Research article

On global well-posedness and decay of 3D Ericksen-Leslie system

  • Received: 11 June 2021 Accepted: 31 August 2021 Published: 03 September 2021
  • MSC : 35Q35, 76D03, 35B40

  • In this paper, the small initial data global well-posedness and time decay estimates of strong solutions to the Cauchy problem of 3D incompressible liquid crystal system with general Leslie stress tensor are studied. First, assuming that $ \|u_0\|_{\dot{H}^{\frac12+\varepsilon}}+\|d_0-d_*\|_{\dot{H}^{\frac32+\varepsilon}} $ ($ \varepsilon > 0) $ is sufficiently small, we obtain the global well-posedness of strong solutions. Moreover, the $ L^p $–$ L^2 $ ($ \frac32\leq p\leq2 $) type optimal decay rates of the higher-order spatial derivatives of solutions are also obtained. The $ \dot{H}^{-s} $ ($ 0\leq s < \frac12 $) negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates.

    Citation: Xiufang Zhao, Ning Duan. On global well-posedness and decay of 3D Ericksen-Leslie system[J]. AIMS Mathematics, 2021, 6(11): 12660-12679. doi: 10.3934/math.2021730

    Related Papers:

  • In this paper, the small initial data global well-posedness and time decay estimates of strong solutions to the Cauchy problem of 3D incompressible liquid crystal system with general Leslie stress tensor are studied. First, assuming that $ \|u_0\|_{\dot{H}^{\frac12+\varepsilon}}+\|d_0-d_*\|_{\dot{H}^{\frac32+\varepsilon}} $ ($ \varepsilon > 0) $ is sufficiently small, we obtain the global well-posedness of strong solutions. Moreover, the $ L^p $–$ L^2 $ ($ \frac32\leq p\leq2 $) type optimal decay rates of the higher-order spatial derivatives of solutions are also obtained. The $ \dot{H}^{-s} $ ($ 0\leq s < \frac12 $) negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates.



    加载中


    [1] P. G. de Gennes, The physics of liquid crystals, London: Oxford University Press, 1974.
    [2] L. Brandolese, Characterization of solutions to dissipative systems with sharp algebraic decay, SIAM J. Math. Anal., 48 (2016), 1616–1633. doi: 10.1137/15M1040475
    [3] C. Cavaterra, E. Rocca, H. Wu, Global weak soltuin and blow-up criterion of the general Erick-Leslie system for nematic liquid crystal flows, J. Differ. Equations, 255 (2013), 24–57. doi: 10.1016/j.jde.2013.03.009
    [4] D. Chae, M. Schonbek, On the temporal decay for the Hall-magnetohydrodynamic equations, J. Differ. Equations, 255 (2013), 3971–3982. doi: 10.1016/j.jde.2013.07.059
    [5] S. Chandrasekhar, Liquid crystals, Cambridge: Cambridge University Press, 1977.
    [6] G. Q. Chen, A. Majumdar, D. Wang, R. Zhang, Global weak solutions for the compressible active liquid crystal system, SIAM J. Math. Anal., 50 (2018), 3632–3675. doi: 10.1137/17M1156897
    [7] Y. Chen, S. Ding, W. Wang, Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations, Discrete Cont. Dyn. Syst., 36 (2016), 5287–5307. doi: 10.3934/dcds.2016032
    [8] M. Dai, M. Schonbek, Asymptotic behavior of solutions to the liquid crystal system in $H^m(\mathbb{R}^3)$, SIAM J. Math. Anal., 46 (2014), 3131–3150. doi: 10.1137/120895342
    [9] J. Ericksen, Liquid crystals with variable degree of orientation, Arch. Ration. Mech. Anal., 113 (1991), 97–120. doi: 10.1007/BF00380413
    [10] J. Fan, J. Li, Regularity criteria for the strong solutions to the Ericksen-Leslie system in $\mathbb{R}^3$, J. Math. Anal. Appl., 425 (2015), 95–703.
    [11] E. Feireisl, E. Rocca, G. Schimperna, A. Zarnescu, On a hyperbolic system arising in liquid crystals modeling, J. Hyperbolic Differ. Equ., 15 (2018), 15–35. doi: 10.1142/S0219891618500029
    [12] A. Friedman, Partial differential equations, Holt, Reinhart and Winston, New York, 1969.
    [13] J. Gao, Q. Tao, Z. Yao, Strong solutions to the densi-dependent incompressible nematic liquid crystal flows, J. Differ. Equations, 260 (2016), 3691–3748. doi: 10.1016/j.jde.2015.10.047
    [14] J. Gao, Q. Tao, Z. Yao, Long-time behavior of solution for the compressible nematic liquid crystal flows in $\mathbb{R}^3$, J. Differ. Equations, 261 (2016), 2334–2383. doi: 10.1016/j.jde.2016.04.033
    [15] H. Gong, J. Li, C. Xu, Local well-posedness to inhomogeneous Ericksen-Leslie system with general Leslie stress tensor, Z. Angew. Math. Phys., 68 (2017), 17. doi: 10.1007/s00033-016-0759-3
    [16] L. Grafakos, Classical and modern fourier analysis, London: Prentice-Hall, 2004.
    [17] Y. Guo, Y. Wang, Decay of dissipative equations and negative Sobolev spaces, Commun. Part. Diff. Eq., 37 (2012), 2165–2208. doi: 10.1080/03605302.2012.696296
    [18] M. Heber, J. Pruss, Dynamics of the Ericksen-Leslie equations with general Leslie stress II: The compressible isotropic case, Arch. Ration. Mech. Anal., 233 (2019), 1441–1468. doi: 10.1007/s00205-019-01382-9
    [19] T. Huang, C. Wang, Blow up criterion for nematic liquid crystal flows, Commun. Part. Diff. Eq., 37 (2012), 875–884. doi: 10.1080/03605302.2012.659366
    [20] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891–907. doi: 10.1002/cpa.3160410704
    [21] F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265–283. doi: 10.1007/BF00251810
    [22] B. Li, H. Zhu, C. Zhao, Time decay rate of solutions to the hyperbolic MHD equations in $\mathbb{R}^3$, Acta Math. Sci., 36 (2016), 1369–1382. doi: 10.1016/S0252-9602(16)30075-3
    [23] F. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun. Pure Appl. Math., 48 (1995), 501–537. doi: 10.1002/cpa.3160480503
    [24] F. Lin, C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 154 (2000), 135–156. doi: 10.1007/s002050000102
    [25] F. Lin, C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Commun. Pure Appl. Math., 69 (2016), 1532–1571. doi: 10.1002/cpa.21583
    [26] C. Liu, J. Shen, On liquid crystal flows with free-slip boundary conditions, Distrete Cont. Dyn. Syst., 7 (2001), 307–318. doi: 10.3934/dcds.2001.7.307
    [27] S. Liu, J. Zhang, Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density, Discrete Cont. Dyn. Syst. Ser. B, 21 (2016), 2631–2648. doi: 10.3934/dcdsb.2016065
    [28] C. J. Niche, M. E. Schonbek, Decay characterization of solutions to dissipative equations, J. London Math. Soc., 91 (2015), 573–595. doi: 10.1112/jlms/jdu085
    [29] X. Pu, X. Xu, Decay rates of the magnetohydrodynamic model for quantum plasmas, Z. Angew. Math. Phys., 68 (2017), 18. doi: 10.1007/s00033-016-0762-8
    [30] M. E. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 88 (1985), 209–222. doi: 10.1007/BF00752111
    [31] M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations, Commun. Part. Diff. Eq., 11 (1986), 733–763. doi: 10.1080/03605308608820443
    [32] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton: Princeton Unversity Press, 1970.
    [33] H. Sun, C. Liu, On energetic variational approaches in modeling the nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 23 (2009), 455–475.
    [34] C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Ration. Mech. Anal., 200 (2011), 1–19. doi: 10.1007/s00205-010-0343-5
    [35] W. Wang, P. Zhang, Z. Zhang, Well-posedness of the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 210 (2013), 837–855. doi: 10.1007/s00205-013-0659-z
    [36] Y. Wang, Decay of the Navier-Stokes-Poisson equations, J. Differ. Equations, 253 (2012), 273–297. doi: 10.1016/j.jde.2012.03.006
    [37] R. Wei, Y. Li, Z. Yao, Global well-posedness and decay rates for the three-dimensional compressible Phan-Thein-Tanner model, J. Math. Fluid Mech., 23 (2021), 1–13. doi: 10.1007/s00021-020-00542-2
    [38] X. Xu, Z. Zhang, Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows, J. Differ. Equations, 252 (2012), 1169–1181. doi: 10.1016/j.jde.2011.08.028
    [39] Y. Yang, C. Dou, Q. Ju, Weak-stong uniqueness property for the compressible flow of liquid crystals, J. Differ. Equations, 255 (2013), 1233–1253. doi: 10.1016/j.jde.2013.05.011
    [40] C. Zhao, B. Li, Time decay rate of weak solutions to the generalized MHD equations in $\mathbb{R}^2$, Appl. Math. Comput., 292 (2017), 1–8.
    [41] X. Zhao, Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$, Commun. Pure Anal. Appl., 18 (2019), 1–13. doi: 10.3934/cpaa.2019001
    [42] X. Zhao, M. Zhu, Global well-posedness and asymptotic behavior of solutions for the three-dimensional MHD equations with Hall and ion-slip effects, Z. Angew. Math. Phys., 69 (2018), 1–13. doi: 10.1007/s00033-017-0895-4
    [43] X. Zhao, On the Cauchy problem of a sixth-order Cahn-Hilliard equation arising in oil-water-surfactant mixtures, Asymptotic Anal., 122 (2021), 201–224. doi: 10.3233/ASY-201616
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2001) PDF downloads(109) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog