u(t)‖Ḃ−r
∞,∞
≤ C‖u(t)‖Ḃ1−r

∞,∞
, we have the following corollary.

Corollary 2.1. Assume that the initial data (u0, d0) ∈ H1(R3) × H2(R3) with ∇ · u0 = 0. Let (u, d) be a
local weak solution of the system (1.7). Suppose that∫ T ∗

0
‖u(t)‖

2
2−r

Ḃ1−r
∞,∞

dt ≤ M < +∞, 0 < r < 2, (2.14)

then the solution (u, d) can be extended past time T ∗.

Remark 2.5. If we take s = 1 − r in (2.14), then the regular index of blow-up criterion (1.12) in [43]
can be extended to −1 < s < 1.

3. Blow-up criterion for Ginzburg-Landau approximation system

In this section we prove Theorem 2.1 and Theorem 2.2. Suppose T ∗ is the maximal time of the
existence for the local solution (see [22]), then global in time weak solution exists under assumptions
of (2.11) and (2.13), respectively.

3.1. Proof of Theorem 2.1.

Proof. First, in order to get L2 energy estimate, multiplying the first equation of (1.7) by u, we have

1
2

d
dt
‖u(t)‖2L2 + ‖∇u(t)‖2L2 = −

∫
R3
∇ · (∇d � ∇d) · u dx

= −

∫
R3

(
1
2
∇(|∇d|2) + ∆d · ∇d

)
· u dx

= −

∫
R3

(∆d · ∇d) · u dx, (3.1)

similarly, multiplying the second equation of (1.7) by (−∆d + f (d)), we get

d
dt

(
1
2
‖∇d‖2L2 +

1
4
‖d‖4L4

)
+ ‖(∆d − f (d))‖2L2 =

∫
R3

(u · ∇)d · ∆d dx, (3.2)

adding (3.1) and (3.2) together, we obtain

‖u(t)‖2L2 + ‖∇d‖2L2 +

∫ T

0

(
‖∇u(t)‖2L2 + ‖(∆d − f (d))‖2L2

)
dt ≤ C. (3.3)

Next, applying ∇ on the first equation of (1.7), multiplying the resulting equation by ∇u and using
integration by parts, we get

1
2

d
dt

(‖∇u(t)‖2L2 + ‖∇2u(t)‖2L2
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= −

∫
R3
∇(u · ∇u)∇u dx −

∫
R3
∇(∇ · (∇d � ∇d))∇u dx

= −

∫
R3
∂ku j∂ jui∂kui dx −

∫
R3
∂i∂ j∂ldk∂ jdk∂lui dx

−

∫
R3
∂i∂ jdk∂ j∂ldk∂lui dx −

∫
R3
∂i∂ldk∂ j∂ jdk∂lui dx

−

∫
R3
∂idk∂ j∂ j∂ldk∂lui dx, (3.4)

here and in what follows we adopt the Einstein convention summation over repeated indices.
Then, applying ∇2 on the second equation of (1.7), multiplying the resulting equation by ∇2d and

using integration by parts, we get

1
2

d
dt

(‖∇2d(t)‖2L2 + ‖∇3d(t)‖2L2

= −

∫
R3
∇2(u · ∇d)∇2d dx −

∫
R3
∇2 f (d)∇2d dx

= −

∫
R3
∂ j∂lui∂idk∂ j∂ldk dx −

∫
R3
∂lui∂i∂ jdk∂ j∂ldk dx

−

∫
R3
∂ jui∂i∂ldk∂ j∂ldk dx −

∫
R3

ui∂i∂ j∂ldk∂ j∂ldk dx

−

∫
R3
∂ j∂l f (d) · ∂ j∂ld dx. (3.5)

Combining (3.4) and (3.5) together, integrating by parts and using divergence free condition, we get

1
2

d
dt

(‖∇u(t)‖2L2 + ‖∇2d(t)‖2L2) + ‖∇2u(t)‖2L2 + ‖∇3d(t)‖2L2

= −

∫
R3
∂ku j∂ jui∂kui dx −

∫
R3
∂i∂ldk∂ j∂ jdk∂lui dx

−

∫
R3
∂ jui∂i∂ldk∂ j∂ldk dx −

∫
R3
∂ j∂l f (d) · ∂ j∂ld dx

:= I1 + I2 + I3 + I4. (3.6)

Then the terms I1, I2, I3, I4 on the right-hand side of Eq. (3.6) can be estimated as

I1 = −

∫
R3
∂ku j∂ jui∂kui dx =

∫
R3
∂ku jui∂ j∂kui dx

≤ ‖u‖L∞‖∇u‖L2‖∇2u‖L2 , (3.7)

where, we have used divergence free property and integration by parts.

I2 + I3 = −

∫
R3
∂i∂ldk∂ j∂ jdk∂lui dx −

∫
R3
∂ jui∂i∂ldk∂ j∂ldk dx

=

∫
R3

(
∂i∂l∂ldk∂ j∂ jdk + ∂i∂ldk∂ j∂ j∂ldk

)
ui dx
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+

∫
R3

ui

(
∂i∂ j∂ldk∂ j∂ldk + ∂i∂ldk∂ j∂ j∂ldk

)
dx

≤ ‖u‖L∞‖∇2d‖L2‖∇3d‖L2 . (3.8)

The term I4, can be estimated as

I4 = −

∫
R3
∂ j∂l f (d) · ∂ j∂ld dx =

∫
R3
∂l

(
|d|2dk − dk

)
∂ j∂ j∂ldkdx

≤

∫
R3

(
|d|2|∇d||∇3d| + |∇d||∇3d|

)
dx

≤ ‖∇d‖L2‖∇3d‖L2

≤ δ‖∇3d‖2L2 + C, (3.9)

where we have used the fact |d| ≤ 1 and (3.3).
Taking (3.6)–(3.9) into consideration, which together with Lemma 2.4, we have

1
2

d
dt

(
‖∇u(t)‖2L2 + ‖∇2d(t)‖2L2

)
+ ‖∇2u(t)‖2L2 + ‖∇3d(t)‖2L2

6 C‖u‖∞
(
‖∇u‖L2‖∇2u‖L2 + ‖∇2d‖L2‖∇3d‖L2

)
+ C

6 C
(
1 + ‖u‖VΘ

(‖u‖H2 + e)2(1−α)
) (
‖∇u‖L2‖∇2u‖L2 + ‖∇2d‖L2‖∇3d‖L2

)
+ C

6 C
(
1 + ‖u‖VΘ

)
‖u‖2(1−α)

H2

(
‖∇u‖L2‖∇2u‖L2 + ‖∇2d‖L2‖∇3d‖L2

)
+ C

6 C
(
1 + ‖u‖VΘ

)
‖u‖2(1−α)

H2

(
‖∇2u‖

3
2
L2 + ‖∇3d‖

3
2
L2

)
+ C

6 δ
(
‖u‖

8(1−α)
7−4α

H2 ‖∇
2u‖

6
7−4α

L2 + ‖u‖
8(1−α)
7−4α

H2 ‖∇
3d‖

6
7−4α

L2

)
+ C

(
1 + ‖u‖VΘ

) 4
4α−3

6 δ
(
‖u‖2H2 + ‖d‖2H3

)
+ C

(
1 + ‖u‖VΘ

) 4
4α−3 , (3.10)

for any δ > 0, 3
4 < α < 1, where in the fourth inequality we have used the following Gagliardo-

Nirenberg inequality
‖∇u‖L2 ≤ C‖u‖

1
2
L2‖∇

2u‖
1
2
L2 .

Then integrating inequality (3.10) over time (0,T ) and by condition (2.11), we obtain

sup
t∈[0,T ]

‖∇u(t)‖2L2 + ‖∇2d(t)‖2L2 +

∫ T

0
‖∇2u(t)‖2L2 + ‖∇3d(t)‖2L2dt 6 C. (3.11)

This completes the proof of theorem 2.1. �

3.2. Proof of Theorem 2.2.

Proof. From the proof of Theorem 2.1 and Lemma 2.3, Ii(i = 1, 2, 3, 4) can be estimated as

I1 = −

∫
R3
∂ku j∂ jui∂kui dx ≤ ‖∇u‖3L3

≤ C‖∇u‖Ḃ−r
∞,∞
‖∇u‖2

Ḣ
r
2
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≤ C‖∇u‖Ḃ−r
∞,∞
‖∇u‖2−r

L2 ‖∇
2u‖rL2

≤ δ‖∇2u‖22 + C‖∇u‖
2

2−r

Ḃ−r
∞,∞
‖∇u‖2L2 , (3.12)

and

I2 + I3 = −

∫
R3
∂i∂ldk∂ j∂ jdk∂lui dx −

∫
R3
∂ jui∂i∂ldk∂ j∂ldk dx

≤ ‖∇u‖L2‖∇2d‖2L4

≤ C‖∇u‖L2‖d‖L∞‖∇3d‖L2

≤ δ‖∇3d‖2L2 + C‖∇u‖2L2 , (3.13)

where we have used the Gagliardo-Nirenberg inequality ‖∇2d‖2L4 ≤ C‖d‖L∞‖∇3d‖L2 .

Similarly,

I4 = −

∫
R3

∆ f (d) · ∆d dx ≤ δ‖∇3d‖2L2 + C. (3.14)

Plugging (3.12)–(3.14) into (3.6) we have

1
2

d
dt

(‖∇u(t)‖2L2 + ‖∇2d(t)‖2L2) + ‖∇2u(t)‖2L2 + ‖∇3d(t)‖2L2

≤ C
(
‖∇u‖

2
2−r

Ḃ−r
∞,∞

+ 1
) (
‖∇u‖2L2 + ‖∇2d‖2L2

)
, (3.15)

from which, by using Gronwall’s inequality and condition (2.13) we have

sup
t∈[0,T ]

‖∇u(t)‖2L2 + ‖∇2d(t)‖2L2 +

∫ T

0
‖∇2u(t)‖2L2 + ‖∇3d(t)‖2L2dt 6 C. (3.16)

This completes the proof of Theorem 2.2. �

4. Blow-up Criterion for Ericksen-Leslie system

In this section, we give some blow-up criterions for Ericksen-Leslie model. The local existence of
the classical solution to the system (1.1) satisfying (see [40] for example)

u ∈ C
(
0,T ∗; H3(R3,R3)

)
∩C1

(
0,T ∗; H2(R3,R3)

)
,

d ∈ C
(
0,T ∗; H4(R3,S2)

)
∩C1

(
0,T ∗; H3(R3,S2)

)
.

Let T ∗ is the maximal time of the existence for the local solution, then by standard continuation
argument and under the assumption of (4.1), global in time solution is obtained.

Theorem 4.1. Let the initial data (u0, d0) ∈ H3(R3) × H4(R3) with ∇ · u0 = 0 and the pair (u, d) be
the smooth solution to the nematic liquid crystal flows (1.1) on time [0,T ∗) for some 0 < T ∗ < +∞. If
there exists a positive constant M such that∫ T ∗

0

(
‖∇u(t)‖

2
2−r

Ḃ−r
∞,∞

+ ‖∇2d(t)‖
2

2−r

Ḃ−r
∞,∞

)
dt ≤ M < +∞, 0 < r < 2, (4.1)

then (u, d) is smooth up to time t = T ∗.
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Remark 4.1. Under the divergence free condition and ‖∇2d(t)‖Ḃ−r
∞,∞
≤ C‖∇d(t)‖Ḃ1−r

∞,∞
, from (4.1), we

have the following blow-up criterion∫ T ∗

0

(
‖ω(t)‖

2
2−r

Ḃ−r
∞,∞

+ ‖∇d(t)‖
2

2−r

Ḃ1−r
∞,∞

)
dt ≤ M < +∞, 0 < r < 2, (4.2)

where ω = ∇ × u, this improves the result (1.5) in [42].

Combining the proof of Theorem 2.1 and Theorem 4.1, we have the following corollary:

Corollary 4.1. Assume that the initial data (u0, d0) ∈ H3(R3) × H4(R3) with ∇ · u0 = 0. Let (u, d) be a
local smooth solution of the system (1.1). Suppose that∫ T ∗

0

(
‖u(t)‖

4
4α−3
VΘ

+ ‖∇d(t)‖
2

2−r

Ḃ1−r
∞,∞

)
dt ≤ M < +∞, (4.3)

where 3
4 < α < 1, 0 < r < 2, then the solution (u, d) can be extended past time T ∗.

4.1. Proof of Theorem 4.1.

Proof. (L2 estimate). First, from Eq. (3.1) we have

1
2

d
dt
‖u(t)‖2L2 + ‖∇u(t)‖2L2 = −

∫
R3

(∆d · ∇d) · u dx. (4.4)

Next, multiplying both sides of the second equation of (1.1) by −∆d and integrating over R3, we get

1
2

d
dt
‖∇d‖2L2 + ‖∆d‖2L2 =

∫
R3

(u · ∇)d · ∆d dx −
∫
R3
|∇d|2d · ∆d dx

=

∫
R3

(u · ∇)d · ∆d dx −
∫
R3
|d · ∆d|2 dx

≤

∫
R3

(u · ∇)d · ∆d dx +

∫
R3
|∆d|2 dx, (4.5)

where we have used the facts |d| = 1 and |∇d|2 = −d · ∆d.
Then adding (4.4) and (4.5) together, we obtain

‖u(t)‖2L2 + ‖∇d‖L2 +

∫ T

0
‖∇u(t)‖2L2dt ≤ C. (4.6)

(Lower-order estimate). Applying ∇ on first equation of (1.1) and multiplying the resulting equation
by ∇u. Using divergence free property and integration by parts we have

1
2

d
dt
‖∇u(t)‖2L2 + ‖∇2u(t)‖2L2 = −

∫
R3
∇(u · ∇u)∇u dx −

∫
R3
∇(∇ · (∇d � ∇d))∇u dx. (4.7)

Applying ∇2 on second equation of (1.1), multiplying the resulting equation with ∇2d, integrating by
parts we obtain

1
2

d
dt
‖∇2d(t)‖2L2 + ‖∇3d(t)‖2L2 = −

∫
R3
∇2(u · ∇d)∇2d dx −

∫
R3
∇2(|∇d|2d)∇2d dx. (4.8)
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Adding (4.7) and (4.8) together we get

1
2

d
dt

(‖∇u(t)‖2L2 + ‖∇2d(t)‖2L2) + ‖∇2u(t)‖2L2 + ‖∇3d(t)‖2L2

= −

∫
R3
∇(u · ∇u)∇u dx −

∫
R3
∇(∇ · (∇d � ∇d))∇u dx

−

∫
R3
∇2(u · ∇d)∇2d dx −

∫
R3
∇2(|∇d|2d)∇2d dx

= J1 + J2 + J3 + J4, (4.9)

where

J1 = −

∫
R3
∇(u · ∇u)∇u dx ≤ δ‖∇2u‖22 + C‖∇u‖

2
2−r

Ḃ−r
∞,∞
‖∇u‖2L2 , (4.10)

and

J2 = −

∫
R3
∇(∇ · (∇d � ∇d))∇u dx

≤ C‖∇d‖L6‖∇2d‖L3‖∇2u‖L2

≤ C‖d‖
1
2
L∞‖∇

2d‖
3
2
L3‖∇

2u‖L2

≤ δ‖∇2u‖2L2 + C(δ)‖∇2d‖3L3

≤ δ‖∇2u‖2L2 + δ‖∇3d‖22 + C(δ)‖∇2d‖
2

2−r

Ḃ−r
∞,∞
‖∇2d‖2L2 , (4.11)

where in the second inequality we have used the following Gagliardo-Nirenberg inequality

‖∇d‖L6 ≤ C‖d‖
1
2
L∞‖∇

2d‖
1
2
L3 .

The term J3, is estimated as

J3 = −

∫
R3
∇2(u · ∇d)∇2d dx

≤ ‖∇2u‖L2‖∇d‖L6‖∇2d‖L3 + ‖∇u‖L3‖∇2d‖2L3

≤ ‖d‖
1
2
L∞‖∇

2d‖
3
2
L3‖∇

2u‖L2

+ ‖∇u‖
1
3

Ḃ−r
∞,∞
‖∇u‖

2−r
3

L2 ‖∇
2u‖

r
3

L2‖∇
2d‖

2
3

Ḃ−r
∞,∞
‖∇2d‖

2(2−r)
3

L2 ‖∇
3d‖

2r
3

L2

≤ δ‖∇2u‖2L2 + C(δ)‖∇2d‖3L3 + δ
(
‖∇u‖

2
3

L2‖∇
3d‖

4
3

L2

)
+ C‖∇u‖

2
3(2−r)

Ḃ−r
∞,∞
‖∇u‖

2
3

L2‖∇
2d‖

4
3(2−r)

Ḃ−r
∞,∞
‖∇2d‖

4
3

L2

≤ δ
(
‖∇u‖2L2 + ‖∇3d‖2L2

)
+ C(δ)

(
‖∇u‖

2
2−r

Ḃ−r
∞,∞

+ ‖∇2d‖
2

2−r

Ḃ−r
∞,∞

) (
‖∇u‖2L2 + ‖∇2d‖2L2

)
, (4.12)

and

J4 = −

∫
R3
∇2(|∇d|2d)∇2d dx
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≤ C
(
‖∇2d‖3L3 + ‖∇d‖L6‖∇2d‖L3‖∇3d‖L2 + ‖∇d‖2L6‖∇

2d‖2L3

)
≤ δ‖∇3d‖2L2 + C(δ)‖∇2d‖3L3

≤ δ‖∇3d‖2L2 + δ‖∇3d‖22 + C(δ)‖∇2d‖
2

2−r

Ḃ−r
∞,∞
‖∇2d‖2L2 , (4.13)

Plugging (4.10)–(4.13) into (4.9) we get

1
2

d
dt

(‖∇u(t)‖2L2 + ‖∇2d(t)‖2L2) + ‖∇2u(t)‖2L2 + ‖∇3d(t)‖2L2

≤ C
(
‖∇u‖

2
(2−r)

Ḃ−r
∞,∞

+ ‖∇2d‖
2

(2−r)

Ḃ−r
∞,∞

) (
‖∇u‖2L2 + ‖∇2d‖2L2

)
, (4.14)

by using Gronwall’s inequality and condition (4.1) we have

sup
t∈[0,T ]

‖∇u(t)‖2L2 + ‖∇2d(t)‖2L2 +

∫ T

0
‖∇2u(t)‖2L2 + ‖∇3d(t)‖2L2dt 6 C. (4.15)

(Higher-order estimate). For the completeness of our proof, we obtain the higher-order estimates,
which can be found in [29]. Applying ∇3 on the first equation of (1.1), taking inner product with ∇3u
and integration over domain R3. After integrating by parts we obtain

1
2

d
dt
‖∇3u(t)‖2L2 + ‖∇4u(t)‖2L2

= −

∫
R3
∇3(u · ∇u) · ∇3u dx −

∫
R3
∇3(∆d · ∇d) · ∇3d dx

:= K1 + K2. (4.16)

Now, we estimate Ki(i = 1, 2) one by one, by using commutator estimate we have

K1 = −

∫
R3
∇3(u · ∇u) · ∇3u dx = −

∫
R3

[∇3, u · ∇]u · ∇3u dx

6 ‖[∇3, u · ∇]u‖
L

3
2
‖∇3u‖L3

6 C
(
‖∇u‖L3‖∇3u‖L3 + ‖∇3u‖L3‖∇u‖L3

)
‖∇3u‖L3

6 C‖∇u‖L3‖∇3u‖2L3

6 C‖∇u‖
5
6

L2‖∇
4u‖

1
6

L2‖∇u‖
1
3

L2‖∇
4u‖

5
3

L2

6 C‖∇u‖
7
6

L2‖∇
4u‖

11
6

L2

6 δ‖∇4u‖2L2 + C(δ)‖∇u‖14
L2 , (4.17)

and

K2 = −

∫
R3
∇3(∆d · ∇d) · ∇3d dx

≤ δ‖∇4u‖2L2 + C(δ)
∫
R3
|∇2(∆d · ∇d)|2 dx
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≤ δ‖∇4u‖2L2 + C(δ)
∫
R3

(
|∇4d|2|∇d|2 + |∇2d|2|∇3d|2

)
dx

≤ δ‖∇4u‖2L2 + C(δ)
(
‖∇4d‖2L3‖∇d‖2L6 + ‖∇2d‖2L4‖∇

3d‖2L4

)
≤ δ‖∇4u‖2L2 + C(δ)

(
‖∆d‖

7
3

L2‖∇
5d‖

5
3

L2 + ‖∆d‖
19
6

L2‖∇
5d‖

5
6

L2

)
≤ δ‖∇4u‖2L2 + δ‖∇5d‖2L2 + C(δ)

(
‖∆d‖14

L2 + ‖∆d‖
38
7

L2

)
, (4.18)

where we have used Young’s inequality and the following Gagliardo-Nirenberg inequalities

‖∇2d‖L4 ≤ C‖∆d‖
3
4
L2‖∇

5d‖
1
4
L2 ,

‖∇3d‖L4 ≤ C‖∆d‖
5
6

L2‖∇
5d‖

1
6

L2 ,

‖∇4d‖L3 ≤ C‖∆d‖
1
6

L2‖∇
5d‖

5
6

L2 .

Next, applying ∇4 on the second equation of (1.1) and taking inner product with ∇4d we have

1
2

d
dt
‖∇4d(t)‖2L2 + ‖∇5d(t)‖2L2

= −

∫
R3
∇4(u · ∇d) · ∇4d dx +

∫
R3
∇4(d|∇d|2) · ∇4d dx

:= K3 + K4, (4.19)

the right-hand side of above equality can be estimate as

K3 =

∫
R3

[∇4(u · ∇d) − (u · ∇)∇4d] · ∇4d dx

≤ C‖[∇4(u · ∇d) − (u · ∇)∇4d]‖
L

3
2
‖∇4d‖L3

≤ C‖∇d‖L6‖∇4u‖L2‖∇4d‖L3 + C‖∇u‖L2‖∇4d‖L2‖∇4d‖L3

≤ δ‖∇4u‖2L2 + C(δ)
(
‖∆d‖2L2‖∇

4d‖2L3 + ‖∇u‖L2‖∇5d‖L2‖∇4d‖L3

)
≤ δ‖∇4u‖2L2 + C(δ)

(
‖∆d‖2L2‖∆d‖

1
3

L2‖∇
5d‖

5
3

L2 + ‖∇u‖L2‖∆d‖
1
6

L2‖∇
5d‖

11
6

L2

)
≤ δ‖∇4u‖2L2 + δ‖∇5d‖2L2 + C(δ)

(
(‖∆d‖14

L2 + ‖∇u‖24
L2 + ‖∆d‖4L2

)
, (4.20)

where we have used the divergence free condition and Lemma 2.1. The second term is estimated as

K4 =

∫
R3
∇4(|∇d|2d) · ∇4d dx = −

∫
R3
∇3(|∇d|2d) · ∇5d dx

= −

∫
R3

(
∇3(|∇d|2)d · ∇5d + 3∇2(|∇d|2)∇d · ∇5d + 3∇(|∇d|2)∇2d · ∇5d

)
dx

−

∫
R3
|∇d|2∇3d · ∇5d dx

≤ C‖∇5d‖L2

(
‖∇d‖L6‖∇4d‖L3 + ‖∇2d‖L4‖∇3d‖L4 + ‖∇d‖2L6‖∇

3d‖L6 + ‖∇d‖L6‖∇2d‖2L6

)
AIMS Mathematics Volume 5, Issue 2, 746–765.



762

≤ C‖∇5d‖L2

(
‖∆d‖

7
6

L2‖∇
5d‖

5
6

L2 + ‖∆d‖
7
3

L2‖∇
5d‖

2
3

L2

)
≤

1
4
‖∇5d‖2L2 + C‖∆d‖14

L2

≤ δ‖∇5u‖2L2 + C(δ)‖∇2d‖14
L2 . (4.21)

By combining (4.17)–(4.21) with (4.16) and integration over time [0,T ], we have

‖∇3u(t)‖2L2 + ‖∇4d(t)‖2L2 +

∫ T

0
‖∇4u(t)‖2L2 + ‖∇5d(t)‖2L2dt ≤ C. (4.22)

This completes the proof of Theorem 4.1. �
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